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While the central nervous system compromises 2% of our body weight, it harbors up
to 25% of the body’s cholesterol. Cholesterol levels in the brain are tightly regulated for
physiological brain function, but mounting evidence indicates that excessive cholesterol
accumulates in Alzheimer’s disease (AD), where it may drive AD-associated pathological
changes. This seems especially relevant for late-onset AD, as several of the major
genetic risk factors are functionally associated with cholesterol metabolism. In this
review we discuss the different systems that maintain brain cholesterol metabolism in
the healthy brain, and how dysregulation of these processes can lead, or contribute
to, Alzheimer’s disease. We will also discuss how AD-risk genes might impact
cholesterol metabolism and downstream AD pathology. Finally, we will address the major
outstanding questions in the field and how recent technical advances in CRISPR/Cas9-
gene editing and induced pluripotent stem cell (iPSC)-technology can aid to study
these problems.
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INTRODUCTION

Dementia affects over 46 million people worldwide, a number that is expected to double within
the next 20 years due to our increased life expectancy (Prince et al., 2015). Alzheimer’s Disease
(AD) is the most common type of dementia and no successful treatment that can cure AD,
or halt its progression, is available today. At the pathological level, AD is characterized by the
accumulation of extracellular amyloid beta (Aβ) plaques, and intracellular neurofibrillary tangles
(NFT) consisting of hyperphosphorylated Tau species (Scheltens et al., 2016). AD can develop
early (<65 years) referred to as early-onset AD (EOAD), which is in part explained by autosomal
dominant inheritance of coding mutations in the amyloid precursor protein (APP) or presenilin
genes (PSEN1 and PSEN2), in that case called familial AD (FAD). The FAD related mutations
directly affect Aβ production and their identification therefore contributed to formation of the
amyloid cascade hypothesis that postulates a linear relation between development of Aβ plaques
and NFT in AD (Pimenova et al., 2018). Whilst EOAD only represents around 5% of all AD
cases, the vast majority of AD patients suffer from late-onset AD (LOAD), for which aging is
the biggest risk factor in addition to genetic and lifestyle factors (Scheltens et al., 2016). Multiple
studies on the lifestyle and genetic interactions with AD have connected altered circulating
cholesterol metabolism and hypercholesterolemia with aging and AD pathogenesis (Box 1).
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BOX 1 | Hypercholesterolemia, high fat diet and AD.
With the identification of lipoprotein ApoE4 as the biggest risk factor for LOAD in the early nineties, the interest for lipids and cholesterol metabolism in AD rapidly
developed (Corder et al., 1993; Saunders et al., 1993; Strittmatter et al., 1993). Expression of the ApoE4 allelic variant of ApoE had previously been shown to
increase plasma low-density lipoprotein (LDL) levels and increase the risk for atherosclerosis. Moreover, carriers of the ApoE4 gene were overrepresented in
hyperlipidemic and cardiovascular patients (Huang, 2010; Mahley, 2016). At the epidemiological level, retrospective studies have shown that obesity, type 2
diabetes, cardiovascular disease and hypercholesterolemia at middle-age increase the risk for dementia at older age in humans (Pappolla et al., 2003; Whitmer et al.,
2005; Stampfer, 2006; Solomon et al., 2009; Pedditizi et al., 2016; Anstey et al., 2017; Ma et al., 2020; Tini et al., 2020; Barbiellini Amidei et al., 2021). In line,
increased plasma and CSF levels of the cholesterol metabolite 24-hydroxycholesterol (24S-OHC) that is selectively generated in neurons, have been linked to early
AD development (Lütjohann et al., 2000; Papassotiropoulos et al., 2002; Schönknecht et al., 2002; Li et al., 2018). Cholesterol has also been shown to accumulate
in mature Aβ-plaques in AD patients and APP(SW) mice (Mori et al., 2001) and cholesterol levels in the brain positively correlate with the severity of dementia in AD
patients (Cutler et al., 2004). In line, lower AD incidence was associated with statin use in retrospective studies (Jick et al., 2000; Wolozin et al., 2000; Cramer et al.,
2008; Haag et al., 2009; Li et al., 2010; Lin et al., 2015; Zissimopoulos et al., 2017; Zhang et al., 2018). The protective effect of statin usage was present
independent of ApoE status (Haag et al., 2009; Li et al., 2010). A subset of these studies showed that the protective effect of statin usage was no longer present in
participants that fell within the oldest age categories (>80). This could be due to a survival bias, where participants that survive till old age have fewer additional
medical conditions, that would have increased their risk for AD development. Alternatively, this could point to a beneficial effect of statin usage only when taken at a
timepoint before pathological hallmarks of AD would typically develop in the brain. A link between high circulating cholesterol levels and AD was also corroborated in
AD mouse models where a hypercholesterolemic diet increased Aβ-plaque load (Refolo et al., 2000). In addition, high cholesterol diet in mice induced Tau
hyperphosphorylation, which was amplified by loss of ApoE expression (Rahman et al., 2005; Glöckner et al., 2011). Glial activation, contributing to gliosis as seen in
AD, has also been reported in mice on a high cholesterol diet (Crisby et al., 2004). Metabolic changes accompanied by AD phenotypes in the brain, where also
described in rabbits on a high cholesterol diet (Jin et al., 2018). Finally, a high fat/high cholesterol diet in young (4-month old) versus aged (14-month old) rats
negatively affected memory performance at both ages, while also increasing hippocampal pTau levels at old age, indicating the detrimental combination of disturbed
circulating cholesterol homeostasis and aging (Ledreux et al., 2016).

In the brain, already a century ago, in addition to plaques and
tangles, Dr. Alzheimer described as a third characteristic of
AD: the extensive accumulation of ‘adipose saccules’ (Alzheimer,
1907). These ‘adipose saccules’ were likely what we now refer to
as lipid droplets, and are major storage organelles of intracellular
lipids such as cholesterol and fatty acids (Farmer et al., 2020).
While mostly ignored since their first discovery, these ‘adipose
saccules’ in the brain have gained renewed interest in light
of the findings on cholesterol metabolism and AD in the
last two decades.

In this review, we will discuss the basic regulation of
cholesterol homeostasis at the cellular level, and how crosstalk
between different brain-cell types regulates “healthy” cholesterol
homeostasis in the human brain. We will then discuss how brain
cholesterol metabolism is affected by aging and how neuronal
cholesterol can contribute to downstream AD pathologies such
as Amyloid- and Tau accumulation. Next, we will examine
the contribution of human-specific AD risk polymorphisms
to cholesterol dyshomeostasis and gliosis in different brain
cell types, an area of research that greatly benefits from the
development of CRISPR gene-editing and iPSC techniques.
Lastly, we will formulate some of the major questions still
outstanding in the field, and how they could be addressed to
develop disease-modifying interventions for AD based on our
knowledge of cholesterol metabolism in AD.

INTRACELLULAR CHOLESTEROL
METABOLISM; THE BASICS

The largely hydrophobic molecule cholesterol localizes primarily
in cell membranes where it regulates membrane fluidity and
can interact with neighboring lipids and proteins to regulate
membrane trafficking or signal transduction (Luo et al.,
2019). Cholesterol levels in cells are balanced by de novo
biosynthesis, uptake, storage and export [extensively reviewed by

Luo et al. (2019)]. In short: De novo synthesis of cholesterol starts
when sterol regulatory element binding protein 2 (SREBP2),
the key regulator of cholesterol synthesis, transfers from the
endoplasmic reticulum (ER)-membrane to the Golgi where
it is processed in order to enter the nucleus and induce
transcription of its numerous target genes involved in cholesterol
synthesis (Figure 1). Together around 30 consecutive reactions
ensure cholesterol synthesis in the ER starting from acetyl-CoA.
HMG-CoA reductase (HMGCR) and squalene monooxygenase
(SM), both SREBP2 targets, are rate limiting enzymes in this
process. Cholesterol is transported from the ER to the plasma
membrane without passing through the Golgi (Dai et al., 2021).
As an alternative to synthesis, cells can acquire cholesterol
trough uptake. When not incorporated in the lipid bilayer of a
membrane, most cholesterol is protein bound in apolipoprotein
particles that facilitate transport (Zhang and Liu, 2015). Uptake
of these cholesterol containing particles depends on Low-density
lipoprotein receptors (LDLRs) on the plasma membrane. Binding
of lipoprotein particles to the LDLR causes incorporation of LDL
into clathrin-coated vesicles that enter the endocytic pathway
(Goldstein and Brown, 2009). LDLR is either recycled via
endosomal recycling or directed to lysosomes for degradation
(Rudenko et al., 2002; Bartuzi et al., 2016; Fedoseienko et al.,
2018). When LDLs arrive in lysosomes, cholesterol is freed
by hydrolysis of CEs present in the LDLs. NPC2, NPC1 and
lysosome-associated glycoprotein LAMP2 control delivery of
the newly formed cholesterol to the ER (Kwon et al., 2009).
Excess cholesterol can be stored in lipid droplets as CEs and
converted back to cholesterol by acidic lipases in the lysosome
when needed (Ikonen, 2008). As an alternative to intracellular
storage, excess cholesterol can also be exported as part of LDL-
or High-density lipoprotein (HDL) particles in a process named
reverse cholesterol transport. This is mediated through ATP-
binding cassette (ABC) transporters, like ABC subfamily A
member 1 (ABCA1) and ABC subfamily G member 1 (ABCG1),
which are widely expressed in the body and coordinately
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FIGURE 1 | Cholesterol metabolism in the brain. Overview of cholesterol metabolism in the mature brain. (1) In the brain cholesterol is predominantly synthesized in
astrocytes. Cholesterol synthesis is under tight control of ER-cholesterol level. High ER-cholesterol concentrations prevent SREBP2 processing and thereby
suppress cholesterol synthesis. High ER-cholesterol levels also inhibit Nrf1 processing to induce cholesterol export. In addition, excess ER cholesterol is converted to
CE for storage in lipid droplets. (2) Cholesterol and cholesterol precursors are exported via ABC transporters and transported from astrocytes to neurons and
microglia via ApoE bound lipoprotein-particles. (3) These lipoprotein particles can bind to lipoprotein receptors (LRP1 on neurons, TREM2, TLR-4 and LDLR on
microglia) to be internalized. (4) Neuronal cholesterol synthesis is inhibited by ApoE dependent delivery of astrocytic derived microRNAs that target cholesterol
synthesis genes in neurons. (5) Specifically in neurons, excess cholesterol is converted to 24S-OHC, which activates a transcriptional program to promote
cholesterol export. (6) 24S-OHC itself can be secreted from the brain via crossing of the BBB, while 27OHC can enter the brain from the periphery. (7) High
cholesterol load in neurons can contribute to amyloidogenic APP processing and pTau accumulation. (8) Astrocytes can also prevent toxic overload of (peroxidized)
fatty acids in neurons via ApoE-dependent lipid-particle transport from neurons to astrocytes, but whether cholesterol is also transported into this direction remains
unknown (BioRender, 2021).

regulate cholesterol export from the cell (Figure 1) (Luo et al.,
2019). Although the exact mechanism is still under debate,
cholesterol effluxed by ABCA1 appears to be loaded on lipid-free
Apolipoprotein A-I (ApoA-I), which can subsequently acquire
additional cholesterol from ABCG1 (Gelissen et al., 2006).

While representing only 1% of cellular cholesterol, cholesterol
levels in the ER play a central role in the regulation of all aspects
of cholesterol metabolism described above. When cholesterol
levels are low, SREBP2 interacts with SCAP in the ER membrane
which promotes SREBP2 trafficking to the Golgi, it’s processing
and transcription of cholesterol-synthetic genes (Sakai et al.,
1997, 1998; Brown et al., 2018). The uptake of cholesterol
is also directly regulated through this process, as LDLR is a
transcriptional target of SREBP2 (Luo et al., 2019). In this
way, low ER cholesterol drives increased synthesis and uptake
of cholesterol in order to balance cellular cholesterol levels
(Figure 1). Reversely, too high levels of cholesterol can be toxic

to cells. Therefore, when a surplus of cholesterol accumulates in
the plasma membrane, cholesterol is transported back to the ER
where it (i) inhibits SREBP2 activation and (ii) can be esterified
by acyl-coA: cholesterol acyltransferase (ACAT1) to from CE for
storage in lipid droplets (Chang et al., 1997; Zhang and Liu,
2017). Furthermore, when cholesterol levels in the ER are high,
cholesterol is converted to oxysterols (Olsen et al., 2012). As the
major sensor for cholesterol overload in a cell oxysterols prevent
SREBP2 activation and directly activate the Liver × receptor
(LXR), which promotes cholesterol efflux by transcription of
ABC transporters (Radhakrishnan et al., 2007; Olsen et al., 2012).
In addition to SREBP2, the transcription factor Nuclear factor
erythroid 2-related factor 1 (NFE2L1 aka Nrf1) also senses ER
cholesterol levels. When ER cholesterol levels are low, Nrf1 is
cleaved and the transcription-part domain enters the nucleus
where it inhibits LXR dependent transcription and thus prevents
cholesterol export. When ER cholesterol levels rise, cholesterol

Frontiers in Aging Neuroscience | www.frontiersin.org 3 June 2021 | Volume 13 | Article 690372

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-690372 June 19, 2021 Time: 17:16 # 4

Feringa and van der Kant Cholesterol and Alzheimer

binding to Nrf1 prevents its translocation to the nucleus, which
causes de-repression of the LXR locus and promotes cholesterol
efflux (Figure 1) (Widenmaier et al., 2017). Together, in a Yin-
Yang manner, SREBP2 and Nrf1 sense ER cholesterol levels to
maintain cellular cholesterol homeostasis (Figure 1).

It is important to note, that many basic rules underlying
intracellular cholesterol metabolism have been uncovered so
far, as discussed above. However, most of this knowledge
is acquired from experiments in dividing fibroblast culture
systems. Cholesterol metabolism in the central nervous system
(CNS) and, particularly in neurons, is under added pressure
due to the postmitotic nature of these cells, their long-life
span, large size and highly specialized metabolic demand which
requests specific mechanisms to maintain lifelong cholesterol
homeostasis in the brain.

CHOLESTEROL METABOLISM IN THE
BRAIN; DIFFERENT NEEDS FOR
DIFFERENT CELLS

Due to the blood-brain barrier (BBB) cholesterol metabolism
in the CNS is largely separated from the periphery and it is
generally understood that little diet-derived cholesterol enters
the brain (Björkhem and Meaney, 2004). Therefore the brain
is largely dependent on its own cholesterol synthesis and
separate metabolism regulated by a complex interplay between
different highly specialized cell types, each with their own
demand for cholesterol (Dietschy and Turley, 2004). In adults,
biosynthesis of cholesterol is thought to almost exclusively take
place in astrocytes, from where cholesterol is transported to
neurons via ApoE lipoproteins (Figure 1) (Pfrieger and Ungerer,
2011). Although cell type specific cholesterol synthesis rates
have not been determined in vivo, cholesterol synthesis rates
in cultured rat astrocytes are double as high as in cultured
neurons (Nieweg et al., 2009). Moreover, conditional depletion
of cholesterol synthesis in neuronal cells in mice did not
result in neurodegeneration or synapse loss, indicating that
mature neurons can acquire sufficient cholesterol levels supplied
by surrounding glia (Fünfschilling et al., 2007). Accordingly,
neuronal synaptogenesis has been shown to depend on ApoE
dependent cholesterol transport from astrocytes to neurons
(Mauch et al., 2001; Pfrieger, 2003). Of interest is the recent
finding that astrocytes might also suppress cholesterol synthesis
in neurons, as astrocytic ApoE was shown to deliver microRNAs
to neurons that target and suppress expression of cholesterol
biosynthesis genes (Li et al., 2021). Astrocyte-derived lipoproteins
carry cholesterol and phospholipids as well as cholesterol
precursors, presumably used by neurons for processing, but
contain little CE or triglycerides making them substantially
different from plasma lipoproteins (Pfrieger and Ungerer, 2011).
Instead of ApoA-I, ApoE is the main apolipoprotein responsible
for lipid transport in the CNS. ApoE is highly expressed in
astrocytes where it is lipidated and exported via ABC transporters
like ABCA1 and ABCG1 (Figure 1) (Koldamova et al., 2003;
Xu et al., 2006). Which ABC transporters are responsible for
cholesterol efflux in the CNS seems to be cell-type dependent.

Blocking ABCA1 or ABCG1 mediated transport in primary rat
astrocytes reduced ApoE mediated cholesterol export, but had
no effect on cholesterol efflux from primary cultured neurons. In
contrast, knock down of ABCG4 selectively affected cholesterol
export in primary cultured neurons (Chen et al., 2013).
Neurons can take up astrocyte-derived HDL-like lipoprotein
particles containing ApoE through receptors of the LDLR family
(Figure 1), of which LRP1 is highest expressed in neurons
(Vance and Hayashi, 2010). Similar to neurons, cholesterol
biosynthesis levels are relatively low in microglia, which also
mainly depend on astrocytes for cholesterol production (Zhang
et al., 2014; Loving and Bruce, 2020). On the microglial cell
surface, ApoE lipoprotein particles can interact with Triggering
Receptor Expressed on Myeloid Cells 2 (TREM2), Toll Like
Receptor 4 (TLR-4) and the LDLR to internalize lipoprotein
particles into the microglia (Figure 1) (Loving and Bruce, 2020).

As mentioned above, regulation of cholesterol metabolism
is particularly important for neurons. To further fine-tune
cholesterol metabolism, neurons contain another cholesterol-
regulating enzyme; cholesterol 24-hydroxylase (CYP46A1),
which is CNS specific and under healthy conditions only
expressed by neurons (Brown et al., 2004; Ramirez et al., 2008).
CYP46A1 converts excess cholesterol to 24S-hydroxycholesterol
(24S-OHC) (Lund et al., 2003; Ramirez et al., 2008; Zhang and
Liu, 2015; van der Kant et al., 2019), which can be released
by neurons and crosses the BBB through diffusion, forming
a major export pathway for excess cholesterol from the brain
(Figure 1) (Lütjohann et al., 1996; Lund et al., 1999, 2003;
Xie et al., 2003). Due to its neuron specific origin, 24S-OHC
levels in the blood also provide a direct measure of cholesterol
turnover levels in the brain (Sodero, 2020). Besides being an
export product, as other oxysterols, 24S-OHC can promote
ApoE-mediated cholesterol export by activating liver X receptor
(LXR) (Figure 1) (Abildayeva et al., 2006; Matsuda et al., 2013).
Additional oxysterols that are produced in the brain include
27-OHC, which is generated by the enzyme CYP27A1 and can
be further processed by CYP7B to form 7α-hydroxy-3-oxo-4-
cholestenoic acid (7-OH-4-C). 7-OH-4-C can cross the BBB to be
eliminated by the liver. CYP27A1 is expressed in multiple brain
cell types, yet 27-OHC levels in the brain are only a fraction of the
far more abundant 24S-OHC (Brown et al., 2004; Heverin et al.,
2004; Gilardi et al., 2009). In fact most 27-OHC is not produced
in the brain but enters the brain via the BBB originating outside
the CNS (Gamba et al., 2015).

While neurons depend on the astrocyte-to-neuron lipid
shuttle for supply of cholesterol and cholesterol precursors,
recent studies have shown that lipids under certain circumstances
can also be transported from neurons to astrocytes. For example,
neuronal lipids can become peroxidized when they encounter
oxidative stress, potentially generated due to hyperactivity or
as an incidental of aging. Neurons are not well equipped to
deal with these toxic lipids, and peroxidized lipids in neurons
are therefore transported to astrocytes in an ApoE-dependent
manner (Figure 1) (Liu et al., 2015, 2017; Moulton et al., 2021;
Qi et al., 2021; Ioannou et al., 2019). Astrocytes store these
lipids while also upregulating expression of genes responsible for
oxidative energy metabolism to process these peroxidized lipids,
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thereby protecting neuronal integrity (Ioannou et al., 2019).
While this directional of lipid-transport is now well established
for fatty acids, it is unknown how this neuron-to-astrocyte
lipid shuttle affects cholesterol transport and overall cholesterol
metabolism in the healthy brain.

BRAIN CHOLESTEROL METABOLISM;
CHANGES FROM DEVELOPMENT TO
AGING

The processes that maintain cholesterol homeostasis in the
healthy brain are not static, but change during early human
development and later again in the aging brain. Cholesterol
synthesis rates are at the highest-level during brain development
to support the generation of an extensive neuronal network
(Waelsch et al., 1940; Quan et al., 2003; Pfrieger and Ungerer,
2011). Therefore, all brain cell types, including both neurons and
glial cells are thought to contribute to cholesterol biosynthesis
during development (Pfrieger and Ungerer, 2011; Genaro-Mattos
et al., 2019). Once an adult, brain cholesterol synthesis rate
declines and astrocytic cholesterol production ensures sufficient
levels to support neuronal plasticity and glial performance
(Andersson et al., 1990; Lütjohann et al., 1996; Dietschy and
Turley, 2004; Zhang and Liu, 2015). A further decline in
cholesterol synthesis upon aging is suggested by detection of
lower cholesterol precursor levels in post mortem hippocampal
tissue from middle-aged and elderly (>38 years) donors
compared to young (<38 years) donors (Thelen et al., 2006).
Yet, absolute cholesterol levels were stable in aged human
hippocampal tissue, while a decrease is observed in white and
gray matter regions (Söderberg et al., 1990; Thelen et al., 2006).
Hippocampal 24S-OHC levels showed a downward trend in
middle-aged and elderly (>38 years) donors, which also suggests
a decrease in cholesterol metabolism and cholesterol turnover
(Thelen et al., 2006). Possibly, lower cholesterol turnover helps to
keep cholesterol levels relatively stable in the aging brain when
cholesterol synthesis decreases, but less cholesterol turnover
might also contribute to reduced neuronal plasticity associated
with aging (Thelen et al., 2006). In addition, the BBB, which
normally separates CNS and peripheral cholesterol, has been
shown to lose integrity during aging (Montagne et al., 2015).
This might affect brain cholesterol levels especially in the
hippocampus where BBB break-down has been reported to occur
first (Montagne et al., 2015; Segarra et al., 2021). Indeed in mice,
BBB breakdown results in entry of peripheral cholesterol into
the brain, and reversely BBB breakdown also led to increased
release of 24S-OHC from the brain into the circulation (Saeed
et al., 2014). Brain cholesterol synthesis was increased upon BBB
disruption in mice, which might be induced to compensate for
the lowered 24S-OHC level (Saeed et al., 2014). What happens
to intracellular levels of cholesterol in neurons, astrocytes and
microglia during the aging process or downstream of BBB
breakdown is not well known.

Age-associated neurodegeneration itself also has a major
impact on brain cholesterol metabolism. For example, dying
neurons generate high levels of cholesterol-rich debris, in

part due to the dismantling of myelin sheets formed by
oligodendrocytes. This debris is subsequently phagocytosed
by microglia (Callaghan et al., 2014). Recently, Cantuti-
Castelvetri et al. (2018) showed that in the aged brain, phagocytes
(mainly representing microglia) had lost the ability to process
excess amounts of cholesterol, which depended on ApoE
and led to accumulation of cholesterol into crystals in the
phagocytic cells. The intracellular accumulation of cholesterol
in microglia induced an inflammatory response and prevented
successful re-myelination. Re-myelination could be restored
by stimulation of reverse cholesterol transport or inhibition
of the inflammatory response, indicating that aging can affect
the cholesterol efflux capacity of immune cells in the brain,
which perturbs timely reversal of immune responses needed
for proper re-myelination (Cantuti-Castelvetri et al., 2018).
Increased presence of lipid droplets, which are storage sites
for neutral lipids like glycerolipids and CEs has also been
observed in aged microglia of both mouse and human brains
(Shimabukuro et al., 2016; Farmer et al., 2020; Marschallinger
et al., 2020). While the lipid composition in these droplets
has not been well characterized in humans, lipidomic analysis
was performed on lipid-droplet containing microglia from
aged mouse hippocampus. These lipid droplets contained
predominantly glycerolipids, like triacylglycerols (TAGs),
diacylglycerols (DAGs), and monoacylglycerols (MAGs), but
little CE, indicating that cholesterol is not a major contributor to
this age-related phenotype at least in mice (Marschallinger et al.,
2020). Therefore, these so-called Lipid-droplet-accumulating
microglia (LDAM) seem to be distinct from the microglia in aged
mice that accumulated cholesterol after de-myelination (Cantuti-
Castelvetri et al., 2018; Marschallinger et al., 2020). In contrast
to the general aging process, in AD intracellular cholesterol
accumulation has been broadly reported for a number of cell
types, as discussed below.

CHOLESTEROL AND AD, A DUAL
DRIVER OF Aβ AND TAU PATHOLOGY IN
NEURONS

Cholesterol, APP Processing and Aβ

Generation in Neurons
The relationship between cholesterol metabolism, APP
processing and Aβ production has been characterized in much
detail. Aβ is generated when the amyloid precursor protein (APP)
is sequentially processed by β-secretase (BACE1) and γ-secretase.
Alternatively, APP can be cleaved by α-secretases, a pathway
known as the non-amyloidogenic pathway. APP is normally
present in the bilayer membrane of the cell and concentrated in
neuronal synapses (Zheng and Koo, 2011). Exogenous addition
of cholesterol to human brain tissue lysates promoted BACE1 and
γ-secretase activity (Xiong et al., 2008) and treatment of primary
mouse neuronal cultures with excess cholesterol was sufficient
to increase Aβ42 secretion (Marquer et al., 2014). In addition,
exogenous cholesterol addition in APP transfected HEK293 cells
reduced APP processing via the non-amyloidogenic pathway
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FIGURE 2 | Cholesterol, APP processing and Aβ generation in neurons. Schematic representation of the interactions between cholesterol and APP processing in
neurons. (1) High ER-cholesterol levels prevent APP dimerization and promote APP transport to the plasma membrane. (2) Cholesterol or cholesterol esters in the
plasma membrane stimulate the clustering of APP, BACE1 and γ-secretases in lipid rafts. (3) These lipid rafts undergo clathrin-mediated endocytosis resulting in
amyloidogenic processing of APP to Aβ. (4) Aβ peptides are subsequently secreted from the neuron (BioRender, 2021).

by α-secretase (Bodovitz and Klein, 1996). Accordingly, lower
cholesterol levels have been shown to inhibit APP processing by
BACE1 and γ-secretase, while promoting processing of APP via
the non-amyloidogenic pathway (Simons et al., 1998; Kojro et al.,
2001; Refolo et al., 2001; Schneider et al., 2006; Grimm et al.,
2008). These effects of cholesterol on APP processing could be
mediated by effects of cholesterol on membrane composition.
As a transmembrane protein APP can localize in lipid rafts,
which are small sterol- and sphingolipid enriched domains that
facilitate protein and lipid interactions and play a role in cellular
signaling and membrane transport (Hicks et al., 2012). Multiple
studies together uncovered that an increase in cholesterol levels
promotes APP and BACE1 colocalization in lipid rafts which
promotes clathrin-mediated endocytosis and APP processing
via the amyloidogenic pathway (Figure 2) (Wahrle et al., 2002;
Cordy et al., 2003; Ehehalt et al., 2003; Osenkowski et al., 2008;
Cossec et al., 2010; Marquer et al., 2011). This is supported by a
recent study in human iPSC-derived neurons, where lowering
cholesterol levels reduced the interaction between full-length
APP (flAPP) and BACE1, potentially explaining why APP
processing is inhibited and flAPP levels are increased upon
statin treatment (Langness et al., 2021). In addition, a cholesterol
dependent interaction between flotillin and APP in lipid rafts
might further promote endocytosis (Chen et al., 2006; Schneider
et al., 2008; Cho et al., 2020). Importantly the cholesterol effect

is APP specific, as higher membrane cholesterol levels did not
affect endocytosis of other membrane proteins like transferrin
(Cossec et al., 2010). Also, high membrane cholesterol levels
only promote endocytosis and amyloidogenic processing of
APP that is localized in lipid rafts, while APP located in the
membrane outside of lipid rafts is unaffected (Cho et al., 2020).
When analyzing lipid raft composition in postmortem AD vs.
control brain tissue, Fabelo et al. (2014) actually detected lower
cholesterol, but higher CE presence in lipid rafts of AD subjects,
indicating that plasma membrane CE might also contribute to
regulation of APP processing. Increased levels of CE, have also
been observed both in human postmortem AD brain tissue and
in mouse models of AD (Chan et al., 2012; Tajima et al., 2013;
Yang et al., 2014).

Cholesterol can also bind directly to APP in the
transmembrane C-terminal domain (C99) (Beel et al., 2008;
Barrett et al., 2012; Song et al., 2013; Nierzwicki and Czub,
2015). In iPSC derived neurons mutating the cholesterol-
binding domain in APP results in reduced APP processing
and Aβ production (van der Kant et al., 2019). In addition,
inhibition of Aβ secretion by cholesterol-lowering statin
treatment depended on the cholesterol binding domain in APP
(van der Kant et al., 2019). Export of APP from the ER and
subsequent APP processing to Aβ is also cholesterol and/or
CE dependent (Puglielli et al., 2001; Hutter-Paier et al., 2004;
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Huttunen et al., 2009; van der Kant et al., 2019), and regulated
by the cholesterol-binding domain in APP (Langness et al.,
2021). APP dimerization inhibits exit of flAPP from the ER,
and subsequent processing to Aβ (Kaden et al., 2008; Eggert
et al., 2009, 2018; Decock et al., 2015; Langness et al., 2021).
Interestingly, residues required for binding of APP to cholesterol
overlap with residues required for APP dimerization (Song et al.,
2013), and thus binding of cholesterol to APP might prevent APP
dimerization thereby enhancing ER-export of monomeric APP
(Nierzwicki and Czub, 2015; Langness et al., 2021). Whether
the cholesterol-binding domain of APP also directly affects APP
recruitment into lipid rafts, thereby providing another level of
cholesterol-dependent regulation of APP-processing is currently
unknown. Also, whether ER cholesterol, or ER CE’s are the
main driver of these processes needs to be further established.
It is, however, interesting to note, that like SREBP processing,
the regulation of APP processing is very much dependent on
intracellular cholesterol levels, raising the possibility that APP is
a regulator of intracellular cholesterol homeostasis, which is also
supported by a number of publications (Box 2). Overall, there
is evidently a strong correlation between cholesterol levels and
Aβ generation, with increased levels of cholesterol and/or CE in
neurons driving Aβ generation (Figure 2).

Cholesterol and Tau
In addition to an established connection between cholesterol and
APP processing, cholesterol metabolism was also recently found

BOX 2 | Tables turned; APP as a regulator of cellular cholesterol metabolism.
While cholesterol levels are known to regulate APP processing (Figure 2),
accumulating data indicate that APP and its cleavage products can also
regulate cholesterol metabolism in turn. In primary cultures of rat cortical
neurons, higher expression of full length APP decreased HMGCR-mediated
cholesterol synthesis, while lowering APP levels increased cholesterol
biosynthesis (Pierrot et al., 2013). Similarly, deletion of APP caused increased
SREBP2 target gene expression in human iPSC derived astrocytes (Fong
et al., 2018). In addition, the C99 APP-fragment has been demonstrated to
cluster cholesterol in the ER membrane thereby lowering de novo cholesterol
synthesis (Montesinos et al., 2020), while the APP intracellular domain (AICD),
a cytosolic fragment generated from C99, can directly bind to, and suppress,
the LRP1 promoter thereby potentially lowering LRP1 dependent uptake of
ApoE delivered cholesterol into neurons (Liu et al., 2007). In line with the
position of the cholesterol binding domain in APP (Barrett et al., 2012), Aβ40

and Aβ42 peptides have been shown to bind extracellular cholesterol, thereby
competing with ApoE or LDL driven cholesterol import, and reducing
ApoE-dependent cholesterol delivery (Yao and Papadopoulos, 2002). In
astrocytes, exogenous Aβ stimulated cholesterol transport from plasma
membrane to the Golgi, thereby lowering plasma membrane cholesterol levels
(Igbavboa et al., 2009). Finally, Aβ42 has been shown to inhibit astrocytic
ABCA1 expression (Canepa et al., 2011), which would reduce cholesterol
secretion and transport to neurons. Together these results show that APP
processing and cleavage fragments can directly affect brain cholesterol
homeostasis. This raises the interesting question whether FAD-associated
mutations that affect APP-processing also alter brain cholesterol metabolism,
which could then further contribute to AD pathology in a
cholesterol-dependent manner. Indeed, accumulation of CE has been
demonstrated in multiple mouse models of FAD (Chan et al., 2012; Tajima
et al., 2013; Yang et al., 2014), indicating that altered brain cholesterol
metabolism could hurry pathogenesis also in FAD.

to directly regulate phosphorylated Tau (pTau) levels in iPSC-
derived neurons. As identified by an unbiased high-throughput
drug screen, drugs that reduced CE levels in iPSC-derived
neurons from familial AD (FAD) patients, also decreased pTau
levels (van der Kant et al., 2019). This reduction of pTau was
mediated by an increase in proteasomal degradation of pTau,
and independent on the effect of CE on APP processing and
Aβ (van der Kant et al., 2019). Interestingly, genetically lowering
cholesterol esterification in triple-transgenic AD mice (3xTg-AD)
mice also lowered pathological Tau accumulation (Shibuya et al.,
2015). In addition, in vivo, genetic inhibition of ApoE-mediated
cholesterol transport from astrocytes to neurons also reduced
neuronal pTau levels in mice (Wang et al., 2020). While the
exact mechanism underlying cholesterol-dependent regulation of
Tau needs to be further established, these findings do further
implicate cholesterol as a central player in AD pathogenesis
upstream of Aβ and Tau pathology (Kant et al., 2019).

DYSREGULATION OF BRAIN
CHOLESTEROL IN AD; IT IS IN THE
GENES

The last decade has seen the discovery of numerous genetic risk
factors for LOAD by genome-wide-association studies (GWAS)
on LOAD patients vs. healthy controls (Lambert et al., 2013;
Jansen et al., 2019; Kunkle et al., 2019; Bellenguez et al., 2020).
A high number of the LOAD risk genes have roles in lipid
homeostasis, which is best defined for ApoE.

ApoE
Three common allelic ApoE genetic variants exist in the human
population; ApoE2, ApoE3 and ApoE4. ApoE3 is the most
common isoform present homozygous in over 60% of the
population and is considered the reference allele for LOAD risk
(Jeong et al., 2019). ApoE4 is a strong risk factor for LOAD:
carriers of one ApoE4 allele have a 3 to 4-fold increased risk for
LOAD, while homozygous ApoE4 carriers have an approximate
14-fold increased risk of developing LOAD compared to ApoE3
carriers (Liu et al., 2013). It has to be noted, however, that the
penetrance of the ApoE4-risk allele varies in different ethnicities,
possibly due to differences in ApoE expression levels (Griswold
et al., 2021). In contrast to ApoE4, expression of the ApoE2
allele confers a decreased risk for LOAD and hence is considered
protective (Corder et al., 1994; Reiman et al., 2020). Despite their
strong effects on LOAD risk, the three ApoE isoforms only differ
from each other by two amino acids (Chen et al., 2020). ApoE3
contains a Cys112 and Arg158, of which Cys112 is changed to
Arg112 in ApoE4 and Arg158 is changed to Cys158 in the ApoE2
variant (Figure 3). As an apolipoprotein ApoE interacts with
lipoproteins to execute its function as a cholesterol and lipid
carrier. Via a receptor binding domain ApoE can interact with
lipoprotein receptors to be internalized and deliver the cargo of
lipids to cells. As described above, this ApoE-dependent route
is crucial for transport of cholesterol and cholesterol precursors
from astrocytes to neurons in the mature brain.
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FIGURE 3 | Alzheimer’s disease risk variants in ApoE affect cholesterol metabolism. Schematic representation of ApoE allelic variants and their consequences.
Single amino acid changes in ApoE confer different risk for LOAD. Conformational change of the protein structure by expression of the different ApoE alleles changes
LDL receptor binding and lipid particle binding capacity, which might affect brain cholesterol metabolism (BioRender, 2021).

Strikingly enough, while peripheral ApoE4 is a major risk
factor for hypercholesterolemia (Box 1), it remains largely
unknown how ApoE isoforms affect cholesterol metabolism in
the brain. Astrocytes are the highest ApoE-expressing cell type
in the brain (Huang et al., 2004), and transcriptomic analysis of
human iPSC-derived neurons, astrocytes and microglia, revealed
that ApoE4 driven changes in gene expression were most
dramatic in astrocytes (Julia et al., 2019). Compared to ApoE3
astrocytes, ApoE4 astrocytes expressed higher levels of genes
with a role in cholesterol biosynthesis and displayed cholesterol
accumulation in lysosomes, while CE levels were not increased
(Lin et al., 2018; Julia et al., 2019). The dysregulation in lipid
metabolic genes in ApoE4 astrocytes was also confirmed in
human control and AD brain samples (Julia et al., 2019). Also,
an increased number of smaller lipid droplets has been detected
in ApoE4 astrocytes compared to ApoE3 astrocytes derived from
human ApoE-replacement mice (Farmer et al., 2019).

How ApoE4 affects cholesterol metabolism in other brain
cell types like neurons and microglia is even less clear. ApoE4
expressing human iPSC-derived astrocytes showed reduced
support of neuronal survival in an iPSC-derived neuron-
astrocyte co-culture compared to ApoE3 expressing astrocytes
(Zhao et al., 2017). One way by which different ApoE
polymorphisms could affect total brain lipid metabolism is by
altering the export of ApoE-lipoprotein particles (Figure 3). In
human CSF and upon overexpression in mice, ApoE2 has been
shown to generate bigger HDL particles compared to ApoE3,
while ApoE3 in turn is associated with bigger HDL particles
then ApoE4, suggesting less sterol transport by ApoE4 (Hu
et al., 2015; Heinsinger et al., 2016). Accordingly, an isoform
dependent effect on cholesterol efflux, ApoE2 > ApoE3 > ApoE4,
was detected previously in primary rat or mouse astrocytes

and neurons (Michikawa et al., 2000; Rawat et al., 2019). No
isoform dependent changes in binding of ApoE to ABCA1 were
found that could explain reduced cholesterol efflux from ApoE4
expressing astrocytes, although ApoE4 has been suggested to
affect ABCA1 membrane trafficking (Krimbou et al., 2004; Rawat
et al., 2019). In addition, ABCA1 has recently been identified
as a LOAD risk gene itself further implicating this pathway
in LOAD pathogenesis (Bellenguez et al., 2020). In addition
to export, ApoE genotype might also differentially affect the
internalization of ApoE-lipoprotein particles. Lipidation of the
ApoE protein triggers a conformational change that increases
its binding affinity for the LDL receptors. Lipidated ApoE4
shows the strongest binding affinity for LDLR, while the binding
of lipidated ApoE2 to LDLR is reduced compared to ApoE3
(Figure 3) (Chen et al., 2020). How these differences in receptor
binding affinity affect uptake of ApoE-lipoprotein particles in
specific brain cell types remains to be determined. The protein
levels of ApoE also differ between isoforms, where ApoE2 levels
are highest and ApoE4 levels are lowest in CSF and plasma
(Castellano et al., 2011; Cruchaga et al., 2012). This might be a
result of their different receptor affinities, as LDLR loss caused an
increase in ApoE3 and ApoE4 levels, but not ApoE2 levels (Fryer
et al., 2005). Importantly, the recently described Christchurch
mutation in APOE (R136S) results in strongly reduced LDLR
binding of ApoE, similar to ApoE2 (Figure 3). Presence of this
mutation has been reported in an individual who had no signs
of cognitive decline or Tau-pathology until advanced age despite
carrying a PSEN1 mutation that causes autosomal-dominant
AD (Arboleda-Velasquez et al., 2019). These results suggest
a strong protective effect of the Christchurch ApoE variant,
although this conclusion awaits further confirmation. Together,
these results suggest strong ApoE genotype dependent effects
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on cholesterol metabolism in astrocytes. Whether, and how,
this affects the proper astrocyte-dependent support of neuronal
function and/or downstream AD pathology in neurons and glia
remains to be determined.

Besides ApoE, other AD risk genes also have a predicted role
in lipid metabolism. This is established for AD-genes that act in
similar processes as ApoE and ABCA1, such as CLU and ABCA7
(discussed below), but also increasingly recognized for genes
which are highly, or exclusively, expressed in microglia (discussed
in the next section).

CLU and ABCA7
Like ApoE, clusterin (CLU) is a component of lipoproteins.
The CLU gene producing clusterin (also referred to as ApoJ)
is expressed in astrocytes and has a wide range of biological
functions including cholesterol and lipid transport. In periphery,
clusterin can form HDL particles that are transported to
the liver (Baralla et al., 2015; Foster et al., 2019). Also,
clusterin is expressed upon damage in arteries and could
remove cholesterol from macrophage-foam cells that promote
formation of atherosclerotic lesions (Gelissen et al., 1998; Foster
et al., 2019). Clusterin plasma levels have been shown to
correspond to severity of AD in patients (Thambisetty et al., 2010;
Jongbloed et al., 2015), yet the specific role in brain cholesterol
homeostasis is unknown.

Another AD risk gene, ABCA7 shares 54% homology with
ABCA1, the protein known to load cholesterol onto ApoE
particles (Kaminski et al., 2000). However, what role ABCA7
has in intracellular cholesterol- and lipid transport remains
unclear. ABCA7 is highly expressed in the brain, predominantly
in neurons and microglia (Zhang et al., 2014). Reduced ABCA7
levels are observed in AD brain (Lyssenko and Praticò, 2020)
and hippocampus of mice on a high fat diet (Zou et al., 2020).
Contrary to ABCA1, transcription of ABCA7 is downregulated
when cholesterol levels are high in the cell (Iwamoto et al.,
2006). Recent studies on detergent purified ABCA7 showed
that removal of cholesterol led to increased ATPase activity
in ABCA7 (Le et al., 2021). In addition, ATPase activity was
stimulated by interaction with apolipoproteins, ApoA-I and
ApoE, where ATPase activity was hardly stimulated in presence
of the ApoE4 compared to the ApoE3 variant. Interestingly,
also the ApoE2 variant had a lower effect in stimulating ATPase
activity of ABCA7 compared to ApoE3 (Le et al., 2021). The
physiological consequences of these ApoE genotype dependent
effects on ABCA7 and cholesterol metabolism remain to be
determined. In vitro analysis in baby hamster kidney (BHK) cells
transfected with either ABCA1-GFP or ABCA7-GFP revealed
that free cholesterol efflux through ABCA7 was much lower
compared to ABCA1 and was unaffected by ApoE genotype,
while cholesterol efflux by ABCA1 was greatly reduced in
presence of ApoE4 (Tomioka et al., 2017). Interestingly, recent
data on the ABCA7 homolog in Drosophila suggests that
ABCA7 might play a role in the neuron-to-glial transport of
lipids to protect neuronal functionality and viability from toxic
accumulation of peroxidized lipids, for instance generated by
oxidative stress (Moulton et al., 2021). These results open the

door for future studies on the role of ABCA7 in brain cholesterol
metabolism and AD development.

CHOLESTEROL AS A DRIVER OF
(MICRO)GLIAL DYSFUNCTION AND
GLIOSIS

TREM2, PLCγ2, and Microglial ApoE
Multiple LOAD risk genes such as ApoE, TREM2 and PLCγ2 are
highly -or exclusively- expressed in (micro)glia and have been
shown to regulate lipid metabolism and microgliosis. Increased
expression of genes associated with lipid metabolism are found
in microglia during development, damage or disease (Efthymiou
and Goate, 2017; Keren-Shaul et al., 2017; Hammond et al., 2019;
McQuade and Blurton-Jones, 2019). A good example is triggering
receptor expressed on myeloid cells 2 (TREM2), which in brain is
primarily expressed in microglia. Carriers of the R47H or R62H
variant in this gene have an up to 4-fold increased risk for LOAD
(Ulrich and Holtzman, 2016). TREM2 has multiple ligands
including the apolipoproteins ApoE and clusterin, and binding
of TREM2 to these proteins is enhanced by their lipidation (Atagi
et al., 2015; Bailey et al., 2015; Yeh et al., 2016). Binding of TREM2
to lipoprotein particles is reduced by the TREM2 R47H variant,
which could lead to altered cholesterol load in microglia and also
affects phagocytosis of lipoprotein bound Aβ by microglia (Yeh
et al., 2016). Both astrocytes and microglia can phagocytose Aβ,
thereby contributing to Aβ clearance from the brain (Tarasoff-
Conway et al., 2015; Ries and Sastre, 2016). Single-cell RNA-
sequence (RNA-seq) data from AD mouse models revealed so-
called disease associated microglia (DAM) as a reactive microglial
population that is generated when AD pathology is present
in the brain (Keren-Shaul et al., 2017). The transition to a
DAM-phenotype was dependent on TREM2 (Zhou et al., 2020).
DAM have reduced expression of several homeostatic microglial
genes accompanied by a significant increase in expression of
lipid metabolism and phagocytosis genes, including ApoE. These
activated DAM microglia localize predominantly around amyloid
plaques where they form a neuroprotective barrier, prevent
propagation of Tau pathology in mice and are believed to play
a role in Aβ clearance (Condello et al., 2015; Yuan et al., 2016;
Keren-Shaul et al., 2017; Leyns et al., 2019). Of note, although
increased ApoE levels were detected by recent (single-cell and
single-nuclear) RNAseq studies in microglia from human AD
postmortem brain tissue, a subpopulation with DAM signature
was not identified (Grubman et al., 2019; Olah et al., 2020;
Srinivasan et al., 2020; Zhou et al., 2020). While this may
indicate differences between AD pathogenesis in mouse models
and in humans, it could also be a consequence of technical
limitations, e.g., too few single microglial cells analyzed or the
low sensitivity of single-nuclear RNAseq to detect microglial
activation genes (Del-Aguila et al., 2019; Mathys et al., 2019;
Thrupp et al., 2020). As a consequence of TREM2 loss, microglia
from TREM2−/− mice on a demyelinating cuprizone (CPZ) diet
failed to upregulate DAM-genes needed for cholesterol transport
and lipid metabolism like ApoE, and could not clear myelin
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FIGURE 4 | Human iPSC models to study cell type specific effects. Multiple LOAD-risk variants are found in genes with an expected role in lipid metabolism and
changes in cholesterol metabolism are linked to AD development. Yet, how individual LOAD-risk variants affect brain cholesterol metabolism and AD pathology is
largely unclear. As described in this review, the complex organization of brain cholesterol metabolism depends on cell intrinsic metabolism as well as on the transport
of cholesterol between the different brain cell types. Development of human iPSC derived cell models allows for separation of these processes and gives the
possibility to introduce risk variants in each selected brain cell type (1). For example, analysis of cell type specific effects of LOAD-risk gene expression will uncover in
which cell type a LOAD-risk variant has the biggest impact. Co-culture models of different brain cell types can subsequently be used to identify how LOAD-risk
variants affect lipid transport, cholesterol metabolism between different brain cell types and how this affects downstream AD pathology (2). iPSC-derived brain cell
models allow for -omics approaches to determine complex cell type dependent effects (3). Advantages and disadvantages of iPSC-models are discussed in (4).
Mechanistic insights acquired by iPSC studies can contribute to the identification of novel (cell type) specific targets for future therapy development (BioRender,
2021).

derived cholesterol, leading to microglial CE accumulation.
A similar accumulation of CE was observed in human TREM2
knock out iPSC-derived microglia-like cells (iMG), when these
were treated with exogenous myelin (Nugent et al., 2020).
The role of TREM2 in lipid metabolism is (at least in part)
mediated by the enzyme phospholipase C γ2 (PLCγ2), for which
a LOAD-protective variant has been identified (P522R). PLCγ2
is an intracellular enzyme, which is also specifically expressed in
microglia. The protective P522R variant is associated with a gain
of function and hence loss of TREM2 or PLCγ2 are both expected
to negatively affect LOAD risk (Magno et al., 2019). Indeed,
TREM2 or PLCy2 deficient iMG showed a similar defect in
upregulation of genes needed for lipid metabolism. Accordingly,
both TREM2- and PLCy2-deficient iPSC derived microglia fail to
clear cholesterol after phagocytosis of myelin debris (Andreone
et al., 2020; Nugent et al., 2020). Analysis of the lipidome

after myelin treatment revealed accumulation of free cholesterol,
CE, myelin-derived ceramides [Cer, hexosylceramides (HexCer),
sulfatides and diacylglycerols (DAGs) and triacylglycerols (TAGs)
in the TREM2- and PLCy2-deficient iMG compared to WT iMG
(Andreone et al., 2020)]. Importantly, Andreone et al. (2020)
show that expression of the LOAD-protective variant P522R
reduced CE accumulation to a greater extent than WT PLCy2,
further indicating that TREM2 and PLCy2 work together in
microglial lipid metabolism and demonstrating the relevance of
this pathway for LOAD development.

Accumulation of CE was also observed in sorted microglia
from ApoE−/− mice, indicating that ApoE dependent transport
prevents cholesterol overload in microglia (Nugent et al., 2020).
ApoE levels are increased in AD-brain microglia and both
intracellular and extracellular clearance of Aβ is greatly facilitated
by lipidated ApoE particles (Jiang et al., 2008). Lipidated ApoE
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can directly interact with Aβ to support phagocytosis. In addition,
independent of a direct ApoE-Aβ interaction, depletion of
cellular cholesterol from microglia via ApoE-containing HDL
particles promoted Aβ degradation in primary mouse microglial
cultures (Lee et al., 2012). How the TREM2-PLCγ2-ApoE
axis contributes to LOAD development remains an important
question for future studies. Whether the effects of the LOAD risk
genes on AD pathology are directly coupled to the function of
these genes in (micro)glial cholesterol metabolism is currently
unknown, but of great interest to the field.

From Cholesterol Dysregulation to
(Micro)Gliosis
Glial LOAD risk genes that affect (micro)glial cholesterol
metabolism could impact AD pathology via their effect on
gliosis, represented by accumulation of reactive astrocytes
and immune activated microglia (Shi and Holtzman, 2018).
Gliosis is detected early in AD development, and seen as
a major pathological hallmark (Heneka et al., 2005; Carter
et al., 2012). While considered primary a neuroprotective
response, gliosis is also thought to contribute to progressive
AD development (Heneka et al., 2015). Changes in cholesterol
metabolism have been linked to gliosis by various studies. For
example, a high cholesterol diet induces astrocytic activation and
increased expression of ApoE in mice (Chen et al., 2016). In
line, exogenous cholesterol addition in rat astrocytes triggered
astrocyte activation, indicated by upregulation of glial fibrillary
acidic protein (GFAP) (Avila-Muñoz and Arias, 2015). Finally,
exogenous addition of a mixture of oxysterols, representing
oxysterols that are produced when cholesterol accumulates in the
AD brain, promote upregulation of reactive astrocyte markers,
which contributed to synaptotoxicity (Staurenghi et al., 2021).
In microglia, high cholesterol can affect immune function, as
particularly studied in respect of cholesterol-rich myelin debris,
which promotes inflammatory activation of microglia (Cantuti-
Castelvetri et al., 2018). Myelin debris treatment in bone-marrow
derived macrophages from mice caused NLRP3 inflammasome
activation, possibly due to lysosomal rupture after formation of
cholesterol crystals (Cantuti-Castelvetri et al., 2018). Mechanistic
understanding of altered immune activation in microglia upon
high cholesterol load requires further studying. In macrophages,
changes in membrane cholesterol load have also been shown
to affect lipid raft composition and TLR mediated signaling,
where high cholesterol levels cause hyperresponsiveness to LPS
treatment (Fessler and Parks, 2011). In addition, high cholesterol
levels could drive CD36-dependend inflammatory signaling via
inhibition of Nrf1 in the ER (Widenmaier et al., 2017). As
described above reversed cholesterol transport is needed to
revert the pro-inflammatory state in microglia and promote re-
myelination (Cantuti-Castelvetri et al., 2018). Microglia increase
post-squalene sterol synthesis in response to cholesterol overload
to activate LXR dependent transcription and promote cholesterol
export (Berghoff et al., 2021). Increased secretion of pro-
inflammatory cytokines IL-1β and IL-18 upon myelin treatment
combined with TLR activation in TREM2 KO iMG suggests
that increased sterol levels might indeed contribute to excessive

inflammatory responses by microglia, which might be further
enhanced in presence of LOAD risk genes (Andreone et al.,
2020). Moreover, Lin et al. (2018) recently suggested that
ApoE4 expression in microglia might be sufficient to convert
them into an immune-active state. In line, ApoE4 expressing
primary mouse microglia respond stronger to immune activation
compared to ApoE2- or ApoE3 expressing microglia (Wong
et al., 2020). Whether these processes are mediated by altered
cholesterol metabolism in glia downstream of ApoE remains
to be established.

CONCLUSION

Cholesterol is a central player in AD affecting Amyloid, Tau
and gliosis. In addition, LOAD genetic risk factors point
to a strong effect of lipid metabolism in AD development.
Yet, mechanistic understanding of the pathways by which
dysregulation of cholesterol metabolism contributes to AD
development remains largely lacking. A number of major
outstanding questions are; (1). How is cholesterol metabolism
affected in each specific brain cell type in AD patients (2). How
do LOAD-risk genes affect cholesterol metabolism in specific
brain cell types and the transport of lipids between these cells
(3). How do changes in brain cholesterol metabolism contribute
to AD pathology (Amyloid, Tau, and gliosis) and finally (4)
is cholesterol itself or one of its derivatives most toxic in
this context?

Progress in technology development has delivered new tools
to address these questions in human cells and tissue. Techniques
that will help to answer the outstanding questions include the
generation of human brain cell types from induced pluripotent
stem cells and introduction of specific LOAD-risk mutations
by CRISPR/Cas9 gene-editing (Figure 4). This approach allows
the mapping of cell type specific effects of LOAD-risk variants
on cholesterol metabolism combined with the possibility to
mechanistically study AD pathology for a certain genetic
background. Extension of this approach to co-culture or 3D
organoid models of different iPSC derived brain cell types gives
the opportunity to further study complex interplay between
different cell types of the brain (Figure 4). Finally, single-nuclear-
or single-cell-RNA sequencing of postmortem brain tissue, or
3D iPSC derived brain cell models, with distinct LOAD-risk
genotypes will result in comprehensive data on cell type specific
effects on gene expression. In addition, subcellular populations
that might impact cholesterol metabolism or AD pathology
can be identified by this approach. A better mechanistic
understanding of the cholesterol-dependent pathways that drive
(early) AD development will also uncover novel (cell type)
specific targets for rational drug discovery. An example of such
a drug discovery effort for brain-lipid targeting drugs is the
discovery that Efavirenz, an FDA approved HIV-drug, activates
the neuronal specific enzyme CYP46A1 to promote conversion
of excess cholesterol to 24S-OHC that can be secreted from the
brain via the BBB. Efavirenz lowered pTau levels in iPSC-derived
neurons from AD patients and improved behavior in 5xFAD mice
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(Petrov and Pikuleva, 2019; Petrov et al., 2019; van der Kant et al.,
2019). A phase I clinical trial with intermediate-to-high doses of
Efavirenz has started in patients with MCI in the United States
(Nugent et al., 2020) and a similar trial with low-dose Efavirenz is
planned to start in the Netherlands.

The approaches described above, and the rapidly increasing
knowledge on brain lipid metabolism, will contribute to tackling
the outstanding questions in this field and will undoubtedly
provide much needed new insights on AD etiology and the role of
cholesterol metabolism in this process. Such knowledge will likely
be fundamental to develop targeted therapies to prevent, delay or
cure AD in the future.
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