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Abstract: In a highly inbred Australian Shepherd litter, three of the five puppies developed widespread
ulcers of the skin, footpads, and oral mucosa within the first weeks of life. Histopathological
examinations demonstrated clefting of the epidermis from the underlying dermis within or just below
the basement membrane, which led to a tentative diagnosis of junctional epidermolysis bullosa (JEB)
with autosomal recessive inheritance. Endoscopy in one affected dog also demonstrated separation
between the epithelium and underlying tissue in the gastrointestinal tract. As a result of the severity of
the clinical signs, all three dogs had to be euthanized. We sequenced the genome of one affected puppy
and compared the data to 73 control genomes. A search for private variants in 37 known candidate
genes for skin fragility phenotypes revealed a single protein-changing variant, LAMB3:c.1174T>C,
or p.Cys392Arg. The variant was predicted to change a conserved cysteine in the laminin β3 subunit
of the heterotrimeric laminin-322, which mediates the binding of the epidermal basement membrane
to the underlying dermis. Loss-of-function variants in the human LAMB3 gene lead to recessive forms
of JEB. We confirmed the expected co-segregation of the genotypes in the Australian Shepherd family.
The mutant allele was homozygous in two genotyped cases and heterozygous in three non-affected
close relatives. It was not found in 242 other controls from the Australian Shepherd breed, nor in
more than 600 other controls. These data suggest that LAMB3:c.1174T>C represents the causative
variant. To the best of our knowledge, this study represents the first report of a LAMB3-related JEB in
domestic animals.

Keywords: dog; Canis lupus familiaris; whole genome sequence; wgs; dermatology; genodermatosis;
skin; laminin; precision medicine

1. Introduction

When a human or animal, usually at or soon after birth, develops erosions and epithelial
sloughing on the mucosae, areas of friction, and extremities, a genetic disorder of skin fragility is to
be considered. A consensus reclassification of skin fragility disorders was published recently, which
separates those that affect the basement membrane itself or the basal keratinocytes (i.e., hereditary
epidermolysis bullosa (EB) variants) from others, in which the separation occurs more superficially in

Genes 2020, 11, 1055; doi:10.3390/genes11091055 www.mdpi.com/journal/genes

http://www.mdpi.com/journal/genes
http://www.mdpi.com
https://orcid.org/0000-0002-2714-2370
https://orcid.org/0000-0002-8155-0041
https://orcid.org/0000-0003-1399-0034
https://orcid.org/0000-0003-0553-4880
http://dx.doi.org/10.3390/genes11091055
http://www.mdpi.com/journal/genes
https://www.mdpi.com/2073-4425/11/9/1055?type=check_update&version=2


Genes 2020, 11, 1055 2 of 10

the epidermis [1]. In this reclassification, four main categories of inherited “classical” EB are proposed,
which reflect the differences in the level of cleavage in the basement membrane zone [1]. Also included
in this reclassification are four new categories of epidermal disorders of skin fragility associated
with 20 possibly mutated genes, namely: peeling skin disorders, erosive skin fragility disorders,
keratinopathic ichthyoses, and pachyonychia congenita [1]. Finally, a single syndromic connected
tissue disorder with (dermal) skin fragility associated with PLOD3 variants and a lysyl hydroxylase-3
deficiency was also included in this group of diseases [1]. All of the known 37 candidate genes for
these human diseases are summarized in Table 1.

Table 1. Consensus reclassification of epidermolysis bullosa and other disorders with epidermal
fragility and their known functional candidate genes, as of 2020 [1].

Disorder Level of Cleavage Gene Protein Inheritance 1

Classical Epidermolysis Bullosa (EB)
EB simplex (EBS) Basal epidermal CD151 CD151 molecule (Raph blood group) AR

DST dystonin AR
EXPH5 exophilin 5 AR
KLHL24 kelch like family member 24 AD
KRT5 keratin 5 AD, AR
KRT14 keratin 14 AD, AR
PLEC plectin AR

Junctional EB (JEB) Junctional COL17A1 collagen type XVII, α 1 chain AR
ITGA3 integrin subunit α 3 AR
ITGA6 integrin subunit α 6 AR
ITGB4 integrin subunit β 4 AR
LAMA3 laminin subunit α 3 AR
LAMB3 laminin subunit β 3 AR
LAMC2 laminin subunit γ 2 AR

Dystrophic EB (DEB) Dermal COL7A1 collagen type VII, α 1 chain AD, AR

Kindler EB Mixed FERMT1 fermitin family homolog 1 AR

Other Disorders with Skin Fragility
Peeling skin disorders Intraepidermal CAST calpastatin AR

CSTA cystatin A AR
CTSB cystatin B AR
DSG1 desmoglein 1 AR
FLG2 filaggrin family member 2 AR
SERPINB8 serpin family B member 8 AR
SPINK5 serine peptidase inhibitor Kazal type 5 AR

Erosive skin fragility disorders Intraepidermal DSC3 desmocollin 3 AR
DSG3 desmoglein 3 AR
DSP desmoplakin AR
JUP junction plakoglobin AR
PKP1 plakophilin 1 AR

Keratinopathic ichthyoses Intraepidermal KRT1 keratin 1 AD
KRT2 keratin 2 AD
KRT10 keratin 10 AD, AR

Pachyonychia congenita Intraepidermal KRT6A keratin 6A AD
KRT6B keratin 6B AD
KRT6C keratin 6C AD
KRT16 keratin 16 AD
KRT17 keratin 17 AD

Syndromic connective tissue
disorder with skin fragility Dermal PLOD3 procollagen-lysine,2-oxoglutarate

5-dioxygenase 3 AR

1 AD—autosomal dominant; AR—autosomal recessive.

In domestic dogs, only two other epidermal disorders of skin fragility have been reported, namely:
epidermolytic ichthyosis associated with a KRT10 variant in Norfolk terriers [2], and ectodermal
dysplasia/skin fragility syndrome with a PKP1 variant in Chesapeake Bay Retrievers [3] (Table S1).
In contrast, cases of hereditary EB have been recognized for decades, and the causative genetic variants
have now been characterized in three canine, one feline, two equine, two ovine, and five bovine EB
variants (Table S1).
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In dogs, there is at least one example for each of the three main subtypes of classical EB in which
the genetic defect has been reported, namley: a PLEC variant in the EB simplex of Eurasier dogs in
the USA [4]; a LAMA3 variant in the junctional EB of German Shorthaired Pointers in France [5];
and COL7A1 variants in the dystrophic EB (mild) in Golden Retrievers, also in France [6], or severe in
Central Asian Shepherds [7].

Laminin-332, a rod-like heterotrimer composed of the laminin α3, β3, and γ2 chains, is a critical
component of hemidesmosomes, adhesion complexes that attach the basal epidermal keratinocytes to
the underlying dermal connective tissue [8–10]. The prominent role of laminin-332 for skin integrity
stems from its ability to link two important molecules—one in the epidermis and the other in the
dermis. Via its carboxy-terminus, laminin α3 binds to the external domains of the integrin α6β4 that
protrude from the basal keratinocytes. At the other end of the laminin trimer, the amino-terminal
domains of the laminin β3 and γ2 chains bind to the NC1 amino-terminus of the superficial dermal
collagen type VII [11].

Genetic variants in the LAMA3, LAMB3, and LAMC2 genes that encode the laminin α3, β3, and γ2
chains are causative for the intermediate and severe forms of junctional EB (JEB), not only in humans [1],
but also in animals (Table S1). Variants in any one of these genes can lead to a similar phenotype, as the
abnormal expression or function of either of the three individual laminin chains is expected to impair
the assembly or the function of the entire laminin-332. A good example of this phenomenon is the
near identical phenotype exhibited by American Saddlebred horses with severe JEB associated with a
LAMA3 variant [12], and that found in Belgian, Breton, Comtois, and Italian draft horses caused by a
LAMC2 variant [13–15].

While JEB subsets associated with LAMB3 variants are common in humans [16–18], they have
not yet been reported in animals. So far, an abnormal epidermal expression of laminin β3—without
investigation of the underlying molecular genetics—has only been shown in a single cat exhibiting a
phenotype of mild EB [19].

Herein, we report a missense variant in LAMB3, which we believe is causative of a JEB phenotype
with intermediate severity in a litter of Australian Shepherds in Ontario, Canada. Of clinical interest
is the demonstration, for the first time or so it seems, of intestinal epithelial sloughing in a case of
animal JEB.

2. Materials and Methods

2.1. Ethics Statement

The affected Australian Shepherds in this study were privately owned, and skin and biopsy samples
were collected with the consent of their owners. The collection of all other blood samples was approved
by the “Cantonal Committee for Animal Experiments” (Canton of Bern; permits 75/16 and 71/19).

2.2. Animal Selection

This study included 247 Australian Shepherds. Genomic DNA was either isolated from EDTA
blood samples with the Maxwell RSC Whole Blood Kit, or from formalin-fixed paraffin-embedded
(FFPE) tissue samples with the Maxwell RSC DNA FFPE Kit using a Maxwell RSC instrument (Promega,
Dübendorf, Switzerland).

2.3. Histopathological Examinations

Skin punch biopsies (8 mm) were obtained under general anesthesia. The samples were fixed in
10% neutral buffered formalin and routinely processed, including staining with hematoxylin and eosin.

2.4. Whole Genome Sequencing

An Illumina TruSeq PCR-free DNA library with ~400 bp insert size of a JEB affected Australian
Shepherd was prepared. We collected 175 million 2 × 150 bp paired-end reads or 18.9× coverage
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on a NovaSeq 6000 instrument. The reads were mapped to the dog reference genome assembly
CanFam3.1 and were aligned as previously described [20]. The sequence data were submitted to
the European Nucleotide Archive, with study accession number PRJEB16012 and sample accession
number SAMEA6862980.

2.5. Variant Calling

Variant calling was performed as previously described [20]. To predict the functional effects of the
called variants, SnpEff software [21], together with NCBI annotation release 105 for the CanFam 3.1
genome reference assembly, was used. For variant filtering, we used 73 control genomes (Table S2).

2.6. Gene Analysis

We used the dog reference genome assembly CanFam3.1 and NCBI annotation release 105.
Numbering within the canine LAMB3 gene corresponds to the NCBI RefSeq accession numbers
XM_014115071.2 (mRNA) and XP_013970546.1 (protein). For a multiple species comparison of the
LAMB3 amino acid sequences, we used the following accessions: NP_000219.2 (Homo sapiens),
NP_001075065.1 (Bos taurus), XP_023496552.1 (Equus caballus), NP_001264857.1 (Mus musculus),
NP_001094311.1 (Rattus norvegicus), XP_425827.3 (Gallus gallus), XP_002933550.2 (Xenopus tropicalis),
and XP_700808.6 (Danio rerio).

2.7. Sanger Sequencing

To confirm the candidate variant LAMB3:c.1174T>C, and to genotype all of the dogs in this
study, Sanger Sequencing was used. A 403 bp PCR product was amplified from genomic DNA using
AmpliTaqGold360Mastermix (Thermo Fisher Scientific, Waltham, MA, USA) and primers 5′-TCT TGT
GCC AAG CAC TGT TC-3′ (Primer F) and 5′-GGC ATA GGT GAG TCC CGT AA-3′ (Primer R).
A smaller PCR product of 153 bp size was amplified for FFPE-derived DNA with primers 5′-GGT GGC
TGC TTT TCT GTC TC-3′ (Primer F) and 5′-GGT GAG TCC CGT AAA TCC TG-3′ (Primer R). After
treatment with shrimp alkaline phosphatase and exonuclease I, PCR amplicons were sequenced on
an ABI 3730 DNA Analyzer (Thermo Fisher Scientific). Sanger sequences were analyzed using the
Sequencher 5.1 software (GeneCodes, Ann Arbor, MI, USA).

3. Results

3.1. Family Anamnesis, Clinical Examinations, and Histopathology

Three Australian Shepherd puppies with severe skin lesions were identified in a highly inbred litter
resulting from a father–daughter mating. The litter consisted of three affected and two non-affected
puppies that were born out of normal parents. The pedigree relationships were suggestive for a
monogenic autosomal recessive inherited disease (Figure 1).
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Figure 1. Pedigree of the investigated Australian Shepherd family. Squares represent males and circles
represent females. The three affected puppies are indicated by the filled symbols. Note that the father
of the litter was simultaneously the maternal grandfather. A close inbreeding loop greatly increases the
risk for recessive hereditary defects. Genotypes at the LAMB3:c.1174T>C variant are indicated for all
animals, from which a DNA sample is available (see Section 3.2).
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At the time of their first presentation to the breeder’s veterinarian for vaccination at 7 weeks of
age, the three affected puppies were noted to have ulcers in the mouth, inner pinnae, and abdomen.
The puppies reportedly also had marked lymph node enlargement. The average weight of the affected
puppies was half that of their unaffected siblings.

At 17 weeks of age, one of the affected dogs, a blue merle with copper intact female was presented
to the dermatologist for evaluation of severe ulceration of both the oral cavity and haired skin. Ulcers
were located on the gingival and buccal mucosa, tongue, and hard and soft palates (Figure 2a).
The concave pinnae, bilaterally, were also ulcerated, oozing, and covered with exudate (Figure 2b),
but the otoscopic examination only revealed mild erythema in the ear canal. Several footpads, either
digital or central, were also ulcerated (Figure 2c), and four claws were missing or misshapen. Erosions
and ulcers were covered by thick crusts on the elbows, hocks, and the tip of the tail. The vulva and
anus were grossly normal.
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Figure 2. Clinical and histopathological phenotype. (a) Severe coalescing ulcers on the gingiva and
hard and soft palate, (b) concave pinna (c) and footpads. Biopsy samples collected from the (d) oral
cavity and (e) duodenum revealed widespread separation of the epithelium from the underlying
connective tissue (asterisks).

Thoracic auscultation, abdominal, and lymph node palpation were all unremarkable. Blood was
collected for a complete blood count and a serum chemistry panel, and the most relevant changes
were a mild regenerative anemia (hemoglobin: 129 (reference range: 134–207 g/L); reticulocytes: 118
(10–110 k/µL)) and hypoproteinemia (total proteins: 46 (55–75 g/L); albumin: 23 (27–39 g/L); globulins:
23 (24–40 g/L)). To determine if these abnormal changes were due to digestive ulcers, an upper
gastrointestinal endoscopy was performed under general anesthesia, two weeks after the original
admission to the specialty clinic. The esophagus appeared normal, and the stomach and duodenum
were hyperrhemic but did not show a visible loss of epithelium; endoscopic biopsies were nevertheless
collected from the stomach and duodenum. During this general anesthesia, punch skin biopsies were
collected from the concave pinnae, footpads, and oral cavity (hard palate, buccal mucosa, and tongue).

Microscopically, the skin and mucosal biopsy samples all exhibited limited-to-widespread
epidermal detachment (Figure 2d), and ulcers were covered with serocellular crusts; inflammation was
sparse in non-ulcerated areas. In some sections (as in Figure 2d), the basement membrane could be
discerned at the base of the clefts, thus suggesting the diagnosis of JEB. The endoscopic biopsies from
the stomach (pyloric and nonpyloric areas) and duodenum all showed mild-to-moderate inflammation
with lymphocytes, plasma cells, and eosinophils, with a detachment of the epithelium from the
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underlying lamina propria (Figure 2e). Because of the severity of the lesions, the dog was euthanized
at 7.5 months of age.

The medical records of the two other affected puppies were also reviewed. A blue merle with
copper intact male puppy was noted to have ulcers on the tongue, gingiva, soft palate, pharynx, tonsils,
and larynx. Skin ulcers were found on the concave pinnae and pressure points of one elbow, one hock,
and both stifles. Because of the worsening lesions, this puppy was euthanized at 16 weeks of age,
with biopsy samples of the tongue, soft palate ear, and footpad collected post-mortem. As for the
samples obtained from the littermate described above, microscopic lesions consisted of subepidermal
vesicles leading to dermo-epidermal separation, ulceration, and granulation tissue.

The third affected puppy, a blue merle female, had been euthanized at 5 months of age because of
severe gingival, labial, oropharyngeal, and esophageal ulceration. The dog had crusts on the chin,
ulcers and crusts on the concave pinnae and footpads, and exudate at the base of multiple claws;
samples for histopathology were not collected.

Finally, both the sire and dam, as well as the two healthy siblings, were examined by veterinarians,
and they were deemed to be free of skin lesions.

3.2. Genetic Analysis

In order to characterize the underlying causative genetic variant, we sequenced the genome of
one affected dog at 18.9× coverage and searched for homozygous variants in the 37 genes known to
cause human skin fragility (Table 1), which were exclusively present in the affected dog and absent
from the genomes of 73 other dogs (Table 2, Tables S2 and S3).

Table 2. Results of variant filtering in the affected Australian Shepherd dog against 73 control genomes.
Only homozygous variants are reported.

Filtering Step Variants

All variants in the affected dog 3,111,811
Private variants 11,754

Protein-changing private variants 54
Protein-changing private variants in 37 candidate genes 1

This analysis identified a single homozygous private protein-changing variant in LAMB3, a known
candidate gene for JEB in humans [1]. The variant can be designated as Chr7:8,286,613A>G (CanFam3.1
assembly). It is a missense variant, XM_014115071.2:c.1174T>C, predicted to change a highly conserved
cysteine residue in the third EGF-like domain of laminin β3, XP_013970546.1:p.(Cys392Arg).

We confirmed the presence of the LAMB3 missense variant by Sanger sequencing (Figure 3).
The mutant allele showed the expected co-segregation with JEB in the available family. The two
available DNA samples from the JEB affected puppies carried the mutant allele in a homozygous state,
while their parents were heterozygous, as expected for obligate carriers (Figure 1).

We determined the genotypes at LAMB3:c.1174T>C in a cohort comprising 247 Australian
Shepherd dogs, including the index family. The mutant LAMB3 allele was not detected in the
homozygous state in any of the 245 non-affected Australian Shepherd dogs or 663 dogs from other
breeds. Three of these dogs, all members of the index family, carried the mutant LAMB3 allele in a
heterozygous state (Table 3).
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Figure 3. Details of the LAMB3:c.1174T>C, p.Cys392Arg variant. (a) Representative electropherograms
of three dogs with different genotypes are shown. The variable position is indicated by an arrow,
and the amino acid translations are shown. (b) Domain organization of the 1172 amino acid laminin β3
precursor [8]. The N-terminus consists of a globular domain (LN), followed by six laminin EGF-like
(LE) domains. These N-terminal domains are located in the basement membrane and may be involved
in binding to collagen VII. The C-terminal half of laminin β3 participates in two coiled-coil domains
that mediate trimerization with the α3 and γ2 chains in the laminin-332 heterotrimer. The small Lβ
domain mediates the binding of agrin. (c) Multiple-species alignment of the beginning of the LE3
domain harboring the p.Cys392Arg variant. The variant affects a highly conserved cysteine residue that
forms a disulfide bridge with Cys-379 [22]. Note that all six cysteine residues in this region contribute
to disulfide bonds, and are strictly conserved across vertebrates.

Table 3. Genotype-phenotype association of the LAMB3:c.1174T>C variant with JEB.

Dogs T/T T/C C/C

Cases (n = 2) 1 - - 2
Controls, Australian Shepherd dogs (n = 245) 242 3 -

Controls, other breeds (n = 663) 1 663 - -
1 These genotypes were derived from 590 genome sequences reported in the literature [20], and the 73 control
genomes used in this study.

4. Discussion

In the affected Australian Shepherds described in this study, the age of lesion onset, as well as
the presence of ulceration in the oral cavity and pressure points on the limbs with a loss of claws,
all suggested the clinical diagnosis of a skin fragility disorder, of which EB is the most representative
disease group in domestic animals and humans (Table S1). Because of the resembling phenotypes,
clinical signs cannot alone reliably permit differentiation between the three main subtypes of animal
EB (simplex, junctional, and dystrophic). For a more precise diagnosis, the specific location of the
dermo-epidermal separation must be determined, for example, with a periodic acid Schiff (PAS) stain
to visualize the glycoproteins in the basement membrane lamina densa [7], single or double antigen
immunomapping [23], or transmission electron microscopy [4]. In this case, the routine histopathology
enabled the visualization of the basement membrane delineating the contour of dermal imprints of
the epidermal ridges, thus establishing that clefting occurred in a supra-lamina densa manner; this
confirmed the diagnosis of JEB.
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There is only one other occurrence of JEB in the canine species [5,23,24]. In the early 1990s, JEB was first
discovered in German Shorthaired Pointers in the French Alps. The clinical signs were indistinguishable
from those present in the Australian Shepherds described herein. Both the Pointer and Australian
Shepherd puppies exhibited the first clinical signs weeks after, and not at, birth. In both cases, lesions
consisted of ulcerative skin lesions affecting the inner (medial and concave) pinnae, footpads, and at
pressure points of the extremities [23,24]. Shedding of the claws was also reported [24]. Of interest is
that dental enamel abnormalities, a common finding in human JEB [1], were not recognized in either
the German Shorthaired Pointers or the Australian Shepherds described in this study. A unique finding
seen in one of the three Australian Shepherd puppies was the endoscopic observation of duodenal
hyperrhemia, which was found on the histopathology to be associated with an extensive detachment
of the digestive epithelium from its underlying connective tissue. Unfortunately, as ulceration of the
duodenum was not seen during endoscopy, we cannot rule out that the digestive epithelial detachment
seen on the histopathology might have been artifactual. Nevertheless, the LAMA3, LAMB3, and
LAMC2 genes, which encode the three laminin-332 chains, are all expressed in the small intestine [25].
As a result, based on our hypothesis, that the LAMB3 missense variant affects the adhesive function of
the laminin-332, it is conceivable that any trauma to the small intestine during the endoscopic biopsy
process could result in a forced epithelial separation from the lamina propria, a phenomenon that
normally does not happen to that extent in healthy individuals. To our knowledge, such a lesion
has never been reported in a case of animal EB, and these are findings seen more often in the severe
generalized than intermediate variants of human JEB; they are typically not found in localized JEB [26].

In this study, we identified a homozygous missense variant, LAMB3:p.Cys392Arg, as a candidate
causative variant for a new JEB in Australian Shepherd dogs. LAMB3 encodes the laminin β3 chain,
which, together with the α3 and γ2 chains, forms the heterotrimer laminin-332. Laminin β3 has two
coiled-coil domains for the heterotrimer formation with the α3 and γ2 chains at its C-terminal end.
The N-terminus consists of a globular domain (LN) and six laminin-type epidermal growth factor-like
(LE) repeats [8,22]. The LE domains have conserved disulfide bonds, which may be important for
the tertiary structure of these domains [27,28]. The LN and LE domains form a short arm in the
cross-shaped laminin-332 heterotrimer, and mediate binding to type VII collagen in hemidesmosomes,
which are necessary for the stable association between the epithelium and the stroma underneath [8,11].

The p.Cys392Arg variant changes one of the highly conserved cysteine residues in the third
LE domain, which prevents the formation of the disulfide bond between Cys-392 and Cys-379.
We hypothesize that this may lead to a change in the tertiary structure of laminin β3, and impair the
binding of laminin-322 to collagen type VII in hemidesmosomes. Further experiments at the protein
level are required in order to confirm this putative pathomechanism.

With this description, we now have two variants of canine intermediate JEB due to variants in
related genes (LAMA3 in German Shorthaired Pointers and LAMB3 in Australian Shepherds) encoding
the laminin α3 and β3 chains that assemble with the γ2 chain to form the laminin-332 heterotrimer.
In both of these breeds, the variants are predicted to result in some residual protein function (Australian
Shepherds), or in the secretion of some normal laminin-332 trimers (German Shorthaired Pointers) [5],
which may explain the similar absence of lesions at birth and the intermediate clinical phenotype.

In humans, the specific variants and their consequences at the mRNA and protein levels contribute
to the spectrum of severity encountered in different subtypes of EB [10]. Severe forms of JEB are
associated with nonsense, frameshift, or out-of-frame splicing variants that result in nonfunctional
or complete loss of the protein. Intermediate JEB occurs when a laminin chain is mutated, but the
LM-332 heterotrimer can still form, which is often the case for missense variants [16]. Missense variants
affecting cysteine residues in the LE domains, LAMB3:p.Cys355Arg and p.Cys433Trp, have been
reported in human patients with intermediate JEB [16–19]. The clinical phenotype observed in the
investigated dogs homozygous for p.Cys392Arg can also be classified as JEB of intermediate severity,
and corresponds well to the human spectrum of genotype–phenotype correlations.
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5. Conclusions

We characterized a new recessive form of JEB in Australian Shepherd dogs. A precision medicine
approach identified a missense variant in the LAMB3 gene, c.1174T>C or p.Cys392Arg as likely
candidate causative variant. Our data enable genetic testing to avoid the unintentional breeding of
further affected dogs and provide the first spontaneous large animal model for JEB due to altered
laminin β3.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/9/1055/s1:
Table S1, genetic variants causing epidermolysis bullosa or skin fragility disorders in animals. Table S2, accession
numbers of 74 dog genome sequences. Table S3, private variants in a JEB affected Australian Shepherd dog.
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