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Analysis of smooth pursuit eye 
movements in a clinical context 
by tracking the target and eyes
Masakazu Hirota1,2*, Kanako Kato1, Megumi Fukushima3, Yuka Ikeda1, Takao Hayashi1,2 & 
Atsushi Mizota2

In the evaluation of smooth pursuit eye movements (SPEMs), recording the stimulus onset time is 
mandatory. In the laboratory, the stimulus onset time is recorded by electrical signal or programming, 
and video-oculography (VOG) and the visual stimulus are synchronized. Nevertheless, because the 
examiner must manually move the fixation target, recording the stimulus onset time is challenging 
in daily clinical practice. Thus, this study aimed to develop an algorithm for evaluating SPEMs while 
testing the nine-direction eye movements without recording the stimulus onset time using VOG 
and deep learning–based object detection (single-shot multibox detector), which can predict the 
location and types of objects in a single image. The algorithm of peak fitting–based detection correctly 
classified the directions of target orientation and calculated the latencies and gains within the normal 
range while testing the nine-direction eye movements in healthy individuals. These findings suggest 
that the algorithm of peak fitting–based detection has sufficient accuracy for the automatic evaluation 
of SPEM in clinical settings.

Eye movements include the ability to fixate and track visual stimuli. In most ophthalmology clinics, the examiner 
evaluates smooth pursuit eye movements (SPEMs) by subjectively noting their accuracy in relation to a target 
that is being moved manually to nine directions by the examiner. At the same time, the patient follows it with 
his or her  eyes1–8. Nevertheless, because the laboratory methods for quantifying eye movements are constrained 
by the presentation of the target, no objective evaluation method has been established for use in daily clinical 
 practice9–11.

To achieve high accuracy in eye movement testing, it is necessary to present a predetermined target on the 
monitor according to the programming code.Nevertheless, presenting targets according to the prescribed proto-
col is difficult in the clinical setting, because the examiner must modify the movement of the target as appropriate 
to examine the suspected  abnormality12–16.

In the approach to obtaining an accuracy of eye movement measurement in the clinical field that is close to 
the laboratory level, Hirota et al.17 reported that a single-shot multibox detector (SSD)18, which is an algorithm 
for deep learning–based object detection, achieved high accuracy in recognizing the target that was moved 
manually, and the target location was significantly and highly positively correlated with the positions of both 
eyes, as recorded by the video-oculography (VOG; the VOG-SSD system). Moreover, the processing speed of SSD 
exceeds 30 frame per second (fps) and is likely to withstand use in a clinical setting. However, previous studies 
by Hirota et al. mainly focused on recording the target location and eye movements simultaneously in a clinical 
setting, with the analysis of eye movements performed  manually17. The VOG-SSD system should be automated 
for both measurement and analysis in order to be utilized in clinical practice due to the large amounts of data 
generated from the VOG and SSD measurements.

Latency and gain are indicators to assess eye movement abnormalities; the stimulus onset time is necessary 
to evaluate these  indicators19,20. In the laboratory, the stimulus onset time is recorded by the electrical signal, and 
the VOG and the visual stimulus are synchronized. Nevertheless, because the examiner must manually move 
the fixation target, recording the stimulus onset time is challenging in daily clinical practice. Thus, this study 
aimed to develop an algorithm for evaluating SPEM in nine-gaze direction testing using the VOG-SSD system 
without recording the stimulus onset time.

OPEN

1Department of Orthoptics, Faculty of Medical Technology, Teikyo University, Itabashi, Tokyo, Japan. 2Department 
of Ophthalmology, School of Medicine, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan. 3Division 
of Orthoptics, Graduate School of Medical Care and Technology, Teikyo University, Itabashi, Tokyo, Japan. *email: 
hirota.ortho@med.teikyo-u.ac.jp

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-12630-6&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8501  | https://doi.org/10.1038/s41598-022-12630-6

www.nature.com/scientificreports/

Methods
General procedures. Subjects. A total of 23 young adult volunteers (age [mean ± standard deviation], 
21.4 ± 1.4 years] participated in this study. All subjects underwent complete ophthalmologic examinations, in-
cluding determination of the ocular dominance using the hole-in-the-card test, best-corrected visual acuity at a 
distance (5.0 m), near the point of convergence, stereoscopic acuity at 40 cm (Titmus Stereotest; Stereo Optical 
Co., Inc., Chicago, IL, USA), heterophoria by the alternating cover test at near (33 cm) and at distance (5.0 m) 
assessments, and fundus examinations. Stereoacuity was converted into the logarithm of the arc second (log 
arcsec).

Table  1 presents the characteristics of the subjects. The mean ± standard deviation of the refractive 
errors (spherical equivalents) of the dominant eye was − 3.23 ± 3.00 D and that of the nondominant eye 
was − 3.08 ± 2.80 D. The best-corrected visual acuity was 0.0 logMAR units or better in all subjects. The average 
heterophoria was − 6.3 ± 5.9 prism diopter (PD) at distance and − 10.9 ± 8.8 PD at near. All healthy volunteers 
had a stereoacuity of 1.62 ± 0.05 log arcsec (range, 40–60 s).

After we explained the nature of the study and possible complications to the subjects, all subjects provided 
informed consent. This investigation adhered to the World Medical Association Declaration of Helsinki tenets. 
The Institutional Review Board of Teikyo University approved the experimental protocol and consent procedures 
(approval No. 19–224–2).

Apparatus. In this study, we used the VOG-SSD system developed by Hirota et al.17 We recorded eye move-
ments while tracking the target using a VOG (EMR-9, NAC Image Technology Inc., Tokyo, Japan). The VOG 
device determined the eye positions by detecting the corneal reflex and pupil center that were created by the 
reflection of near-infrared light with a sampling rate of 240 Hz. The measurement error (interquartile range) was 
0.2°–0.5° at a distance of 1.0 m. The scene camera recorded the real scenes (resolution, 640 × 480 pixels; angle 
of view, ± 31° from the center of the scene camera) with a sampling rate of 29.97 Hz. The gaze positions were 
merged with the real scenes at a delay of ≤ 52 ms.

Before performing the eye movement test, all subjects underwent a calibration test to adjust the position of 
their gaze on the images of the scene camera and under binocular conditions with fully corrected glasses. All 

Table 1.  Subject characteristics. Minus and plus signs in the angle of deviation indicate exodeviation and 
esodeviation of phoria, respectively. A stereoacuity of 1.60, 1.70, and 1.78 log arcsec is equal to 40, 50, and 60 s, 
respectively. S subject, SE spherical equivalent, D diopter, PD prism diopter, log arcsec logarithm of arc second, 
SD standard deviation.

ID Age (years)

SE (D)
Angle of 
deviation (PD)

Stereoacuity (log arcsec)Dominant eye Nondominant eye Near Far

S1 27  − 0.50  − 0.50  − 4  − 4 1.60

S2 21  − 1.00  − 0.50  − 2  − 4 1.60

S3 23  + 0.50  + 0.50  − 4  − 2 1.60

S4 22  − 0.625  − 0.625  − 6  − 14 1.70

S5 20  − 4.375  − 2.875  − 6  − 6 1.60

S6 22  − 0.75  − 0.50 0 0 1.60

S7 21  − 0.125  − 0.875  − 6  − 6 1.60

S8 21  − 6.125  − 5.875  − 8  − 16 1.60

S9 21  − 3.75  − 3.125  − 2  − 4 1.60

S10 21  − 3.375  − 3.375  − 8  − 10 1.60

S11 21  − 7.00  − 7.625  − 6  − 10 1.60

S12 21  − 4.875  − 3.875  − 10  − 18 1.60

S13 21  − 0.375  − 1.125  − 2  − 2 1.60

S14 21  − 1.25  − 1.125  − 8  − 18 1.60

S15 21  − 3.25  − 3.25  − 2  − 8 1.60

S16 21  − 4.50  − 4.75  − 1  − 6 1.70

S17 21  − 5.25  − 4.75 0  − 4 1.70

S18 20  − 3.875  − 3.125  − 14  − 20 1.60

S19 22  − 11.5  − 10.125  − 8  − 18 1.78

S20 20  − 0.125 0.00  − 4  − 10 1.60

S21 21  − 3.00  − 4.125  − 2  − 4 1.60

S22 21  − 0.125  − 0.875  − 6  − 6 1.60

S23 21  − 8.50  − 8.50  − 18  − 25 1.60

Mean 21.3  − 3.23  − 3.09  − 10.9  − 6.3 1.62

SD 1.4 3.00 2.80 8.8 5.9 0.05
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subjects were asked to fixate on nine red cross targets (visual angle, 0.1°) on a white calibration plate at 1.0 m dur-
ing calibration. From one to nine, the nine red crosses of the targets were set at the following parameters: (center: 
horizontal of 0.0°, vertical of 0.0°), (left: − 20.0°, 0.0°), (right: 0.0°, 20.0°), (upper left: − 20.0°, 20.0°), (upper right: 
20.0°, 20.0°), (lower left: − 20.0°, − 20.0°), (lower right: 20.0°, − 20.0°), (upper: 20.0°, 0.0°), and (lower: 0.0°, − 20.0°) 
respectively. The center of the calibration plate was defined as 0°, the right and upper halves of the screen were 
defined as the positive sides, and the left and lower halves were defined as the negative sides.

The object detection algorithm used for the  SSD18 model is the same as that used in Hirota et al.17, which 
detected the target of the rabbit-like character with an accuracy of 99.7% ± 0.6%. The accuracy of calculating the 
target location in an ideal environment was R2 = 0.998 (Supplementary Fig. 1).

We used Python 3.8.5 for Windows 10 (Microsoft, Redmond, WA, USA) with the following libraries: Mat-
plotlib 3.3.2, Numpy 1.18.5, OpenCV 3.3.1, Pandas 1.1.3, Pytorch 1.6.0, Scikit-learn 0.23.2, and Seaborn 0.11.0.

Nine-direction eye movements testing. The target was a rabbit-like character that had already been 
learned to the SSD in Hirota et al.17 The target size was 10 × 10 cm, which subtended a visual angle of 5.7° at 
1.0 m. The target was manually moved to nine directions (center, left, right, upper left, upper right, lower left, 
lower right, upper, and lower) within ± 15° randomly by an examiner.

All subjects were seated in a well-lit room (600 lx) wearing fully corrective spectacles. Each subject’s head was 
stabilized with a chin rest and forehead rest. During the eye movement test, the subjects were asked to fixate on 
the nose of the target, the visual angle of which was 0.1° at 1.0 m.

Filtering for both eye positions. We excluded VOG data when the change in pupil diameter was > 2 mm/
frame due to  blinking21. We replaced the percentage of missing values (0.4% ± 0.7% for all subjects) with a lin-
early interpolated value calculated from an algorithm written with Python 3.8.5. The horizontal and vertical eye 
movements were analyzed, and the SPEM and saccadic eye movements were identified using a velocity-thresh-
old identification (I-VT)  filter22. The I-VT filter was used to classify eye movements on the basis of the velocity of 
the directional shifts of the eye. A saccadic eye movement was defined as the median velocity of three consecu-
tive windows > 100°/s. Then, the eye position data at 240 Hz were synchronized with the target data at 29.97 Hz.

Experiment 1
Eye movement testing involves moving the target in eight directions: left, right, upper left, upper right, lower 
left, lower right, upper, and lower. There is a need for an algorithm that can identify the direction in which the 
examiner moves the target manually in the clinic without the input of a trigger. In experiment 1, we compared 
the accuracy of the classification in each direction of target presentation between the peak fitting–based detec-
tion algorithm and the conventional threshold-based detection algorithm.

Procedures. In clinical practice, the origin of the scene camera (horizontal of 0.0°, vertical of 0.0°) and the 
position where the target is initially presented by the examiner do not necessarily coincide (Fig. 1A, B). The 
median of the target location of the target was calculated both horizontally and vertically, respectively, and was 
defined as the relative origin. The target location and both eye positions were corrected for the difference from 
the relative origin (Fig. 1C).

The target location calculated using the SSD was identified more than 99% of the time and was more stable 
than eye positions affected by blinks and tears. Thus, each direction was identified using the location of the 
target as a cue.

Algorithm of automatic detection for testing the directions of eye movements. Peak fitting–
based detection. The target location was converted to the position vector, and then, the maximum and mini-
mum peaks were detected for 3.0 s (Fig. 2A, B). We separated the data between the two minimum peaks, includ-
ing one maximum peak. The separated data were decomposed into horizontal and vertical components from 
the position vector (Fig. 2C, D). After excluding 1 s from both ends of the separated data, the medians of the 
horizontal and vertical target locations were calculated (Fig. 2E, F).

The eight median horizontal and vertical locations were ranked from maximum to minimum at left, right, 
upper, and lower, and then the top three values in four directions were grouped (Fig. 3A). The upper left, upper 
right, lower left, and lower right were identified by combining the horizontal and vertical directions (Fig. 3B). 
The remaining data in each group were the left, right, upper, and lower.

Threshold‑based detection. Threshold-based detection is a simple approach for identifying the category. In this 
study, the target data were separated to left (horizontal location ≤  − 2.0° and − 2.0° ≤ vertical location ≤  + 2.0°), 
right (+ 2.0 ≤ horizontal location and − 2.0° ≤ vertical location ≤  + 2.0°), upper left (horizontal location ≤  − 2.0° 
and + 2.0° ≤ vertical location), upper right (+ 2.0 ≤ horizontal location and + 2.0° ≤ vertical location), lower left 
(horizontal location ≤  − 2.0° and vertical location ≤  − 2.0°), lower right (+ 2.0 ≤ horizontal location and verti-
cal location ≤  − 2.0°), upper (− 2.0 ≤ horizontal location ≤  + 2.0° and + 2.0° ≤ vertical location), and lower 
(− 2.0 ≤ horizontal location ≤  + 2.0° and vertical location ≤  − 2.0°). The cutoff value was defined as the minimum 
value calculated using the averaged degree of the mean − 2.0 standard deviation in all directions using the data 
from subject 1 to subject 5.

Statistical analysis. In this study, classification accuracy was assessed for 23 subjects in eight directions 
(for a total 184 directions), excluding the center. The classification results of each algorithm were divided into 
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correct and incorrect answers using the direction in which the target was actually presented as the ground truth. 
We evaluated the accuracy of the classification in each direction between the peak fitting–based and threshold-
based detection using Fisher’s exact test with the degree of feedom was set 1.

SPSS version 26 (IBM Corp., Armonk, NY, USA) was used to determine the significance of the differences, 
and a P value of < 0.05 was considered to be statistically significant.

Results. The accuracy of the classification in each direction was significantly higher using the peak fitting–
based detection (correct, 100.0%; incorrect, 0.0%) than using the threshold-based detection (correct, 47.8%; 
incorrect, 52.2%; P < 0.001, Fisher’s exact test; Table 2).

The finding of experiment 1 suggested that the algorithm of the peak fitting–based detection was suitable for 
evaluating eye movement testing.

Experiment 2
In experiment 2, we investigated the algorithm for the automatic calculation of latency and gain, which are 
evaluation indices of the eye movements using the data obtained by the peak fitting–based detection algorithm.

Calculating for latency and gain. All directions of the horizontal and vertical target location and both 
eye positions were converted to the position vector. The raw data were fitted with a cubic function and were 
detected at each peak time (Fig. 4A, B). Then, each peak time was applied to the raw data (Fig. 4C). The latencies 
of both eyes were defined as the difference between the peak time in both eyes and that in the target location.

The target location and both eye positions at the peak time were defined as maximum values. We explored 
the 25th and 75th percentile points of the maximum values in the centrifugal direction (Fig. 5). We then created 
a linear regression line using the target location and both eye positions between the 25th and 75th percentile 
points of the maximum values. The gains of both eyes were defined as the ratio of the slope of the regression 
line in both eyes to the slope of the regression line in the target between the 25th and 75th percentile points.

Statistical analysis. We determined the differences in the latencies and gains within both eyes in each 
direction using the Schéffe test. We analyzed the differences in the latencies and gains between both eyes in each 
direction using the Wilcoxon signed-rank test with Bonferroni correction used to adjust the P values.

Results. The latencies in all directions were not significantly different within both eyes (left eye, P > 0.22; 
right eye, P > 0.70; Schéffe test; Fig. 6A, B; Table 3). The latencies in all directions were not significantly different 

Figure 1.  Setting the relative origin. In clinical settings, the target that is presented by the examiner (A) does 
not always coincide with the center of the scene camera (B). The median of the target location was calculated 
both horizontally and vertically, respectively, and was defined as the relative origin (C).
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Figure 2.  Algorithm of peak fitting–based detection. The target location was converted to the position vector, 
and then, the maximum and minimum peaks were detected for 3.0 s (A). (B) Data between two minimum 
peaks, including one maximum peak in the green square of (A). The separated data were decomposed into 
horizontal (C) and vertical (D) components from the position vector. After excluding 1 s from both ends of the 
separated data (black vertical lines in C and D), the medians of the horizontal and vertical target locations were 
calculated and plotted (E). (F) Superimposition of the relative origin data, which is the same as Fig. 1C of the 
target.
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between left (127.17 ± 98.53 ms in all directions) and right (137.14 ± 104.80 ms in all directions) eyes (P > 0.21, 
Wilcoxon signed-rank test with Bonferroni correction; Fig. 6C; Table 3).

The gains in all directions were not significantly different within both eyes (left eye, P > 0.85; right eye; 
P > 0.68, Schéffe test; Fig. 7A, B; Table 3). The gains in all directions were not significantly different between left 
(0.936 ± 0.186 in all directions) and right (0.916 ± 0.180 in all directions) eyes (P > 0.52, Wilcoxon signed-rank 
test with Bonferroni correction; Fig. 7C; Table 4).

Figure 3.  Categorizing each direction. The eight horizontal and vertical median locations were ranked from 
maximum to minimum at left (green ellipse), right (yellow ellipse), upper (blue ellipse), and lower (red ellipse), 
and then, the top three values in the four directions were grouped (A). Then, the plots that belong to the two 
groups (upper left, upper right, lower left, and lower right) were identified by combining the horizontal and 
vertical directions (the red squares in B). Each plot was numbered according to the order of the maximum peak 
calculated in Fig. 2A; thus, the fifth waveform is in the upper left.

Table 2.  Accuracy of the classification for each direction in all subjects. A total of 23 healthy subjects 
participated in this study. The algorithms identified eight directions in each subject. Hence, 184 data points 
were analyzed. The algorithm of peak fitting–based detection was classified correctly in all directions of target 
orientation. peak peak fitting–based detection, threshold threshold-based detection.

Algorithm Correct Incorrect

Peak 184 0

Threshold 88 96

Figure 4.  Calculating latency. The horizontal and vertical target locations and both eye positions were 
converted to the position vector (A). (A) were fitted with a cubic function and detected at each peak time (B). 
(C) Each peak time was applied to (A). The latencies of both eyes were defined as the difference between the 
peak time in both eyes and that in the target location.
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Figure 5.  Calculating gain. The target location and both eye positions at the peak time were defined as 
maximum values. The 25th and 75th percentile points of the maximum values in the centrifugal direction 
were explored (the green horizontal lines). The gains of both eyes were defined as the ratio of the slope of the 
regression line in both eyes to the slope of the regression line in the target (the black dashed line) between the 
25th and 75th percentile points.

Figure 6.  Latencies of the left (A) and right (B) eyes in each direction. The latencies in all directions were not 
significantly different within both eyes (A and B). The blue and red boxplots with dots indicate the latency of the 
left and right eyes in each direction (C). The latencies in all directions were not significantly different between 
the left and right eyes.

Table 3.  Latencies in all directions. The error term is the standard deviation. P-values were calclated using 
Wilcoxon signed rank test with Bonferroni correction. ms milliseconds, LE left eye, RE right eye.

Direction

Latency (ms)

P valueLE RE

Left 94.20 ± 82.62 123.19 ± 85.37 0.21

Right 108.70 ± 82.37 107.25 ± 99.74  > 0.99

Upper left 140.58 ± 105.39 169.56 ± 107.64  > 0.99

Upper right 113.04 ± 95.67 127.54 ± 92.55  > 0.99

Lower left 155.07 ± 103.38 162.32 ± 119.70  > 0.99

Lower right 182.61 ± 112.02 173.91 ± 100.22  > 0.99

Upper 102.90 ± 66.60 115.94 ± 106.72  > 0.99

Lower 120.29 ± 99.15 117.39 ± 98.23  > 0.99
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The findings of experiment 2 suggest that using the algorithm of peak fitting–based detection, the eye move-
ments can be evaluated from the data with the identified target direction.

Additional experiment
One patient with postsurgical congenital superior oblique muscle palsy underwent an additional experiment to 
investigate the scope of clinical applicability. The patient underwent a complete ophthalmologic examination, 
including determination of ocular dominance using the hole-in-the-card test, best-corrected visual acuity at a 
distance, the near point of convergence, stereoscopic acuity at 40 cm, heterotropia using the alternate cover test 
near and at a distance, and fundus examination.

The dominant eye was the right eye, as the left eye had undergone surgery for strabismus 30 years ago. The 
patient was examined with a natural head position so that binocular vision could be maintained. Since the patient 
had abnormal head positions, the following positions were used: face turned to the right, head tilted to the right, 
and chin down. The spherical equivalent of the dominant eye was − 0.75 D and that of the nondominant eye 
was − 0.75 D. The best-corrected visual acuity was 0.0 logMAR in each eye. The horizontal and vertical hetero-
tropia measures were 1.0 PD base-out and 1.0 PD base-up at distance and 4.0 PD base-in and 7.0 PD base-up 
near. Stereo acuity was 1.60 log arcsec (40 s).

Figure 8 shows the patient’s horizontal and vertical eye movements. The latencies in the lower left (533.33 ms), 
lower right (633.33 ms), and lower (233.33 ms) areas of the nondominant eye were prolonged in comparison to 
those of the dominant eye (lower left, 266.67 ms; lower right, 66.67 ms; lower, 66.67 ms). The gains in nondomi-
nant eye of lower left (533.33 ms), lower right (633.33 ms), and lower (233.33 ms) were prolonging comparison 
to dominant eye (lower left, 266.67 ms; lower right, 66.67 ms; lower, 66.67 ms) (Table 5). In addition, the gains 
in the lower right and lower areas of the nondominant eye were slower than those in the dominant eye (Table 5). 
The gains between the nondominant and dominant eye did not show a clear trend (Table 5).

Discussion
Recording the stimulus onset time is mandatory when evaluating eye movements. Nevertheless, because the 
examiner must move the fixation target manually, recording the stimulus onset time is challenging in daily 
clinical practice. In this study, we developed an algorithm of peak fitting–based detection to evaluate SPEM in 

Figure 7.  Gains of the left (A) and right (B) eyes in each direction. The gains in all directions were not 
significantly different within both eyes (A and B). The blue and red boxplots with dots indicate the latency of the 
left and right eyes in each direction (C). The gains in all directions were not significantly different between left 
and right eyes.

Table 4.  Gains in all directions. The error term is the standard deviation. P-values were calclated using 
Wilcoxon signed rank test with Bonferroni correction. ms milliseconds, LE left eye, RE right eye.

Direction

Gain

P valueLE RE

Left 0.957 ± 0.171 0.975 ± 0.171  > 0.99

Right 0.942 ± 0.148 0.931 ± 0.169  > 0.99

Upper left 0.953 ± 0.135 0.918 ± 0.212  > 0.99

Upper right 0.949 ± 0.233 0.921 ± 0.146 0.76

Lower left 0.971 ± 0.182 0.895 ± 0.162 0.52

Lower right 0.925 ± 0.153 0.929 ± 0.113  > 0.99

Upper 0.869 ± 0.205 0.904 ± 0.217  > 0.99

Lower 0.920 ± 0.221 0.857 ± 0.196  > 0.99
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nine-direction testing without recording the stimulus onset time. We found that the present algorithm had high 
accuracy for identifying the directions of target orientation in nine-direction testing.

The classification accuracy of the threshold–based detection algorithm was about half that of the peak fit-
ting–based detection algorithm (Table 2). There are no standard criteria for determining the threshold; however, 
in this study, the threshold was determined from the standard deviation of five subjects. Since the standard 
deviation is based on 68% of the total data, the decrease in the classification accuracy of the threshold-based 
detection algorithm to the chance level indicates the significant influence of the oblique direction in the automatic 
determination of nine-direction testing.

The peak fitting–based detection algorithm correctly classified all directions of the target orientation (Table 2). 
This finding suggests that the peak fitting–based detection algorithm shows superiority for determining the 
oblique direction: to identify the oblique direction, listing the top three waveforms of the left, right, upper and 
lower, and then the waveforms existing in the combinations left and upper, left and lower, right and upper, and 
right and lower are the upper left, lower left, upper right, and lower right, respectively (Fig. 3).

The latencies (mean latencies of left and right eyes, 138.04 and 144.75 ms, respectively) and gains (mean gains 
of left and right eyes, 0.943 and 0.935, respectively), which we calculated from the data of the identified target 
direction using the algorithm of peak fitting–based detection, were similar to those reported in earlier studies: 
the latency of the SPEM was between 50 and 300  ms19,23,24, the gain of SPEM was greater than 0.90 under a veloc-
ity of 10°/s, and the moving distance was 15° in healthy  individuals20. These results suggest that the accuracy of 
the automatic method for calculating latency and gain is consistent with that of the manual analysis method.

We evaluated only one patient with postsurgical congenital superior oblique muscle palsy. The latencies in 
nondominant eye of lower left, lower right, and lower were prolonged comparison to dominant eye (Table 5). 
The eye movements in nondominant eye that had been undergone strabismological surgery were unstable when 
looking downward (Fig. 8). These findings may suggest that evan if the patient is obtained binocular vision in the 
primary eye position by stabismological surgery, oculomotor deficits in the working direction of the paralytic 
muscles remain. On the other hand, the gains in patient did not show a clear trend. The earlier studies reported 
that the paralystic strabismus mixes with saccade in  SPEM25,26. We plan to investigate the characteristics of eye 
movements in paralytic strabismus.

Figure 8.  Horizontal (A) and vertical (B) eye movements in the patient with postsurgical congenital superior 
oblique muscle palsy. The green, blue, and red lines indicate the target location, left eye position, and right eye 
position, respectively. The left eye had previously undergone strabismological surgery.

Table 5.  Latencies and gains in the patient with postsurgical congenital superior oblique muscle palsy. The 
error term is the standard deviation. ms milliseconds, LE left eye, RE right eye.

Direction

Latenct (ms) Gain

LE RE LE RE

Left 66.67 66.67 0.948 0.843

Right 0.00 0.00 0.929 0.281

Upper left 66.67 66.67 1.014 0.760

Upper right 66.67 100.00 1.034 0.792

Lower left 533.33 266.67 0.887 0.185

Lower right 633.33 66.67 0.667 0.649

Upper 100.00 100.00 0.927 0.821

Lower 233.33 66.67 0.416 0.862
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The peak fitting–based detection algorithm classified all directions of the target orientation and calculated 
the latency and gain in a way similar to the manual analysis in healthy individuals. However, there is concern 
that, depending on the degree of ocular motility disorder, the peak of the waveform for calculating latency and 
gain may not be detected. Thus, in a future study, we plan to investigate the accuracy of automatic analysis in 
patients with ocular motility disorders.

Conclusion
The algorithm of peak fitting–based detection correctly classified the directions of the target orientation and 
calculated the latencies and gains within the normal range during nine-direction eye movement testing in healthy 
individuals. These findings suggest that the peak fitting–based detection algorithm has an accuracy that is suf-
ficient for the automatic evaluation of SPEM in clinical settings.

Data availability
The data that support the findings of this study are openly available in Zenodo (https:// doi. org/ 10. 5281/ zenodo. 
64007 51).
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