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Abstract

Electroconvulsive therapy (ECT) is an efficient and relatively fast acting treatment for depression. However, one severe side
effect of the treatment is retrograde amnesia, which in certain cases can be long-term. The mechanisms behind the
antidepressant effect and the amnesia are not well understood. We hypothesized that ECT causes transient downregulation
of key molecules needed to stabilize synaptic structure and to prevent Ca2+ influx, and a simultaneous increase in
neurotrophic factors, thus providing a short time window of increased structural synaptic plasticity. Here we followed
regulation of NgR1, NgR3, LOTUS, BDNF, and AMPA subunits GluR1 and GluR2 flip and flop mRNA levels in hippocampus at
2, 4, 12, 24, and 72 hours after a single episode of induced electroconvulsive seizures (ECS) in rats. NgR1 and LOTUS mRNA
levels were transiently downregulated in the dentate gyrus 2, 4, 12 and 4, 12, 24 h after ECS treatment, respectively. GluR2
flip, flop and GluR1 flop were downregulated at 4 h. GluR2 flip remained downregulated at 12 h. In contrast, BDNF, NgR3
and GluR1 flip mRNA levels were upregulated. Thus, ECS treatment induces a transient regulation of factors important for
neuronal plasticity. Our data provide correlations between ECS treatment and molecular events compatible with the
hypothesis that both effects and side effects of ECT may be caused by structural synaptic rearrangements.
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Introduction

Electroconvulsive therapy (ECT) is used to treat patients with

major depressive disorder who do not respond to pharmacologic

treatment. However, the treatment does not only attenuate

symptoms of depression, it can also cause long lasting memory

deficits. Both the amnesia and the superiority of ECT over

antidepressant drugs is well-established [1], but the underlying

mechanisms of action are still largely unknown. Robust effects on

regulation of levels of signaling molecules and trophic factors have

been revealed in rats in response to electroconvulsive seizures

(ECS), used to model ECT [2]. Many of these effects were

observed in hippocampus, an important region for learning and

memory [3].

Brain-derived neurotrophic factor (BDNF) is strongly implicated

as a factor driving induced plasticity after ECS and is also

suggested to be of importance for the antidepressant effects. In

support of an antidepressant role of BDNF, serum levels of BDNF

have been found to be decreased in patients with major depression

[2,4]. In addition, treatment with ECS increases BDNF protein

and mRNA in hippocampus of rat [2,5,6].

Long-lasting effects of ECS are likely to also include structural

adaptions that affect the state of depression and memory

formation [7]. For example, treatment with ECS induces

neurogenesis [8,9] and sprouting of dentate gyrus granule cell

mossy fibers [10], events that have been suggested to relate to the

clinical efficacy of ECT [11].

The CNS Nogo signaling system inhibits nerve fiber growth.

The three ligands Nogo, myelin-associated glycoprotein (MAG)

and oligodendrocyte-myelin glycoprotein (OMgp) can all bind to a

common receptor, Nogo receptor 1 (NgR1) [12]. Both Nogo and

NgR1 are expressed in neurons of the hippocampal formation

including the dentate gyrus. Increased neuronal activity causes

rapid downregulation of NgR1 [13–15]. Lack of NgR1 results in

enhanced plasticity in the visual cortex [16]. NgR1 is important

for the formation of lasting memories. Thus, the formation of

lasting memory is significantly impaired in NgR1 overexpressing

mice [17]. Also, levels of the two homologous Nogo receptors,

NgR2 and NgR3, are regulated by activity, albeit in the opposite

direction [15,18].

Recently, an endogenous NgR1 antagonist, cartilage acidic

protein-1B, which is essential for lateral olfactory tract (LOT)

formation, was identified and named LOT usher substance

(LOTUS) [19]. When the mouse central nervous system is

strongly excited by kainic acid, levels of mRNA encoding the

three Nogo receptors and the endogenous NgR1 antagonist
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LOTUS are altered in the hippocampal formation in a

coordinated manner, suggesting allowance of local structural

plasticity while maintaining basic network integrity [15].

While alterations of Nogo signaling have been suggested in

schizophrenia [20–24] and Alzheimer’s disease [25–29], there has

been less focus on depression. Of note however, there are

indications that Nogo-B levels might be altered in depressed

patients [22]. Accumulating evidence also suggests that glutamate

signaling is involved in the pathophysiology of depression.

Recently, a randomized double-blind study showed that an

ampakine which potentiates the a-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptor (AMPAR), counteracted depres-

sion and improved the speed of processing cognitive tasks [30].

Moreover, several studies, both in animals and humans, have

shown that acute treatment with the N-methyl-D-aspartate

receptor (NMDAR) antagonist ketamine has an antidepressant

effect [31,32]. By blocking the activation of NMDAR [33],

ketamine is likely to increase levels of glutamate that can act via

other glutamate receptors, including the AMPARs, resulting in a

shift from NMDAR to AMPAR activation. The antidepressant

effects of ampakines have been suggested to be attributed, at least

in part, to neuronal cell proliferation in hippocampus [34,35].

AMPAR is thought to be composed of two dimers with each dimer

comprising two subunits, which typically are of the same subunit

type [36]. Four subunits, GluR1-4, have been identified and

approximately 70% of AMPARs in hippocampus are composed of

GluR1 and GluR2 [37]. Presence of GluR2 renders AMPARs

impermeable for Ca2+, whereas lack of GluR2 permits Ca2+

passage and also increases channel conductance [38]. Interesting-

ly, GluR2, which also has a key role in learning, memory and

brain plasticity, is downregulated in hippocampal subregions

following kainic acid mediated neuronal excitation, and also after

cerebral artery occlusion [39]. However, these responses differ

between areas, such that the downregulation of GluR2 is mainly in

the pyramidal cell layers, which also are more vulnerable to the

cytotoxic effects of the treatments [40]. Additionally, alternative

RNA splicing of GluR1 and 2 generates flip or flop forms with

different physiological properties and responses when stimulated

by glutamate [41].

In this study we analyze to which extent ECS treatment, an

animal model of ECT, elicit regulatory responses by genes

important for learning, memory and brain plasticity. We

hypothesized that induced alteration of NgR1, NgR3, LOTUS,

BDNF and AMPA may underlie the antidepressant effects of ECT

as well as the treatment-induced amnesia.

Materials and Methods

Animals
Adult male Sprague-Dawley rats weighing 200 g were used

(n = 55). Animals were housed 3 per cage and kept on a 12 hour

light-dark cycle with food and water ad libitum.

Ethics statement
Experiments were carried out according to guidelines set by the

Malmö-Lund Ethical Committee for the use and care of

laboratory animals to minimize suffering. All procedures were

approved by the Animal Research Ethics Committee of Malmö-

Lund (permit no. M69-10).

ECS
A single bilateral ECS was induced via ear-clip electrodes. Rats

were sacrificed by decapitation 2, 4, 12, 24 or 72 hours (n = 7 for

each time point) after ECS induction. A group of rats (n = 20) was

sham treated and sacrificed 4 hours later, i.e. handled identically

to the ECS treated rats but no current was applied. Following

decapitation, brains were rapidly removed, frozen on dry ice and

stored at 280uC until cryostat sectioning.

Stimulus parameters were 50 mA current, 0.5 s stimulus

duration, 10 ms pulse width and 50 Hz unidirectional square

wave pulses [8]. Tonic seizure length was defined as the time from

the start of the motor seizures until the forelimbs of the rat reached

a position perpendicular to the length axis of the body. Clonic

movements of the face and forelimbs for a minimum of 20 s, was

indicative of limbic motor seizures.

In situ hybridization
Frozen tissue blocks were embedded for cryostat sectioning

(Tissue-Tek, Sakura Finetek USA Inc., Torrance, CA) and 14-mm

sections thawed onto slides (ProbeOn, Fisher Biotech, Pittsburgh,

PA). Sectioning was performed approximately 3.3 mm posterior to

bregma. High stringency in situ hybridization was performed

[42,43] using 33P-labeled oligonucleotide DNA probes comple-

mentary to specific sequences of mRNA encoding NgR1 (59-AGT

GCA GCC ACA GGA TGG TGA GAT TCC GGC ATG ACT

GGA AGC TGG C-39), NgR3 (59-TCA CTG CCA CTC CGT

AGT TGA GCT GGG TGG GGT TGC TGT CAT AGT CGG

GG-39), LOTUS (59-AAG GAC AGC GGC ACT GAG GAG

AAG TTG TTG GCC TGG CAG CTC ACG GT -39), BDNF

(59-CTC CAG AGT CCC ATG GGT CCG CAC AGC TGG

GTA GGC CAA GTT GCC TTG-3), GluR1 flip (59CAA AGC

GCT GGT CTT GTC CTT ACT TCC GGA GTC CTT GCT-

39), GluR1 flop (59CAA AGC GCT GGT CTT GTC CTT GGA

GTC ACC TCC CC-39), GluR2 flip (59GAG GGC ACT GGT

CTT TTC CTT ACT TCC CGA GTC CTT GGC-39) or GluR2

flop (59-GAG GGC ACT GGT CTT TTC CTT GGA ATC

ACC TCC CCC-39). Brain sections were compared with

appropriate atlases for area identification [44–46]. Hybridized

sections were air dried for film autoradiography and exposed to

film (Kodak Biomax MR film, Kodak, Rochester, New York,

USA). Exposure times for NgR1, NgR3, LOTUS, BDNF, GluR1

flip/flop and GluR2 flip/flop were 20, 14, 14, 14, 2, and 3 days,

respectively, for optimal quality. Films were developed and

scanned using a high resolution scanner (Epson Perfection V750

Pro, Dual lens system, High pass optics; Digital ICE Technologies,

Long Beach, CA, USA) for quantification of optical density values

(Fig. 1). A 14C step standard (Amersham, Biosciences Europe

GmbH, Uppsala, Sweden) was included to calibrate optical

density readings and to convert measured values into nCi/g.

Quantifications were performed using ImageJ [47] by observers

blind to grouping. Measurements of optical density of film

autoradiograms were performed for NgR1, NgR3, LOTUS,

BDNF and GluR1/2 flip/flop in CA1, CA3, CA4 and the dentate

gyrus.

Probes were designed not to share significant sequence with any

other known rat sequences. We have previously designed and

tested several different oligoprobes for each given mRNA of

interest. Identical hybridization patterns with 2 or 3 such probes

designed to hybridize to different segments of an mRNA of

interest, was taken to suggest high specificity, and one probe was

then chosen for further experiments. In the present experiments,

controls showed expected known patterns of mRNA expression.

Statistics
Statistical analyses were performed using IBM SPSS Statistics

20. One-way ANOVA followed, when applicable, by a 2-sided

Dunnett t post-hoc test for data fulfilling homogeneity of variance.

The Games-Howell post-hoc test was used for data not fulfilling

Nogo System in ECT and Synaptic Plasticity
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homogeneity of variance. Levene’s test was used to test for

homogeneity of variance. P values of ,0.05 were considered

statistically significant.

Results

NgR1 mRNA expression
A single ECS induction caused a distinct and transient

downregulation of NgR1 mRNA levels in the dentate gyrus

(Fig. 1 and 2). The reduction was significant at 2 (P,0.0001), 4

(P,0.0001) and 12 h (P,0.01) after ECS as compared to sham

treated animals. NgR1 mRNA levels had returned to sham levels

24 hours after ECS. Due to hybridization artifacts, three rats were

removed (before slides had been decoded), one each from the

groups sham, 2 h and 24 h. There was no significant difference in

other investigated hippocampal regions (CA1, CA3 and CA4)

(Table 1).

NgR3 mRNA expression
The expression of NgR3 increased in all brain areas analyzed

following ECS compared with sham, but was most marked in the

dentate gyrus (Fig. 1 and 2) where levels were significantly higher

at 2 (p,0.01) and 4 h (p,0.001) before returning to baseline

levels. A similar time scale was seen in CA1, CA3 and CA4, in

which areas all levels appeared to peak around 4 h and had

returned to baseline by 12 h (Table 1).

LOTUS mRNA expression
The level of LOTUS mRNA was significantly downregulated in

the dentate gyrus at 4 (Fig. 2) (p,0.01), 12 (p,0.001) (Fig. 2 and 3)

and 24 h (p,0.01) following ECS compared with sham, before

returning to baseline values at 72 h (Fig. 1, 2 and 3). No change in

LOTUS mRNA was detected in other hippocampal subfields after

the ECS treatment (Table 1).

BDNF mRNA expression
The expression of BDNF mRNA in the dentate gyrus was

strongly and transiently upregulated (Fig. 1 and 2). Upregulation

was observed at 2 (P,0.0001), 4 (P,0.001) and 12 h (P,0.05)

after ECS compared with sham. BDNF mRNA in the ECS group

had returned to sham levels in the dentate gyrus after 24 h.

For CA1, CA3 and CA4 regions, a small upregulation of BDNF

mRNA was noted 2 and 4 h after ECS (Table 1). This

upregulation was followed by a small downregulation that reached

statistical significance at 12 h in CA3 and at 12 and 24 h in CA4.

GluR1 and GluR2 flip and flop mRNA expression
GluR1 flip mRNA expression was upregulated in the dentate

gyrus by ECS at all time points; 2 h (P,0.001), 4 h (P,0.0001),

12 h (P,0.0001), 24 h (P,0.0001) and 72 h (P,0.05) (Fig. 1 and

2). GluR1 flop mRNA was downregulated in the dentate gyrus 4 h

(P,0.05) after ECS. Interestingly, this downregulation was

followed by upregulation at 24 h (P,0.001).

Figure 1. Autoradiograms. Legend: Autoradiograms showing in situ hybridization for NgR1, NgR3, LOTUS, BDNF, GluR1 and GluR2 flip and flop
mRNA on coronal brain sections 3.3 mm posterior to bregma on sham and ECS animals. A–D. Sham treated rats hybridized with probes detecting
NgR1, NgR3, LOTUS and BDNF mRNA, respectively. E–H. Rat sacrificed 2 hours after ECS and hybridized with probes detecting NgR1, NgR3, LOTUS
and BDNF mRNA, respectively. I–L. Sham treated rats hybridized with probes detecting GluR1 and GluR2 flip and flop mRNA, respectively. M–P. Rats
sacrificed 4 hours after ECS and hybridized with probes detecting GluR1 and GluR2 flip and flop mRNA, respectively. Note changes of mRNA levels in
the dentate gyrus.
doi:10.1371/journal.pone.0078778.g001
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GluR2 flip and flop mRNA levels were downregulated in the

dentate gyrus 4 h (P,0.05 and P,0.01 respectively) after

treatment with ECS compared with sham. GluR2 flip was also

downregulated at 12 h (P,0.05), followed by upregulation at 24 h

(P,0.01).

No significant difference was seen between groups in CA1, CA3

and CA4 with respect to levels of mRNA encoding GluR1 flip or

flop, or GluR2 flip and flop (Table 1).

Discussion

Understanding of the biological processes underlying the

antidepressant effect as well as the amnesia seen in patients after

ECT is needed in order to optimize positive effects of treatment,

while minimizing negative side effects, and may also help in the

search for more potent pharmacological treatments. Here, we

report transient regulation of mRNA encoding genes suggested to

be important for structural and functional plasticity in a rat ECT

model. Our study has limitations. Thus changes in mRNA levels

do not necessarily reflect changes in protein levels and functional

changes. Nevertheless, our findings suggest possible mechanisms

involving the Nogo system, BDNF and AMPA receptors for both

the antidepressant and amnesia effects of the intervention.

Following a single ECS event, NgR1, suggested to inhibit

structural plasticity and to regulate the formation of lasting

memories [12,13,17], was rapidly downregulated in the dentate

gyrus of the hippocampal formation. This downregulation follows

a pattern found in several other experimental situations associated

with increased plasticity [13–15,25]. Downregulation of NgR1

expression was noted at the same time points after ECS (2 and 4 h)

as when NgR3 and BDNF expression was upregulated. This is also

similar to the pattern observed in the dentate gyrus in rats and

mice injected with the seizure-inducing agent kainic acid for NgR1

[13,15], NgR3 [15] and BDNF [13] mRNA species. The

functional significance of downregulation of NgR1 and upregula-

tion of NgR3 needs to be analyzed in functional assays. Since

Nogo and OMgp have high affinity for NgR1, while chondroitin

sulfate proteoglycans (CSPGs, ligands for NgR3 [48]) have high

affinity for NgR3, our data suggest that the influence of Nogo and

OMgp is decreased during a short time window, and in a spatially

restricted manner, as dictated by the extracellular matrix.

Interestingly, regulation of mRNA encoding LOTUS, an

endogenous antagonist for NgR1, differs significantly when

comparing the responses to kainic acid and ECS. Kainic acid

induces a robustly increased expression, while ECS leads to a

transient decrease of LOTUS mRNA. There are major differences

in the biological response to the two interventions. First, the

seizures that follow a single kainic acid dose are long lasting and

animals may show sporadic seizure activity up to 72 h after

treatment [49]. In contrast, the seizures after a 0.5 s ECS event

terminate within minutes. This is compatible with the lesser

(although strongly significant) magnitude of NgR1 mRNA

downregulation found here to be caused by ECS, as compared

to the decrease induced by kainic acid [13,15,17]. We further note

that the effect on LOTUS of ECS is not only opposite to that seen

after kainic acid, but also delayed, suggesting a role in effective

reversal of an ECS induced state of increased plasticity.

The effects of antidepressant treatments are most likely

associated with long term functional and structural modifications

of synaptic circuitry in the brain, and the neurotrophic factor

BDNF appears to have an important role for the plasticity that

occurs after ECS treatment. However, regulation of BDNF is

crucial but not sufficient for the occurrence of e.g. the ECS-

Figure 2. Histograms of results from dentate gyrus. Legend: NgR1, NgR3, LOTUS, BDNF, GluR1 and GluR2 flip and flop mRNA levels expressed
as nCi/g in the dentate gyrus of sham (S) and ECS rats. The latter were sacrificed 2, 4, 12, 24 and 72 h after the intervention. A–H. NgR1, NgR3, LOTUS,
BDNF, GluR1 and GluR2 flip and flop mRNA levels were determined by autoradiography densitometry. Error bars represent +1 SD. Differences from
sham treated animals are denoted: * P,0.05, ** P,0.01, *** P,0.001.
doi:10.1371/journal.pone.0078778.g002
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induced mossy fiber sprouting that may relate to the clinical

efficacy of ECT. In support for this, ECS treated BDNF

heterozygote knockout mice, had a diminished increase in BDNF

levels after treatment, with a corresponding reduction in sprouting

of hippocampal mossy fibers compared with wild-type mice [10].

However, direct infusion of BDNF into hippocampus does not

induce sprouting of mossy fibers [10]. This suggests that a dynamic

regulation of BDNF levels is important for structural plasticity and

that ECS treatment targets additional factors that are essential for

the initiation of sprouting. One candidate mechanism for the

support of sprouting could be the downregulation of NgR1

expression as demonstrated here, since interrupting NgR1 binding

to its ligands promotes sprouting [50].

The neuronal basis underlying the memory side effects of ECT

is under investigation. However, it has been suggested that

memory dysfunction may be caused by alterations in hippocampal

synaptic efficacy [51]. Because alterations of Nogo signaling

impacts the formation of long-term memories [17], long-term

potentiation (LTP) [52,53] and neuronal sprouting [16,18,54,55],

it is possible that NgR1 is involved also in the memory

impairments seen in some patients undergoing ECT. Pharmaco-

logically, pretreatment with propofol, which potentiates c-

aminobutyric acid receptor A (GABAA receptor) activity and

Table 1. Mean mRNA levels with standard deviations and significance levels.

Gene S 2 h 4 h 12 h 24 h 72 h ANOVA

NgR1 CA1 9364 8966 9764 9265 9768 9169 0.097

CA3 11768 11366 119611 11868 123611 116611 0.51

CA4 13268 120611 135613 130610 13167 131615 0.15

DG 11767 9365*** 10065*** 10666** 11569 109610 ,0.0001

NgR3 CA1 3766 4369 4666* 4066 3765 3867 0.027

CA3 4667 57611* 69612*** 5167 4668 48610 ,0.001

CA4 4367 59614 78613** 5269 4265 4367 ,0.001

DG 4567 165638** 184625*** 4867 4764 4669 ,0.001

LOTUS CA1 6367 6665 67611 6366 7167 6868 0.22

CA3 147621 148616 152619 149614 163628 152615 0.62

CA4 113617 116618 112611 98616 110628 115616 0.47

DG 114615 106613 89612** 6167*** 83612** 118617 ,0.001

BDNF CA1 3966 5563*** 5365*** 4063 4868** 4364 ,0.0001

CA3 7564 8565*** 8664*** 7063** 7263 7364 ,0.0001

CA4 7264 8764*** 8264*** 6364*** 6565** 6863 ,0.0001

DG 7364 346624*** 213635*** 8064* 7465 7363 ,0.0001

GluR1 flip CA1 345641 362641 350643 335625 342644 352634 0.86

CA3 472654 497639 485639 464628 494651 502634 0.46

CA4 434644 458629 429632 416624 444644 467644 0.14

DG 179615 210618*** 240616*** 221616*** 222626*** 202618* ,0.0001

GluR1 flop CA1 406650 409650 396621 355611 428642 427650 0.18

CA3 111612 102615 107611 10965 10466 11068 0.56

CA4 10468 10467 104611 10068 10265 106612 0.91

DG 548661 536646 470639* 585619 663651*** 590644 ,0.0001

GluR2 flip CA1 385641 374655 393667 373630 383620 364625 0.81

CA3 429643 440647 442657 419618 456640 431622 0.58

CA4 490661 489649 487679 450639 524637 486632 0.27

DG 371638 349636 327644* 329641* 426629** 382624 ,0.0001

GluR2 flop CA1 235634 217632 230628 220623 242637 252634 0.31

CA3 68615 7167 69610 6167 62610 75616 0.28

CA4 95619 97612 87612 80610 90613 97617 0.21

DG 298637 264631 242626** 278622 304648 290636 0.008

Legend: Mean mRNA levels 6 SD expressed as nCi/g for all genes and regions evaluated. Values are rounded to nearest integer. N = 20, 7, 7, 7, 7, 7 for sham (S), 2, 4, 12,
24 and 72 h respectively, except for NgR1 (n = 19, 6, 7, 7, 6, 7) and GluR1 flop (n = 13, 5, 5, 4, 5, 5), due to artifacts. Last column displays P-values for one-way ANOVA for
groups (sham, 2, 4, 12, 24 and 72 h) for the current gene and region. Asterisks represent significance between the current group and sham group tested with 2-sided
Dunnett t post-hoc test for data fulfilling homogeneity of variance and Games-Howell post-hoc test for data not fulfilling homogeneity of variance.
*P,0.05,
**P,0.01,
***P,0.001.
CA = Cornu Ammonis, DG = Dentate gyrus.
doi:10.1371/journal.pone.0078778.t001
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blocks sodium channels, selective glucocorticoid antagonists and

selective non-steroidal anti-inflammatory cyclooxygenase-2 inhib-

itors, all attenuate the amnesia effect of ECS in animal models

[56–59]. Specific interaction of Nogo signaling and the described

pharmacological agents is currently unknown.

Patients undergoing ECT are routinely oxygenated to prevent

possible damage caused by hypoxia. In rats, it has previously been

shown that ECS induces proliferation of novel endothelial cells in

hippocampus, regardless of whether ECS is administered to

individuals that are oxygenated or not [60]. Thus, it is likely that

ECT induces novel endothelial cells and vascular growth in

patients. In the present study, the animals were not oxygenated

during ECS and thus we cannot fully exclude that a hypoxic

response might contribute to the observed effects on mRNA levels.

Chronic ECS has been shown to upregulate expression of

GluR1 [61]. Here, we studied the expression of GluR1 flip and

flop and GluR2 flip and flop mRNA levels at different time points

after a single ECS event. The upregulation of the AMPAR subunit

GluR1 flip (2–72 h) and the initial downregulation of GluR1 flop

(4 h) in the dentate gyrus are noteworthy since a shift from the

GluR1 flop to the flip form increases conductance when AMPARs

are stimulated by glutamate [41]. Also, the downregulation of both

GluR2 flip (4–12 h) and flop (4 h) is interesting, as AMPARs

lacking GluR2 subunits permit passage of Ca2+ [38,41]. Associ-

ation between the Nogo and AMPA system has recently been

shown in vitro. Treating hippocampal neurons for 72 h with

siRNA specific for NgR1 or Nogo-A, thus reducing NgR1 or

Nogo-A protein, both increased GluR1 and GluR2 protein [62].

We hypothesize that ECS opens a transient time window of

markedly enhanced structural synaptic plasticity. Decreased levels

of NgR1 shortly after ECS, coupled with a strong increase of

BDNF and efficient AMPA receptors that are more Ca2+
permeable, are compatible with this hypothesis, and may underlie

the therapeutic effects of ECT as well as the negative side effects.

At later time points, LOTUS (4–24 h) is downregulated,

possibly, as noted above, to increase inhibition and closing the

time window of high plasticity. GluR1 flop and GluR2 flip are

upregulated (24 h) and GluR2 flop is normalized (12–72 h). This

time-dependent regulation of GluR subunits with early downreg-

ulation of GluR2 (4–12 h) together with upregulation of BDNF (2–

12 h) following ECS indicate that the window of plasticity with

increased neuromodulation is followed by a later phase during

which the synaptic network is stabilized in a new, slightly altered

configuration. LTP induction has been shown to produce a

transient incorporation of GluR2-lacking Ca2+-permeable AM-

PARs in hippocampal neurons, followed by replacement of

GluR2-containing AMPARs 25 min after LTP induction [63].

Prolonged Ca2+ entry through AMPARs can cause neural

degeneration [64]. Hence the dynamic alteration of synaptic

AMPAR subunit types might be necessary to avoid degenerative

events during episodes of synaptic plasticity.

Conclusions

Rats subjected to a single ECS event demonstrate a complex,

transient regulation of levels of Nogo receptors, BDNF and AMPA

receptors in the dentate gyrus and other parts of the hippocampal

formation. It is suggested that these events are temporally and

spatially orchestrated to open a time window permissive to

synaptic plasticity, followed by closure of this window, leading to a

lasting alteration of synaptic circuitry. This could underlie both the

beneficial antidepressant effects and the amnesic side effects of

ECT treatment.
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