
When the Lowest Energy Does Not Induce Native
Structures: Parallel Minimization of Multi-Energy Values
by Hybridizing Searching Intelligences
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Abstract

Background: Protein structure prediction (PSP), which is usually modeled as a computational optimization problem,
remains one of the biggest challenges in computational biology. PSP encounters two difficult obstacles: the inaccurate
energy function problem and the searching problem. Even if the lowest energy has been luckily found by the searching
procedure, the correct protein structures are not guaranteed to obtain.

Results: A general parallel metaheuristic approach is presented to tackle the above two problems. Multi-energy functions
are employed to simultaneously guide the parallel searching threads. Searching trajectories are in fact controlled by the
parameters of heuristic algorithms. The parallel approach allows the parameters to be perturbed during the searching
threads are running in parallel, while each thread is searching the lowest energy value determined by an individual energy
function. By hybridizing the intelligences of parallel ant colonies and Monte Carlo Metropolis search, this paper
demonstrates an implementation of our parallel approach for PSP. 16 classical instances were tested to show that the
parallel approach is competitive for solving PSP problem.

Conclusions: This parallel approach combines various sources of both searching intelligences and energy functions, and
thus predicts protein conformations with good quality jointly determined by all the parallel searching threads and energy
functions. It provides a framework to combine different searching intelligence embedded in heuristic algorithms. It also
constructs a container to hybridize different not-so-accurate objective functions which are usually derived from the domain
expertise.
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Introduction

Given the protein’s amino acid sequence, protein structure

prediction (PSP) is to predict the tertiary structure of its native

state. It still remains one of the biggest challenges in computational

biology [1,2]. According to the hypothesis that the native structure

always adapts to the status with the lowest free energy [3], PSP is

usually converted to a single-objective optimization problem (SOP)

which tries to minimize the free energy value of the predicted

structure (see the left part of Figure 1). Such problem and its

variants have been proved as NP-hard problems [4,5]. Therefore,

metaheuristic [6] is a natural choice to tackle PSP problem (see the

modeling layer of Figure 1). There are two biggest major obstacles

for solving PSP problem [1,7]: the first is that the searching is

always inefficient even if the current computing power is

increasing exponentially, and the second is that as the objective

function for minimizing, energy function itself cannot accurately

measure the free energy of a computer-generated conformation

because we are lack of complete knowledge on measuring free

energy based on protein conformation surrounded by the complex

bio-environment. The first obstacle introduces an intrinsically

hard problem in computing fields, while the second must address

how to accurately calculate the free energy in biology fields.

Energy functions, such as physical energy functions, empirical

potentials, and even those based on the approximations of

quantum chemistry, are usually derived from the analysis of the

properties of protein in different views and levels. Unfortunately,

all existing energy functions are inaccurate in a universal sense, but

each of them is very useful in some specific senses. This hypothesis

is referred to as the inaccuracy/usefulness property in this paper. An

energy function typically consists of a combination of weighted

energy terms. The parameters and constants for evaluating the

energy of a specific term are usually derived from empirical studies

or theoretical hypothesis. From the viewpoint of the inaccuracy/

usefulness property, all the energy terms in the various energy

functions are correct in a qualitative sense for determining which

kinds of interactions should be taken into account when evaluating

free energy. If an energy function can discriminate native structure

or its legal equilibrium from computer-generated conformations,

this energy function is with usefulness, otherwise with inaccuracy.

It is easy to confirm that when being applied to the native
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structures available on the Protein Data Bank (PDB) [8], any

calculative energy function is of usefulness for some native

structures and of inaccuracy for other native structures. Similar

real experimental justifications of inaccuracy/usfulness property can

be found in such as [9,10].

We tend to accept that the native structure always adopts the

lowest free energy [3], and that such correct free energy function

cannot be accurately calculated right now. What we have to use

are various approximations of free energy functions. So it is

natural to raise this question: when the lowest energy value of a

must-use energy function does not induce native structures, what

should we do?

The simplest approach is to integrate different sources of energy

functions. A typical solution is to use a support vector machine

(SVM) to regress the outputs of several energy functions [11,12].

In this way, the inaccuracy of some energy functions can be

complemented by the usefulness of other energy functions.

Alternatively, trying to train new parameters with coarse-grained

pattern is another approach to tackling the inaccuracy/usefulness of

the original energy function [13]. However, the new regressed or

fitted energy function still has the inaccuracy/usefulness property

because the new function is basically just another linear

combination of the original energy functions. Such approaches

adopt SOP as the computational model for solving PSP (see case 1

in the modeling layer of Figure 1).

Since a single energy function is not enough for solving PSP,

multi-objective optimization problem (MOP [14]) seems more

reasonable as the computational model for better modeling PSP.

However, because of the inaccuracy/usfulness property of energy

functions, solving PSP is far more complicated than solving a

specific MOP. An MOP itself is very hard in computational view

[14,15], not to speak of an MOP with inaccurate objective

functions to be optimized for PSP.

If the accurate free energy can hardly be computed to

discriminate the native or near-native structures from computer

generated structures, it is more reasonable to model a PSP

problem as an MOP (see case in the modeling layer of Figure 1)

so that more considerations of energy function can be brought in

together in order to find discriminative free energy values. Instead

of the lowest values of multiple objective functions, Pareto front

(PF) [15] is used in order to evaluate the quality of a solution for an

MOP.

A multi-objective evolutionary approach to the PSP problem

has been proposed in [9], where CHARMM energy function was

segmented into two parts, bond and non-bond items. So the PSP

problem is converted to a two-objective minimization problem.

Using a GA-based heuristic algorithm, this method evolves the

population (a collection of solutions) and constructs the PF by

evaluating the solution with the two energy functions. Finally the

predicted structure is selected by finding the most sensitive solution

from the PF. Five proteins with 34–70 residues were tested in [9].

Another two simple MOP solutions have been applied to PSP

[16,17], where the similar technique was used to build PF and

three simple energy items were simultaneously minimized for four

testing proteins.

For either SOP or MOP, computing power is mostly not

enough. In general, parallel metaheuristic [18] is a good choice for

such optimization problems. Parallel tempering is a very classical

parallel metaheuristic with a lot of applications in physics,

chemistry and biology [19]. The basic idea of parallel tempering

Figure 1. General framework of solving PSP by parallel metaheuristic. The OP stands for all kinds of application problems, which can be
computationally modeled as an optimization problem. Three such models are possible for solving OP, namely h(EDH), h(E,CDH) and H(E,CDH),
where E and C are derived from how to solve OP numerically and non-numerically respectively. Three parallel solutions can be applied to solve the
modeled optimization problems, and the current parallel platform at both hardware and software level can easily support the above three solutions.
doi:10.1371/journal.pone.0044967.g001

When the Lowest Energy Not Induce Native Structure

PLOS ONE | www.plosone.org 2 September 2012 | Volume 7 | Issue 9 | e44967



is to exchange the ongoing best-so-far solutions (named replicas in

the literature) of the parallel sampling procedures in a scheduled

timing. Such replicas are generated by parallel search processes

ruled by different parameters, such as simulated temperatures. By

accepting the replica which is optimized by the other search

process with different search parameters, the search process is able

to keep on optimizing the intermediate result coming from the

other search process. Similarly, ant colony optimization (ACO)

[20–22] is also a very popular metaheuristic straightforward for

parallelization. Different search paradigms have been intensively

studied for parallel ACO algorithms [23]. The key issues of

studying parallel ACO are what kind of information should be

exchanged among the cooperative agents (ants or colonies), and

how to design the exchange such as to whom and when the

information should be exchanged [24–26]. Most of the parallel

ACO implementations have been applied to different SOPs, for

example, traveling salesperson problem (TSP) and quadratic

assignment problem [27], time and space assembly line balancing

problem [28,29], multi-depot vehicle routing problem [30], and

protein-ligand docking problem [31,32] (They named their system

with PLANTS (Protein-Ligand ANT System)). A very interesting

thing is that PLANTS also suffers very much from the inaccurate

energy functions [33], where two different energy functions have

been developed and identified for different categories of docking

problems. A recent study of PLANTS is to port the calculation of

energy function to graphics processing units [34]. The literature of

parallelization ACO studies shows that little has been done on

applying ACO to MOP for solving PSP.

It is not difficult to ensure that parallel technologies are good to

solve PSP. A parallel Rosetta based on OpenMP [35] implemen-

tation has been developed by partitioning Rosetta’s prediction

protocol into parallel running procedures, and the parallel

predictions have been evaluated in four protein cases [36]. A

massively parallel strategy has been applied to an old benchmark

task which run half day in a 65536-CPU cluster [37]. All these

studies have featured building a virtual huge CPU from the

parallel CPU cores. The above two studies are trying to solve PSP

problem with SOP model in parallel metaheuristic ways. Besides,

the prediction protocol running in parallel remains unchanged

compared with its sequential version, and therefore the prediction

accuracy has not been improved substantially.

The approach of combining both MOP and parallel metaheur-

istic to PSP was first found in [10]. A loose computing grid was

conducted for a GA-based solver of PSP based on MOP model,

and two testing predictions on that platform demonstrate the

power of the parallel computing [10]. In general, parallel

metaheuristic is an interesting research topic in terms of

application of heuristic algorithms, and the evaluation of parallel

multi-objective evolutionary algorithms is also a very difficult

problem [38].

In this study, a novel parallel approach is proposed to combine

the usefulness and decrease the inaccuracy of different energy

functions. The parallel approach makes ACO searches and Monte

Carlo search run in parallel and exchange their searching

intelligences. Multiple energy functions are employed by the

parallel search threads. Thus, both the searching and energy

knowledge can be hybridized to obtain the predictions. As for the

inaccuracy/usefulness problem, the major difference between the

parallel solution proposed here and other solutions is that the

energies of our method are minimized under nondeterministic

guidance by parallel threads which are constrained by multiple

different energy functions.

Methods

A general parallel metaheuristic framework is first described in

this section, and a parallel scheme of the general framework is then

introduced to solve PSP problem.

General Parallel Metaheuristic Framework for PSP
We propose a general framework for solving PSP problem by

parallel metaheuristics, illustrated in the right part of Figure 1.

For modeling target original problem (OP), the PSP or other

kind of similar OPs can be converted to an optimization problem,

as shown in the modeling layer of Figure 1. Three computational

models which usually rely on metaheuristic technologies are used

to solve such optimization problem.

1. Single objective model. We admit that the best answer to OP

can be judged by an existing objective function E. We denote a

heuristic algorithm for solving SOP by h. So solving OP means

solving h(EDH), where H refers to the control parameters in

terms of heuristic search algorithm and can usually be tuned

empirically before starting the algorithm or adaptively during

the algorithm is running. For example, for a Monte Carlo

search with Metropolis criterion [39], the temperature can be

considered asH. Another more complicated example of H is

the pheromone matrix of ACO algorithm, see details after

describing three parallel schemes later. Different designs and

settings of H will result in different searching trajectories when

sampling the search space of SOP. Hence H can be considered

as the searching intelligence of h in some degree.

2. Single objective with constrains model. Some knowledge in

terms of solving OP is not easy to be represented as a numerical

metric in the forms of energy E. Instead, the knowledge can

guide to restrict the search trajectory in a form of programming

logic. We denote such constrains by C. So with this model,

solving OP means solving h(E,CDH). The reason why we

consider C independent from E is that we do not enforce that

all the solving knowledge of OP must be encoded as an energy

function.

3. Multi-objective model. If different energy functions

E~fE1, . . . ,Ejg and heuristics H~fh1, . . . ,hig have to be

used to solve OP, it is very easy to derive such computational

model: H(E,CDH). This is a typical MOP model with multiple

heuristics involved.

We shall remind that even the simplest model, SOP model

h(EDH), is still a hard problem for computing scientists.

In the algorithm layer of Figure 1, we propose three parallel

schemes to tackle all the above modeled optimization problems.

1. MHSO, Multi-Heuristic-Single-Objective algorithms. This

type of algorithms can be designed to solve both h(EDH) and

h(E,CDH) models. If we assume that E is accurate enough to

identify the best answer to OP, we can then employ different

search heuristics his to run in parallel. During the running, his

exchange their searching experiences by sharing (some of) the

control parameters H. This type of algorithms is denoted by

Phi
(EDH), and focuses on combining different heuristics to

solve an SOP problem as the common H carries intelligences

coming from parallel heuristic algorithms.

2. SHMO, Single-Heuristic-Multi-Objective algorithms. If differ-

ent kind of energy functions Eis must be taken into

consideration while an excellent search heuristic h is preferable,

we design to run several same hs in parallel each of which can

work with different Eis. Again all the parallel hs are partly

When the Lowest Energy Not Induce Native Structure
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controlled by the commonH, which will be simultaneously

updated by h during its running for locating the lowest Ei

value. This type of algorithms is denoted by Ph (Ei DH), and

focuses on combining different objective functions to solve an

MOP problem because different objective functions affect

parallel heuristic search trajectories by dynamically updating

H.

3. MHMO, Multi-Heuristic-Multi-Objective algorithms. It is easy

to understand that this scheme is the combination of the above

two, denoted by Phi
(Ej DH). MHSO focuses on combining

different search intelligences of heuristic algorithms. SHMO

enables different solving knowledge from OP to affect

differently on the same search policy. MHMO is aimed at

hybridizing all the search intelligences and solving knowledge

from target domains.

All the above three types of algorithms have the same property:

the search intelligence H created by the parallel hs is shared and

perturbed among all the running hs. So the key point here is how

to represent H for publishing the search intelligence to parallel

searches. For ACO algorithms, it is straightforward to represent H
with pheromone matrix. The ACO metaheuristic is a framework

generalized by a set of successful ant algorithms [40–42]. The ant

algorithm was inspired by the observation of how ants within a

colony find the shortest path in a cooperative way [43,44].

Basically each ant tries to choose the shortest path based on both

its own senses (heuristics in ACO terminology) and its ancestors’

good experience (pheromone in ACO terminology). While an ant

is finishing its path, it leaves its own pheromone along the

trajectory, and the subsequent ants will sense the pheromone. The

best so far solutions found by ancestor ants can be segmented. The

pheromone matrix describes the goodness of segments accumu-

lated by previously found solutions. Ant algorithms are a simple

and efficient method for demonstrating swarm intelligence for

optimization problems [45]. For our parallel design, it is very

helpful to adopt pheromone matrix as the representation of H.

In the implementation layer of Figure 1, with the help of either

MPI [46] or OpenMP [35] all the three parallel schemes are not

difficult to implement.

Strictly speaking, all the three parallel schemes are not enough

for solving a standard MOP because they do not focus on building

PF. But they target well for solving PSP due to inaccuracy/usefulness

hypothesis. See Discussion section for details.

An MHMO Implementation for PSP
An SHMO algorithm was previously implemented in order to

solve PSP [47]. In that paper, 8 parallel ant colonies, which

followed MMAS [42] algorithmic design and shared one

pheromone matrix, were introduced to tackle CASP8/9 FM

problems [47]. We named that system with pacBackbone. In this

study, we design an MHMO version for solving PSP to show how

to combine search intelligences of different heuristic algorithms.

We add a new heuristic algorithm to the parallel ant colonies with

hybridized searching intelligences between heuristics. In order to

raise the difficulty of optimization problem, we focus on de novo

PSP problems, which means that few experimentally solved

structures could be found for predicting protein as homologs.

Without losing generality of illustrating our method, we only

consider the backbone prediction problem which is a prerequisite

task of PSP. In order to clearly demonstrate the parallel power of

MHMO scheme, we skip those processes too specific for CASP8/9

problems, such as loop rebuilding and weighting scores for

clustering decoys which were essential parts for goals of ref. [47].

We call the system presented in this paper pacBackbone+.

Problem representation. The backbone is represented as a

sequence of torsion tuples (w,y,v), where each tuple represents

spatial information on a residue. All atoms of each side-chain are

simplified as a single pseudo-atom. Two fragment libraries from

the Robetta online server [48], F 3 and F 9, are used for each

target amino-acid string to sample torsion tuples. For each of the

residues within the query target chain, each fragment library

provides 200 3-mer and 9-mer fragments. Each segment is

assigned one of the predicted secondary-structure (ss) labels H, E,

or L.

Because the 3-mer and 9-mer fragments are coarse-grained

fragments which focus mainly on capturing H and E secondary-

structure features, F 3 and F 9 are merged to form F 1, which

contains a 1-mer torsion tuple for each residue. F 1 is used to refine

these non-H/E segments after the backbone has been roughly

constructed. In this way, F 1|F 3|F 9 defines the search space

for predicting the target backbone.

Based on the above descriptions, the problem of de novo

prediction of a protein backbone is to find the structure of protein

backbone with the lowest energies for an amino-acid sequence

within a fragment-based search space after filtering out those

fragments covered by the sequence’s homologies. This problem

can be formulated as follows:

Problem. Given an amino-acid sequence t with length of n
residues, predict its backbone with the lowest free energy.

Search space. Let fragment library be F~fF1, . . . ,Fng for t,
where fragment set Fi~ff1, . . . ,f200g for each residue i in t.

Fragment fj~(Q,w,v,ss,g)3
1 is the 3-mer fragment for a residue,

where g denotes similarity measure between segments. Such

fragments form a 3-mer fragment library F 3. Similarly, fragment

set ffj~(Q,w,v,ss,g)9
1g forms a 9-mer fragment library F 9. F 1 is

the local search space which is constructed by collecting all 1-mer

fragment of F 3 and F 9. So the search space S for target t is F 3

and F 9 for each 3/9-residue segment, and F 1 for each residue.

Energy function. We adopt the same energy functions as

what Rosetta de novo prediction protocol developed [49].

Rosetta3.2 protocol uses 5 energy functions (score0, score1,

score2, score5 and score3) at different stages of the predicting

procedure [50]. Each stage contains a lot of Monte Carlo

movements filtered by Metropolis criterion. At the final stage of

prediction, Rosetta protocol minimizes the energy of the

conformation with score3. In fact, these scores are the combina-

tions of different weights and energy items, such as residue-

environment and residue-residue interaction, secondary structure

packing, chain density and excluded volume [49,51]. Table 1 lists

the detailed weights for combining the different energy items used

by Rosetta.

The design of applying different scores at different prediction

stages in Rosetta inspires us that MHMO might be a valuable way

of solving PSP.

We shall emphasize that we do not care which score function is

more accurate here because all the energy functions share the

inaccuracy/usefulness property in this study. Adopting energy

functions of Rosetta here is just for illustrating an implementation

of our parallel approach, and for comparing the results in Section

Results. Of course another reason for choosing Rosetta as the

control platform for results comparison is that Rosetta has been

successfully validated as a super platform for PSP and the

consequent applications [52,53].

Applying multiple heuristics and energy functions to

PSP. 9 parallel threads are created in our MHMO implemen-

tation. 8 of them are ant colonies and the rest is a modified

Rosetta3.2 de novo predictor [50] which was based on Monte

Carlo search filtered by Metropolis criterion. Figure 2 depicts the

When the Lowest Energy Not Induce Native Structure
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design of pacBackbone+. The inputs of pacBackbone+ are target

amino acid sequence and F 3,F 9 generated based on the target

sequence. The outputs are decoys predicted by ant colonies and

Rosetta predictor, denoted by decoys1 and decoys2 respectively.

Figure 3 illustrates a single ant colony for predicting the

backbone with constraints from a single energy function. We now

explain each component of this figure.

The first important data structure of the AC is the pheromone

matrix T , which accumulates the search experience of all ants in

the colony. The next important input of the AC is the energy

function E. All ants cooperate iteratively to search for the overall

best backbone sgb with the lowest E value.

In component 1 of Figure 3, each ant conducts the conforma-

tion by assembling fragments from F 3 and F 9. First, each ant

chooses F 3 with a preset probability n, and F 9 with 1{n. n is an

algorithm parameter to tune the preference of the choice between

F 3 and F 9. Then the ant picks up a fragment fj from the fragment

set Fi[F for residue i. How to select fragment is determined by the

current heuristic and historical knowledge, described by the

following selection equation:

f �j ~
arg maxfj[Fi

½tij �a½gij �b, if qvj;

randomly pick up a fj from Fi, otherwise,

(
ð1Þ

where tij is defined later in equation (2), which denotes the useful

experience accumulated by previous searches. tij gives a bias clue

for choosing segment fj for residue i. Within the ACO framework,

t denotes a pheromone, and g denotes heuristic information. a
and b are standard ACO parameters which tune the assigned

weights of the heuristic and the pheromone. Similarly to n, j in

equation (1) serves to tune the bias between the two selection

policies. A random probability q will be first uniformly generated

when a fragment is needed. If q§j, then the fragment will be

randomly picked from Fi. Equation (1) is called selection equation

in ACO framework, and has various criteria [40–42]. The current

form of selection Equation (1) is proved to be most successful in the

ACO literature [20]. Once the fragment is picked, f �j is inserted

Table 1. Different scores used as the minimizing objective functions.

energy items score0 score1 score2 score5 score3 memo

env 0.00 1.00 1.00 1.00 1.00 residue environment

pair 0.00 1.00 1.00 1.00 1.00 residue pair

cbeta 0.00 0.00 0.25 0.25 1.00 Cb density

vdw 0.10 1.00 1.00 1.00 1.00 steric repulsion

rg 0.00 0.00 0.00 0.00 3.00 radius of gyration

cenpack 0.00 0.00 0.50 0.50 1.00 residue packing

hs_pair 0.00 1.00 1.00 1.00 1.00 helix-strand packing

ss_pair 0.00 0.30 1.00 1.00 1.00 strand pair

rsigma 0.00 0.00 0.00 0.00 1.00 second-structure interaction

sheet 0.00 1.00 1.00 1.00 1.00 strand arrangement

ss_lowstrand 0 1 1 1 0 not effective

ss_cutoff 0 11 6 11 6 not effective

doi:10.1371/journal.pone.0044967.t001

Figure 2. pacBackbone+ schematic flowchart. Two different heuristics are introduced, 8 ant colonies and 1 Rosetta predictor are running in
parallel threads. The colonies share one pheromone matrix T , and Rosetta predictor sends accepted fragments to AC colonies for updating T . Also
AC colonies send the iteration best solutions to Rosetta to perturb the conformation at every beginning of the prediction stage. The information
exchanged between AC colonies and Rosetta predictor is colored by red feedback lines, and the information exchanged among AC colonies is
colored by the blue line.
doi:10.1371/journal.pone.0044967.g002
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into the peptide from the position of residue i. The conformation is

then constructed by the approach called fragment assembly. Each

ant conducts the conformation by repeating such fragment picking

and assembling for l times.

In component 2 of Figure 3, the iteration best conformation sib

is fed to a local search algorithm which tries to improve sib with

some local movements. The paper uses a one-flip strategy [54]

combined with Metropolis criterion to implement the local search.

The approach is to replace one fragment with one randomly

selected from F 1 to obtain better quality in terms of the whole

conformation. Such replacement is accepted by the Metropolis

criterion [39].

Another important component of AC, shown in component 3 of

Figure 3, is to update the pheromone matrix T after all ants have

finished their assembly work in an iteration. The pheromone

matrix stores the search knowledge collected from the ants of

previous iterations. Let the pheromone matrix be: T n|DF c D~½tij �,
where tij is the pheromone value accumulated by residue i picking

up fragment fj . For each residue i in sib,

tij~(1{r)tijzrDtij , ð2Þ

where r[½0,1) is the evaporation factor of the pheromone. Let

Dtij~Q(E(s)), where Q(:) is the quality function which converts

the energy value to a certain amount of pheromone. In this paper,

the function used is Q(:)~ arctan (:), so that the pheromone value

is scaled to ½0,1�. Different update schedule derives different ACO

algorithm. Here we use MMAS [42], one of the best ACO

algorithms, as the pheromone update mechanism.

pacBackbone+ introduces another source to update T , shown in

component 4 of Figure 3. A modified Rosetta predictor is running

in parallel with the colonies, and produces a sequence of accepted

fragments by its own criterion. This sequence is kept by

pacBackbone+, and used by the T update procedure. After

updating T with sib, pacBackbone+ uses the new produced

sequence of fragments to update T . pacBackbone+ considers these

fragments coming from the choice of the Rosetta ‘‘best-so-far-ant’’.

The iteration of construction and updating activities terminates

when certain criteria are met, shown in component 0 of Figure 3.

Following the advice summarized in [55], each colony AC

terminates when one of the following criteria is met:

1. Soft time criterion: the colony runs for a specified number of

iterations.

2. Hard time criterion: the colony runs with a specified maximum

CPU running time.

3. Convergence criterion: successive iterations indicate a conver-

gent state, such as no energy improvement during the last ten

iterations.

4. Search space criterion: the search space has been covered to a

certain extent, such as more than 50%.

In this paper, we choose the first criterion as the termination

criterion, which is to set a maximum iteration number to run the

colony.

After describing AC parts of Figure 2, we now introduce

Rosetta predictor thread in Figure 2. Rosetta3.2 de novo protocol

for predicting protein backbone sequentially uses five energy

functions at different predicting stages, score0 at stage1, score1 at

stage 2, score2/score5 at stage 3, and score3 at stage 4 and 5 [50].

At all the earlier four stages, Rosetta assemblies fragments based

on F 3 and F 9, and at the final stage makes independent random

perturbations of torsion angles of residue. In pacBackbone+, we

modified the original Rosetta3.2 predictor to make it to

communicate with AC colonies. The iteration best solutions of

AC5{8 (PerturbationSet) are stored for perturbing Rosetta

predictor at the beginning of every stage, (see also component 6

of Figure 3). The average value ~mmi of the torsion angles for each

residue i of the PerturbationSet is calculated. For the current

working conformation of Rosetta, we modify the torsion angles ~WW
of each residue with the average value of the PerturbationSet like

this:

~WWi~(1{c)~WWizc~mmi, ð3Þ

where c[(0,1� is a parameter for adjusting the perturbation degree

from AC colonies. So we enforce Rosetta predictor to be affected

by the results from AC searches. Vice versa, the accepted

fragments by Rosetta predictor are sent to AC colonies for

updating T .

The implementation of our MHMO scheme is simple with the

help of OpenMP [35]. The pheromone matrix is extracted from

the AC, and multiple colonies are run as parallel threads with

private data in each colony except for the pheromone matrix T .

Results

The experimental results here serve a proof-of-concept valida-

tion of a parallel design, MHMO scheme. We performed all the

tests on a computer cluster containing 20 nodes with 16-core

1.9 GHz AMD Opteron CPU per node under Linux 2.6.9 and

GCC 4.3.3. pacBackbone+ and pacBackbone were all imple-

mented upon Rosetta3.2 platforms [50].

Figure 3. Single ant colony AC searches the lowest E with
shared T . A standard MMAS algorithm with perturbation from and to
Rosetta predictor each other. The blue parts depict the original MMAS
components (0, 1, 2, 3, and 5), and the pink parts depict the interaction
between AC and Rosetta predictor (component 4 and 6).
doi:10.1371/journal.pone.0044967.g003
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Experimental Setting
We ran the original sequential Rosetta3.2 de novo predictor to

produce 800 predictions for each test instance as the control

experiment. Rosetta’s predictor is based on a sequential Monte

Carlo search with 5 energy functions involved in different

predicting stages. We named the results of the sequential Rosetta

predictor with decoys0. We ran pacBackbone+, which had 8 ant

colonies and 1 modified Rosetta predictor running in parallel, on

the same test instances. Because we assigned 8 CPU cores to AC

colonies and 1 CPU core to the modified Rosetta predictor and all

these 9 threads were synchronized to work out 9 predictions

respectively, 800 predictions for each test instance (named

decoys1) were generated by AC colonies and 100 predictions

(named decoys2) by the parallel Rosetta predictor. The final results

of pacBackbone+ was named decoys12, which had 800 predictions

with lower score3 values of the union of decoys1 and decoys2 (see

Figure 2). In order to identify whether hybridizing two different

heuristics helps improve the accuracy of the prediction, we also

ran pacBackbone [47], which had only 8 parallel AC colonies

without interaction with Rosetta predictor, on the same test

instances, and named the results with decoys3. In a word, all the

decoy sets have 800 predictions for each test instance except

decoys2 having 100 predictions. decoys0 is the results of sequential

running, and others are those of parallel running. In this study, we

evaluated the quality of the decoys based on statistical analysis of

both the decoys population and the representative prediction,

since how to select most near native structure from the decoys is

not a concern of this paper.

The benchmark instances were directly from [7], which

contained 16 small protein targets with length of 49–88 amino

acid residues. The performance evaluation between two prediction

methods appears to be another difficult problem. Several factors

would affect the performance of prediction algorithm, such as

computational representation of protein, dihedral angle space,

energy function, folding strategy and test sets [56]. We carefully

constructed the comparative experiment to demonstrate how

pacBackbone+ was working well on this classical benchmark. The

settings of the control factors for compared systems were

configured equivalently, including the search space, the multiple

energy functions, the running time and the comparable algorithm

parameters settings.

The fair evaluation of different heuristics is always a difficult

task. When the calculation of energy function is a time-consumed

job, the number of calling energy functions can be usually used to

compare the efficiency of the search trajectories. However, in this

paper such approach is not suitable for our case due to different

strategies which the compared heuristics adopt. AC colony adopts

population-based evolvement strategy, which carefully constructs a

whole conformation by each ant of the colony and then evaluates

the conformation. Meanwhile, Rosetta’s predictor uses individual-

based evolvement strategy, which makes local change to the

current individual conformation and evaluates the conformation

right once. This means that Rosetta’s predictor usually makes

quick decision to evolve the only one conformation and hence

frequently calls energy functions, while AC colonies spend much

efforts to build multiple conformations within colony before they

call energy functions. Therefore, we adopted another reasonable

strategy to set the base line in terms of running time for our

performance evaluation.

Now we explain how to fairly assign CPU cost to each of the

decoy sets, which turns out bias towards the control experiment.

The sequential Rosetta3.2 predictor, compiled as an executable

file named minirosetta.gcclinuxrelease, was run with the same

input options for each problem instance:

– in:file:native/path/to/native pdb file

– in:file:fasta/path/to/target fasta file

– in:file:frag3/path/to/3-mer fragment library

– in:file:frag9/path/to/9-mer fragment library

– out:pdb true -abinitio::increase_cycles 4 -out::nstruct 800

– run:protocol abrelax

– mute all

– database/path/to/rosetta32-database

As this was the setting for the control set decoys0, all other

settings for compared systems were referred to this base line. First,

for decoys3, we adjusted the algorithm parameters to make each

prediction spend strictly less CPU time than that of decoys0. Then

for decoys1 we used the same settings as decoys3. In this way, we

enforced two different heuristics (AC and Rosetta) to spend almost

same CPU time for doing a prediction. Due to the synchronization

restriction between AC colonies and modified Rosetta predictor,

even same settings for decoys1 and decoys3 resulted in different

CPU time. Decoys1 spent a little bit more time than decoys3

because of the extra synchronization cost with decoys2. Finally,

the almost same CPU time of decoys1 was assigned to decoys2.

This was done by tuning increase_cycles a little bit bigger than the

setting for decoys0. Decoys12 almost spent nothing additionally as

it was just a simple combination of decoys1 and decoys2. So

in terms of CPU time, decoys12 = max (decoys2,decoys1)&
decoys3vdecoys0.

Next we describe how to set AC-specific parameters for

generating decoys3 and 1. As for the AC colonies, given that n
is the residue number, the algorithm parameters were set

empirically: probability m~0:6 for selecting F 3, j~0:8 and

a~b~1:0 in equation (1), r~0:01 in equation (2), c~0:5 in

equation (3), the termination criterion in Figure 3 was set to 4n
iterations, and the tries number l~4n for each ant of assembling

fragments. Finally the ant number of a single colony was set to 4n.

Running Time Comparison
We list all the exact running time in Table 2. The average

running time of decoys0 is expressed in seconds for obtaining one

prediction of the decoys. The time of decoys1, 2 and 3 is expressed

as a ratio number, which is the running time of the corresponding

decoys to that of decoys0. The time of decoys12 is the maximum

of decoys1 and decoys2. From Table 2 we can see, we assigned

strictly less CPU time to decoys3 than to the sequential version (see

also the previous section). This means that the parallel AC colonies

(pacBackbone) did not get more CPU time than the sequential

Rosetta’s predictor. Since decoys3 and decoys1 shared the same

algorithm parameters, theoretically they should spend the same

CPU time. But in fact, decoys1 had to spend additional time to

accept the perturbation from Rosetta’s predictor (updating

pheromone matric based on the fragments picked by Rosetta’s

predictor). As a consequence, such synchronization time of parallel

running made decoys1 spend more 24% time than decoys3. Even

with such non-algorithmic cost, decoys1 and 3 spent almost less

time than decoys0. It is interesting to notice that decoys2 spent less

time than decoys0 although decoys2 took bigger increase_cycles

setting. Because the increase_cycles controls the number of Monte

Carlo trials of Rosetta’s predictor, bigger increase_cycles usually

spends larger CPU time. Analyzing the log message from decoys2

revealed that it was the AC colonies’ perturbation who shortened

the stage 3 of the Rosetta’s prediction procedure. The stage 3 was

converged shortly after it had received best predictions from AC

colonies. That was why decoys2 took less CPU time than decoys0

although the former took more Monte Carlo trials.
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As we focused on the performance improvement of AC

colonies, the running time of decoys1 and 3 was basically fair to

that of sequential running, given that decoys3 spent strictly less

time than decoys0 while decoys1 shared exactly same algorithmic

parameters with decoys3.

Prediction Accuracy Comparison
For each decoy set, we eliminated half predictions with higher

score3 values, which results in 400 predictions remained in

decoys0, 1, 12, and 3, and 50 in decoys2. In this way, we simplified

the task of selecting most near native prediction from decoys.

We first compared the prediction accuracy in terms of decoy

population. We depicted the comparison of decoys with box-and-

whisker plot in Figure 4. The prediction accuracy is expressed as

the Ca root-mean square deviation (Ca_rmsd) in 0.1 nm (Å),

which is calculated after superimposing the corresponding alpha-

Carbon coordinates of the prediction and the native structure.

From Figure 4, it is easy to draw a rough conclusion that the

decoys1 had better performance than any other competitors. The

only exceptions was for 1dcjA in decoys1. It might be caused by

the special property that the case was with several beta strands

connected by loops, and the search trajectory of AC was less

suitable for sampling beta strands than Rosetta. However, for this

only exceptional case, decoys2 showed more robust results than

decoys0. Hence, it seems safe to conclude that for each test

instance, there existed at least one result of parallel execution

better than that of the sequential running. For the cases such as

1af7_, 1di2A, 1dtjA, 1mkyA3, 1mla2, 1nouA4, 1r69, 1tig and

2reb2, decoys1 had dominant advantage over decoys0.

We also performed the significance test on every pair of decoys,

and results are shown in Figure 5. From Figure 5 (c) we know, that

most cases of decoys2 (9 of 16) had no significant differences with

decoys0, which means that the parallel Rosetta predictor had not

much positive gains from AC colonies. Only 2 exceptional cases

from decoys1 had no significant difference with decoys0, see

Figure 5 (a). Combined with the following analysis of the

comparison, it is consistent to say that parallel implementations,

especially for decoys1, had better performance than the sequential

one.

Next we investigated the statistical property of the representa-

tive solution of each decoy set. For each pair of decoys, we show

the 10-percentiles average and standard deviation for every test

instance in Figure 5, calculated by 50-fold bootstrap estimation

with bioshell package [57]. The reason we choose 10-percentile as

the representative is that only part of the decoys will be usually

sent to further processing. The current decoy set contains

backbones of protein, each of which is a low resolution structure.

For a complete PSP protocol, the low resolution structure will be

further refined with the high resolution (restoring all atoms of each

centroid) which might cause backbone adjustment. Usually several

hundreds low resolution predictions will be selected to the further

processing. In our case, the 10-percentile means the 40th best

prediction. So it is reasonable to evaluate the property of 10-

percentiles of decoys as the indicator performance of the decoys.

From Figure 5 (a)(b) we can see, the parallel results of AC

colonies (decoys1,3) were overall better than the sequential results

(decoys0). For the two variants of AC parallel versions, decoys1

behaved a little bit better than decoys3 although for much of the

test instances no significant difference had been observed (Figure 5

(h)). But the parallel Rosetta predictor did not show too much

advantage over its sequential version (Figure 5 (c)), which implies

that the parallel Rosetta predictor did not gain much positive

information from AC colonies. For the comparison between the

two PSP solvers, pacBackbone and Rosetta predictor, parallel AC

colonies performed better than Monte Carlo method (Figure 5

(a)(b)(e)(f)). As the simple union of decoys1 and 2, decoys12 showed

the average performance of two different PSP solvers (Figure 5

(d)(g)(i)). It is not surprising that decoys12 and 1 showed almost

Table 2. The comparison of average running time for obtaining each prediction.

PDB ID Residue1 decoys0(s){ decoys1{ decoys2{ decoys3{ decoys12{

1af7_ 72 158.52 1.25 0.98 0.98 1.25

1b72A 49 101.04 0.51 0.48 0.44 0.51

1csp_ 67 227.31 1.28 1.17 0.93 1.28

1dcjA_ 73 274.59 1.22 1.17 0.87 1.22

1di2A_ 69 135.95 0.98 0.77 0.97 0.98

1dtjA_ 74 171.41 1.03 0.75 0.96 1.03

1mkyA3 81 213.53 1.16 0.84 0.75 1.16

1mla_2 70 192.77 0.82 0.64 0.71 0.82

1nouA4 69 162.77 0.96 0.79 0.83 0.96

1o2fB 77 181.44 1.10 0.87 0.80 1.10

1ogwA_ 72 185.07 0.84 0.66 0.63 0.84

1r69_ 61 101.82 1.06 0.85 0.68 1.06

1shfA 59 156.39 0.56 0.48 0.42 0.56

1tif_ 59 151.90 0.61 0.57 0.48 0.61

1tig_ 88 226.70 1.55 1.01 0.94 1.55

2reb_2 60 102.32 0.95 0.79 0.61 0.95

1Residue number of each test instance.
{The average running time of decoys0 is expressed in seconds for obtaining one prediction of the decoys.
{The time of decoys1, 2 and 3 is expressed as a ratio number, which is the running time of the corresponding decoys to that of decoys0. The time of decoys12 is the
maximum of decoys1 and decoys2.
doi:10.1371/journal.pone.0044967.t002
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same performance because decoys2 did not contribute too much

to decoys12. It seems that more complicated combination of

decoys1 and 2 is needed. For example, structural diversity might

be introduced instead of just using lower score3 values of the union

of decoys1 and 2.

In summary, with almost fair computing time the parallel AC

colonies obtained better performance than Rosetta de novo

predictor, one of the stat-of-art PSP solvers, in prediction

accuracy.

Discussion

The SHOP (SHaring One Pheromone matrix) strategy was

proposed as a useful parallel ACO method [58], in which multiple

ant colonies execute in parallel with a single shared pheromone

matrix. These multiple colonies can exchange their search

experiences asynchronously and co-evolve towards better solutions

while each colony is guided by its own objective function and

algorithm parameters. Using ACO as the heuristic algorithms,

SHOP has been easily applied to all three parallel schemes in

Figure 1. For TSP, two ACO algorithms, MMAS and ACS [59],

were applied to work together on the same objective function [58].

This is an MHSO implementation. Some SHMO implementa-

tions were proposed for learning Bayesian networks [60], for

folding 2D proteins based on an HP model [61], and for predicting

protein backbone [47]. These SHMO solutions adopted MMAS

and multiple objective functions for solving different OPs. All these

studies employed the same type of heuristic algorithm, ACO.

In this paper, we include another type of heuristic algorithm

based on the SHOP method. An MHMO scheme of our parallel

metaheuristic framework for PSP is implemented in this study,

which makes parallel ant colonies and Rosetta de novo predictor

coordinate with each other. These ant colonies simultaneously

minimize different energy functions respectively while Rosetta

predictor sequentially minimizes the same energy functions by

Monte Carlo search with Metropolis criterion. This research has

shown that intentional design and implementation of a parallel

computing system for PSP can greatly address the problem of how

to integrate the domain knowledge for solving PSP problem, and

the problem of how to combine the searching intelligences for

solving an optimization problem. Different knowledge for solving

PSP is encoded as different energy functions, and different

searching intelligences are expressed as different heuristic

algorithms.

In terms of solving MOP, pacBackbone+ follows the same idea

of AMALGAM [62] in putting two components into effect:

simultaneous multi-method search and self-adaptive offspring

creation. AMALGAM manages several GA-based algorithms to

merge the strengths of parallel search algorithms by hybridizing

the population generated by different searches. pacBackbone+ also

makes 8 ACO-based searches and 1 Monte Carlo search run in

parallel. The parallel colonies adjust the behavior of constructing

backbone through the shared pheromone matrix which is

perturbed by the colonies and as well as by the external Monte

Carlo search. The Monte Carlo search also accepts the influences

coming from the temporally best solutions of ant colonies. In terms

of applying multiple heuristics to solving PSP problem, pacBack-

bone+ implements the similar idea of ensemble learning [63], in

which replica found by different sample strategies is exchanged in

a fixed schedule. Despite cooperating with an additional heuristic

algorithm, pacBackbone+ is similar with multi colony ant

algorithm, such as [27]. However, pacBackbone+ is critically

Figure 4. Box-and-whisker plot of all the decoys. The maximum, the minimum, the 1st quartile, the 3rd quartile, the mean (in symbol +), and
the average (in symbol 6) of Ca_rmsd (Y axis in Å) of each decoy set are rendered as box-and-whisker plot for each test instance (X axis).
doi:10.1371/journal.pone.0044967.g004
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different from the literature studies in information exchange

between parallel searches. Usually the information exchanged

between parallel searches is the solution or replica itself, while

pacBackbone+ sends solutions from colonies to Rosetta predictor,

and receives fragments (components of the solution) from Rosetta

predictor. Moreover, between colonies, pacBackbone+ does not

exchange solutions directly, but does exchange search intelligences

encoded in T . This feature differentiates pacBackbone+ from the

existing parallel ACO implementations [23,24,26].

Under the hypothesis of inaccuracy/usefulness property, neither

SOP nor MOP is an ideal computational model for PSP. This

means even if you solve the modeled SOP or MOP completely, the

final answer to the SOP or MOP might not be the right answer to

PSP, not to mention that the final answer itself will not likely be

the best answer to the SOP or MOP in most cases. pacBackbone+
proposes a novel hybrid parallel approach to PSP.

From perspective of solving PSP problem based on MOP,

pacBackbone+ differs in not constructing PF based on multiple

energy values. Pareto-based approach to MOP focuses on the

dominance analysis of the solutions found by individual search or

parallel searches in order to construct PF. However, this is not

right in the case of solving PSP problem because PF is not the right

answer to PSP. pacBackbone+ gives up constructing PF because

we think that the MOP is just an approximate computational

model for solving PSP problem. Instead, pacBackbone+ collects all

the ¡ubest¡6 solutions found by different parallel searches guided

by different energy functions. The key point here is that the best

solution predicted by each colony in fact has been influenced by

not only its own energy function but also energy functions of other

colonies in a qualitative way through adjusting the shared

pheromone matrix. Those best solutions are not discriminative

for selecting most near native conformation by one specific energy

function. The decoys will then be clustered by structural similarity

so that the final predicted structure is determined by the

representativeness in the decoys in terms of structural criterion.

This process is implicitly consistent with the fact that the

evaluation of free energy must count in entropy of conformations.

How to select most near native structure from decoys is another

difficult problem, which is not discussed in the paper because it is

not a job for the optimization. However, improving the quality of

decoys as a whole of course will be very helpful for solving the

selection problem.

Now let us explain why the pacBackbone+ approach is a totally

different way of combining energy functions from those sequen-

tially hybridization approaches. From the view of an individual

colony hi, the pheromone matrix accumulates the search

experience of ants. The pheromone matrix describes which

fragment should be preferably considered as the choice for each

residue on behalf of hi. Such an empirical bias is gradually

established by evaluating the conformations found by the previous

generation of ants using the corresponding energy function Ei. By

sharing T among all the colonies, especially considering that each

hj releases its pheromone trained by its own energy function Ej ,

now T accumulates the search experience of all parallel ant

colonies and propagates the bias among them. Recalling how hi

makes decisions on which fragments should be chosen based on tij

in Equation (1), the pheromone tij is now jointly accumulated by

all the other hjs running in parallel, not only by hi alone. Another

source affecting T is coming from Rosetta predictor. Rosetta

predictor picks fragments by the Monte Carlo search with

Metropolis criterion. When the colony updates T , the picked

fragments from Monte Carlo search are also sent to generate

pheromone just as those coming from the best solution constructed

by a virtual ant. Because the pheromone release procedure is not

synchronized for all the parallel colonies, it is not possible to

determine when to update the global tij according to Equation (2).

Such an indeterminacy (only in terms of a specific colony hi) in the

pheromone updating procedures is allowable or even desirable

because it provides another source of randomness. Therefore, the

pheromone matrix T provides a nondeterministic bias for all the

running colonies because of the unpredictable nature of their

parallel running trajectories. We claim that pacBackbone+ is so-

called a non-deterministic approach to dealing with SOP or MOP,

because even given the same random seed as the randomness

source, rerunning pacBackbone+ will possibly result in a different

output. However, the analytical description of how the different

Eis jointly determine the ants’ performance within each colony has

not been achieved yet. The most difficult issue is how to analyze

the randomness introduced by the parallelization. This is also a

feature which pacBackbone+ differs from the existing parallel

ACO implementations. Thus the schedule of the exchange

information is non-deterministic.

Conclusions
In summary, the design of parallel metaheuristic, like pacBack-

bone+, not only speeds up the computation due to more CPUs

being employed, but also makes each heuristic search work with its

own energy function and complement each other in qualitative

way. Such co-evolvement with guide of multiple objective

functions mimics simultaneous impacts of the nature folding

procedure of native proteins. Different energy functions train

search trajectory to obtain different search intelligences, embedded

in H. Our parallel strategy publishes the intelligence to all the

parallel searches. Therefore, all searches can share the hybridized

intelligence accumulated by them. Unfortunately, the quantitative

analysis of such fusion cannot be reached because of the nature

that the parallel threads run in unpredicted trajectories. Therefore

the update of H is non-deterministic. Such non-deterministic

evolvement provides a novel solution to the one of the biggest

obstacles of solving PSP, which is all the energy functions are not

accurate but useful. Compared with the traditional experimental

way to solve protein structure and the sequential or SOP way to

predict the structure, the parallel approach proposed in this paper

presents an interesting ‘‘in silico experiment’’ approach.
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13. Fernández Slezak D, Suárez C, Cecchi GA, Marshall G, Stolovitzky G (2010)
When the optimal is not the best: Parameter estimation in complex biological

models. PLoS ONE 5: e13283.

14. Coello CC (2000) An updated survey of GA-based multiobjective optimization
techniques. ACM Computer Survey 32: 109–143.

15. Deb K (2001) Multi-objective optimization using evolutionary algorithms. John
Wiley and Sons.

16. Calvo J, Ortega J, Anguita M (2009) Comparison of parallel multi-objective

approaches to protein structure prediction. Journal of Supercomputing : 1–8.

17. Calvo J, Ortega J, Anguita M (2010) A Hybrid Scheme to Solve the Protein

Structure Prediction Problem, Springer Berlin/Heidelberg, volume 74 of
Advances in Soft Computing. 233–240.

18. Crainic TG, Toulouse M (2010) Parallel meta-heuristics. In: Gendreau M,
Potvin JY, editors, Handbook of Metaheuristics, Springer US, volume 146 of

International Series in Operations Research & Management Science. 497–541.

19. Earl DJ, Deem MW (2005) Parallel tempering: Theory, applications, and new

perspectives. Phys Chem Chem Phys 7: 3910–3916.
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