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Peripheral nerve injuries caused by trauma are associated with increased sensory neuron excitability and debil-
itating chronic pain symptoms. Axotomy-induced alterations in the function of ion channels are thought to large-
ly underlie the pathophysiology of these phenotypes. Here, we characterise themRNA distribution of Kv2 family
members in rat dorsal root ganglia (DRG) and describe a link between Kv2 function and modulation of sensory
neuron excitability. Kv2.1 and Kv2.2 were amply expressed in cells of all sizes, being particularly abundant in
medium-large neurons also immunoreactive for neurofilament-200. Peripheral axotomy led to a rapid, robust
and long-lasting transcriptional Kv2 downregulation in the DRG, correlated with the onset of mechanical and
thermal hypersensitivity. The consequences of Kv2 loss-of-function were subsequently investigated in
myelinated neurons using intracellular recordings on ex vivo DRG preparations. In naïve neurons, pharmacolog-
ical Kv2.1/Kv2.2 inhibition by stromatoxin-1 (ScTx) resulted in shortening of action potential (AP) after-
hyperpolarization (AHP). In contrast, ScTx application on axotomized neurons did not alter AHP duration,
consistent with the injury-induced Kv2 downregulation. In accordance with a shortened AHP, ScTx treatment
also reduced the refractory period and improved AP conduction to the cell soma during high frequency stimula-
tion. These results suggest that Kv2 downregulation following traumatic nerve lesion facilitates greaterfidelity of
repetitivefiring during prolonged input and thus normal Kv2 function is postulated to limit neuronal excitability.
In summary, we have profiled Kv2 expression in sensory neurons and provide evidence for the contribution of
Kv2 dysfunction in the generation of hyperexcitable phenotypes encountered in chronic pain states.

© 2013 The Authors. Published by Elsevier Inc. Open access under CC BY license.
Introduction

Chronic neuropathic pain is associatedwith profound changes in the
anatomy and function of sensory neurons. One of the most extensively
documented, but not well understood, consequences of direct nerve
injury in animal models and human subjects is the subsequent increase
of sensory neuron excitability, primarily manifested as spontaneous
discharge and increased responsiveness to stimulation (Kajander and
half width; AHPD50, after-
tion factor 3; CGRP, calcitonin
, dorsal root ganglion; GAPDH,
B4; IHC, immunohistochemis-

annel, voltage-gated potassium
od; ScTx, stromatoxin-1; SNT,

Pharmacology, University of

las), lan.zhu@kcl.ac.uk (L. Zhu).

. Open access under CC BY license.
Bennett, 1992; Liu et al., 1999; Study and Kral, 1996; Zhang et al.,
1997). This injury-mediated hyperexcitability is thought to underlie
poorly managed chronic symptoms in patients, such as spontaneous
pain and hypersensitivity to stimulation.

Voltage-gated potassium (Kv) channels play a vital role in neuronal
function by regulating resting membrane potential and controlling the
waveform and frequency of APs (Hille et al., 1999). Indeed, injury-
induced Kv dysfunction is linked to reduction of associated currents,
augmented sensory neuron excitability and pain phenotypes (Chien
et al., 2007; Everill and Kocsis, 1999; Tan et al., 2006; Tsantoulas et al.,
2012). Accordingly, Kv blocker application to the DRG induces neuronal
firing (Kajander et al., 1992), while Kv openers restrict neuronal excitabil-
ity and relieve pain symptoms (Blackburn-Munro and Jensen, 2003; Dost
et al., 2004; Mishra et al., 2012; Roza and Lopez-Garcia, 2008).

In many neurons, delayed rectifying currents due to Kv2 conductance
(Guan et al., 2007; Malin and Nerbonne, 2002; Murakoshi and Trimmer,
1999) are a key modulator of excitability by facilitating AP repolarisation
and inter-spike hyperpolarisation during repetitive firing (Blaine and
Ribera, 2001; Johnston et al., 2010; Malin and Nerbonne, 2002). The Kv2
family consists of the Kv2.1 and Kv2.2 subunits (Frech et al., 1989;
Hwang et al., 1992; Swanson et al., 1990). In the central nervous system
(CNS) Kv2.1 features activity-dependent localisation and function
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(Misonou et al., 2004; O'Connell et al., 2010) and has a paramount role in
regulating somatodendritic excitability, especially during high frequency
input (Du et al., 2000; Misonou et al., 2005). Additional Kv2.1 functional
diversity is achieved through interaction with modulatory Kv subunits
(Bocksteins et al., 2012; Hugnot et al., 1996; Kerschensteiner and
Stocker, 1999; Kramer et al., 1998; Sano et al., 2002; Stocker et al., 1999;
Vega-Saenz de Miera, 2004) and auxiliary proteins (Leung et al., 2003;
Peltola et al., 2011), while some studies have also proposed non-
conducting roles (Deutsch et al., 2012; Feinshreiber et al., 2010;
O'Connell et al., 2010; Pal et al., 2003; Redman et al., 2007). Although
there is substantially less knowledge on Kv2.2, the high degree of con-
servation between the two subunits suggests common characteristics.
Indeed, Kv2.2 mediates membrane hyperpolarization during trains of
APs (Johnston et al., 2008;Malin andNerbonne, 2002) and can associate
in vitrowith modulatory Kv subunits in a similar fashion to Kv2.1 (Fink
et al., 1996; Hugnot et al., 1996; Salinas et al., 1997a, 1997b).

Despite the recognised prominent role of Kv2 channels in shaping
CNS excitability, no expressional or functional profiling in the periphery
has been performed yet. As a result, the Kv2 involvement in sensory
neuron excitability and in pain processing in particular remains
unknown. Here, we characterized the Kv2 distribution in the DRG and
examined the effect of nerve injury on Kv2 expression and function. In
addition, we investigated whether pharmacological Kv2 modulation
can recapitulate excitability changes linked to chronic pain states.

Methods

Animals and surgery

Adult male Wistar rats (200–250 g, Harlan Labs) were used in all
experiments. All animal procedures conformed to institutional guide-
lines and the United Kingdom Home Office Animals (Scientific Proce-
dures) Act 1986. Experimental neuropathy was induced by L5 spinal
nerve transection (SNT, n = 8), using the method previously described
(Kim and Chung, 1992). Briefly, a small incision on the skin overlaying
left side L5–S1 was made and the vertebral transverse processes were
exposed after retraction of the paravertebralmusculature. The L6 trans-
verse process was partially removed using bone rongeurs and the L5
spinal nerve was identified, tightly ligated and sectioned 1–2 mmdistal
to the ligature. The wound was cleaned with saline and the overlying
muscles and skin were sutured. For dorsal rhizotomy (n = 3), a hemi-
laminectomy was performed at the cervical level and the central
processes of three consecutive DRGs (C5–C7) were identified and cut
with fine iridectomy scissors. The wound was cleaned with saline and
sutured at bothmuscle and skin levels. Animalswere allowed to recover
in a temperature-regulated chamber before returned to the home cage.

Behavioural studies

Behavioural experiments were performed by a single experimenter,
blinded to the identity of surgery the animals received. All tests were
conducted in a quiet, temperature controlled room (22 °C). Animals
were allowed to acclimatize for 15 min or until exploratory behav-
iour ceased before testing commenced. Mechanical allodynia was
assessed using a von-Frey filament connected to a Dynamic Plantar
Aesthesiometer (Ugo Basile). Each rat was placed in a ventilated
plexiglass cage (22 × 16.5 × 14 cm) upon an elevated aluminium
screen surface with 1 cm mesh openings. An actuator filament
(0.5 mm diameter) under computer control delivered a linear stim-
ulation ramp of 2.5 g/s to the plantar surface of the hind paw. With-
drawal thresholds were averaged over three consecutive tests with
at least 5 min intervals in between measurements. A cut-off of 50 g
was imposed to avoid the risk of tissue damage. Thermal response
latencies were determined using the method previously described
(Hargreaves et al., 1988). Briefly, each animal was placed into a clear
ventilated plexiglass cage (22 × 16.5 × 14 cm) with a glass floor. A
thermal challenge from a calibrated (190 mW/cm2) radiant light source
was applied to the hindpaw until a withdrawal reflex was recorded.
Withdrawal latencies were averaged over three consecutive tests, at
least 5 min apart from each other. A cut-off of 20 s was imposed to
prevent the possibility for tissue damage.

Tissue preparation for histology

When tissuewas destined for in situ hybridization (ISH), all prepara-
tion steps were carried out using ribonuclease (RNAse)-free or
diethylpyrocarbonate (DEPC, Sigma)-treated reagents and equipment
to minimize mRNA degradation. Rats were transcardially perfused
under pentobarbitone anaesthesia with heparinized saline followed by
fixation with freshly made 4% paraformaldehyde in 0.1 M phosphate
buffer, pH 7.4. DRGs were removed and post-fixed in the perfusion
fixative for 2 h. Tissue was then equilibrated in 20% sucrose in 0.1 M
phosphate buffer (pH 7.4) at 4 °C overnight, embedded in O.C.T. com-
pound. Tissue was cut at 8 μm thickness on a cryostat, and sections
were thaw-mounted onto Superfrost Plus glass slides (VWR).

Immunohistochemistry

When combined with in situ hybridization, immunohistochemistry
(IHC) was performed first using RNAse-free or DEPC-treated materials
and antibody solutions were supplemented with 100 U/ml RNasin
Plus ribonuclease inhibitor (Promega). For IHC, sections were incubated
overnight at RT with the appropriate primary antibody solution in PBS
supplemented with 0.2% Triton X-100 and 0.1% NaN3 (PBS-Tx-Az).
Primary antibodies used in this study were mouse anti-β3tubulin
(1:2000, Promega), rabbit anti-ATF3 (1:200, Santa Cruz Biotechnol-
ogies), rabbit anti-CGRP (1:2000, Sigma), mouse anti-NF200 (1:500,
Sigma) and rabbit anti-glial fibrillary acidic protein (rabbit anti-GFAP,
1:1000, DakoCytomation). Secondary antibodies were added for 4 h
and were donkey anti-mouse AlexaFluor 488 and donkey anti-rabbit
AlexaFluor 546 (1:1000, Invitrogen). IB4 detection was performed by
using biotin-conjugated IB4 (1:200, Sigma) and AMCA Avidin D
(1:400, Vector Labs).

In situ hybridization

ISH was performed using 34-nucleotide long probes, as previously
described in detail (Michael et al., 1997). Probe sequences were Kv2.1:
tctggtttcttcgtggagagtcccaggagttcca, and Kv2.2: catccaaaggtctatccccac
gagttcccaagca, complementary to bases 1954–1987 and 2650–2683 of
kcnb1 (NM_013186.1) and kcnb2 (NM_054000.2)mRNAs, respectively.
Probes were radioactively end-labelled with 35S-dATP (Perkin-Elmer)
and unincorporated nucleotides were removed with a Sephadex
G50 DNA chromatography column (GE Healthcare). Following pre-
hybridization treatments (acetylation in 0.1 M triethanolamine/
0.025 M acetic anhydride, dehydration in graded alcohols, chloroform
dilipidation, ethanol rehydration), probe was added on sections over-
night at 37 °C. The hybridization buffer compositionwas 2× Denhardt's
solution (Sigma), 20× standard saline citrate, 50%deionised formamide,
10% dextran sulphate (Pharmacia Biotech), 100 μg/ml poly A (Sigma),
100 μg/ml sheared salmon sperm DNA (Boehringer), 20 μg/ml tRNA
(Sigma) and 20 mM DTT. The following day, slides were washed in
salt solutions with increasing stringencies to remove unspecific label-
ling (2 × 15 min in 2× SSC/β-ME at RT, 2 × 15 min in 1× SSC at
50 °C, 1 × 15 min in 0.2× SSC at 50 °C, 2 × 20 min in 1× SSC at RT,
0.1× SSC), dehydrated and air-dried. Slides were dipped in autoradio-
graphic emulsion (LM1, GE Healthcare), stored away at 4 °C in sealed
boxes with silica gel and developed after 3–4 weeks using developer
(Kodak D19, 2.5 min), stop (0.5% acetic acid, Sigma) and fix (25–40%
sodium thiosulphate, 2 × 5 min, BDH) solutions. Unless combined
with IHC, slides were counterstained with 0.1% Toluidine blue (Sigma)
and coverslipped with DPX mounting medium (BDH). As a control, a
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100-fold excess of unlabelled oligonucleotide was added to the hybrid-
ization reaction, which effectively competed all specific binding of
radiolabeled probe. Further confidence in the specificity of detection
was drawn by comparing distribution patterns using separate probes
to the mRNAs of interest. Sequences for these additional control probes
were Kv2.1: gtgtcaagttgaagaaagccgagcaggactggag, and Kv2.2: ctatgtttt
gctcaggcgtatggctcccatgcag.

Image analysis

Visualisation and image acquisition were performed on a Leica
fluorescence microscope fitted with polarized light block for epi-
fluorescence. Analysis of signal intensity for each cell was carried out
with ImageJ software to determine cell positivity for mRNA expression.
Briefly, an area of interest (ROI) was drawn around the cell using the
outline tool, and the mean silver grain density within this ROI was
calculated. A neuron was considered positive when its mean silver
grain density was greater than image background density (averaged
from 3 separate ROIs over slide background) plus two times the stan-
dard deviation of this density. All quantitative measurements were
done using a 25× objective from at least five ganglion sections per
animal (300–700 cell profiles, n = 3–4). Cell diameter (D) was
indirectly calculated from whole ROI area (Α) using the formula
D = 2√(A / π), while digital pixels were converted into μm units
using a calibrated microscopic image taken at the same magnification.
Measurements of cell diameter were only carried out on cells featuring
a clearly visible nucleus, to ensure the section planewasnear themiddle
of the cell and thus measurement would be representative of cell size.
Assessment of Kv co-localisationwith neuronal markers was performed
by taking counts at 25× magnification from at least five DRG sections
per animal (300–1500 cell profiles, n = 3–4).

qRT-PCR

Rats were sacrificed and L4–L5DRGs from control or injured animals
were rapidly (b10 min) removed and snap-frozen in liquid nitrogen.
Samples were homogenized in RLT buffer (Qiagen) using a table-top
homogenizer and total RNA was isolated using an RNeasy Mini Kit
(Qiagen). During RNA extraction residual genomic DNA was removed
by RNase-free DNase treatment (Qiagen). First strand cDNA was
reverse-transcribed from 1 μg of total RNA, using Superscript II Reverse
Transcriptase, reaction buffer, DTT (all from Invitrogen), randomprimers
and dNTP mix (Promega), according to the manufacturer's guidelines.
Quantitative PCR was performed using the standard curves method
(eight 3-fold dilution series of E15/E16 rat brain cDNA). All samples
were run in triplicates and glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) was used as internal control to compensate for reverse tran-
scription and amplification efficiency variation. Sequences for primers
used were: Kv2.1: (F)-cggagaagaaccacttcgag, (R)-ttcatgcagaactcagt
ggc; Kv2.2: (F)-gctgcagttccagaatgtga, (R)-aatgatggggataggaaggg; and
GAPDH: (F)-atggccttccgtgttcctac, (R)-agacaacctggtcctcagtg (all written
5′–3′). Primers were designed with Primer3 software and submitted to
BLAST analysis to ensure annealing specificity. For template amplifica-
tion, 20 ng cDNA/reaction was subjected to the following cycling condi-
tions: (i) 95 °C for 10 min, (ii) denaturation at 95 °C for 15 s, annealing
and extension at 60 °C for 60 s (40 cycles) and (iii) melting-curve
temperature ramp to 105 °C. Amplification signal was detected using
SYBR Green 1 dye (Roche) on a Rotor-Gene 3000 thermal cycler and
transcript levels were quantified with Rotor-Gene 6 software (Corbett
Life Science). Control reactions with water produced no amplification
signal and melting curve analysis confirmed specificity of the products.

Intracellular recordings

Naive (n = 18) and injured (5–9 days post SNT surgery, n = 6)
animals were used for this experiment. On the day of recording, the
animal was anaesthetised with an i.p. injection of urethane (25% w/v,
1.5 g/Kg, Sigma) and L4/L5DRGs connected to the dorsal root and spinal
nerve were dissected and transferred to a recovering chamber. The
chamber was filled with constantly oxygenated calcium-free Kreb's
solution containing (in mM) 124 NaCl, 26 NaHCO3, 1.3 NaH2PO4, 2
MgCl2, 2 CaCl2, 3 KCl, and 10 glucose. An hour after recovery, the tissue
was incubated in 0.125% (w/v) collagenase (Sigma) in F12 medium
(Invitrogen) at 37 °C for 20 min and then transferred to a recording
chamber constantly oxygenated with 2 mM CaCl2 containing Kreb's so-
lution as above. The ganglion was immobilised with U-shaped pins and
the end of dorsal root was subjected to stimulation with a suction elec-
trode. Recordings from DRG neurons were made with a sharp electrode
pulled from filamented borosilicate glass (OD 1.5 mm × ID 0.86 mm,
Sutter instrument). The pipette resistance was 25–40 MΩ when filled
with 3 mM KCl. An axoclamp 2B amplifier (Molecular Devices) was
used, analogue signals were low-pass filtered at 3 kHz and sampled at
5 kHz using a Power 1401 computer interface and data was acquired
using Signal software (CED). Following cell impaling, a dorsal root stim-
ulation evoked AP was obtained. To measure the refractory period, a
paired-pulse (200 μs wide, 2× dorsal root threshold current) stimula-
tionwas delivered to the dorsal root with a gradually shortened interval
(coarse step of 1 ms and final step of 0.1 ms) until the second AP failed.
In the experiment examining AP conduction probability, a train of 80
stimuli (200 μs wide, 2× dorsal root threshold current) was delivered
to the dorsal root at frequencies of 100, 200, 250, and 333 Hz in the
absence and presence of ScTx. Recordings where stimuli trains induced
AP conduction failure were included in the analysis. The conduction
probability was calculated as a ratio of the number of evoked APs to
the number of stimuli delivered. An averaged ratio from various fre-
quency trains represents the AP conduction probability for that cell.
ScTx (100 nM, Alomone Labs) was applied for at least 4 min before pro-
tocols commenced as normal. A small negative pulse (−0.5 nA, 20 ms)
was used to monitor input resistance (IR) throughout the experiment
and sessions inwhich IR fluctuatedmore than 20% or restingmembrane
potential depolarized to more than−45 mVwere discarded from anal-
ysis. Data was analysed using Signal (CED) and Clampfit (Molecular
Devices). Values represent mean ± SEM and paired t-tests were used
for statistical analysis.

Results

Kv2.1 and Kv2.2 mRNA expression in sensory neurons

We initially examined Kv2 subunit expression in naïve lumbar DRG
using in situ hybridization. Approximately 62.7% and 61.3% of all DRG
neurons expressed Kv2.1 and Kv2.2 mRNAs, respectively. Kv2.1 could
be detected in a mixture of cells (Fig. 1A), being more abundant in
medium (76.9%) and large (72.2%) neurons (arrows) but also present
in more than half of small neurons (55.4%, arrowheads). Of all Kv2.1-
positive neurons, 45.1% were medium-large and 54.9% were small in
diameter. Kv2.2 ISH (Fig. 2A) revealed a similar distribution pattern in
small neurons (45.0%, arrowheads) but thismRNAwas evenmore high-
ly expressed in medium (90.0%) and large (92.2%) neurons (arrows). In
the total Kv2.2-positive population, 53.0% were medium-large and
47.0% small size. The above findings are reflected in the Kv2.1 (Fig. 1B)
and Kv2.2 (Fig. 2B) cell-size distribution graphs, while a quantitative
summary of the respective counts is presented in Tables 1 & 2. Hybrid-
izationswith a second probe targeted against separatemRNA regions of
Kv2.1 or Kv2.2 mRNA gave similar patterns of expression (Figs. 1C & 2C,
respectively), while negative control reactions involving competition
with a non-labelled probe produced only background levels (Figs. 1D
& 2D).

We next examined co-localisation of Kv2 subunits with known
markers of neuronal subpopulations in the DRG, namely calcitonin
gene-related peptide and isolectin B4 (CGRP and IB4, indicating
peptidergic and non-peptidergic nociceptors respectively) and



Fig. 1.Kv2.1mRNA expression in rat DRG neurons. (A) Bright field and ISH signal for Kv2.1 in naïve lumbar DRG from rat. Merged image illustrates Kv2.1mRNA expression in amixture of
medium-large (arrows) and small (arrowheads) neurons. Asterisks denote examples of cells negative for Kv2.1mRNA. (B) Kv2.1 cell-size distribution in lumbar DRG neurons. (C) Using a
second probe for Kv2.1 gave identical detection patterns. (D) Control hybridizations showonly background signal and confirm the specificity of the reaction. (E) NF200 (green), CGRP (red)
and IB4 (blue) immunoreactivity (left) and Kv2.1 ISH (middle) in naïve lumbar DRG sections. Overlaid image demonstrates Kv2.1-positive neurons also co-labelling for NF200 (arrows),
CGRP (arrowheads) or IB4 (double arrowheads). Scale bars = 50 μm.
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neurofilament 200 (NF200, expressed bymyelinated neurons). By com-
bining immunohistochemistry for these markers with ISH for Kv2.1
(Fig. 1E) and Kv2.2 (Fig. 2E) we could localise Kv2 mRNA in NF200-
positive (arrows) and CGRP-immunoreactive (arrowheads) or IB4-
binding (double arrowheads) neurons. Kv2.1 signal was found in
80.4%, 42.9% and 34.5% of neurons labelling for NF200, CGRP or IB4,
respectively. In the Kv2.1-positive population, the majority of cells
were immunoreactive for NF200 (60%), while a smaller proportion
stained for CGRP (25.2%) or IB4 (19.1%) (Table 3). Performing a similar
analysis, Kv2.2 signal was detected in 71.4%, 42.7% and 48.7% of NF200,
CGRP or IB4-positive neurons, respectively. Of all cells labelled for Kv2.2
mRNA, 64.2% were also positive for NF200, 20.1% for CGRP, and 27.6%
for IB4 (Table 4).

In summary, the histological assessment illustrates that the Kv2.1
and Kv.2 subunits are widely expressed in a mixture of DRG neurons
and appear enriched in the myelinated neuron population.

Regulation of Kv2 subunits by nerve lesions

Having established the Kv2 expression profile in naïve sensory
neurons, we then sought to examine regulation of Kv2 subunits by
peripheral injury. For this, we used axotomy introduced by L5 spinal
nerve transection (SNT), a well-established animal model of chronic
pain. Following the insult animals developed robust and long-lastingme-
chanical allodynia on the injured (SNT ipsi), but not on the spared (SNT
contra) side, as assessed by von-Frey testing (Fig. 3A, top). In addition,
animals exhibited thermal hyperalgesia with a similar time-course
(Fig. 3A, bottom). Following SNT surgery, virtually all L5 neurons showed
strong nuclear immunostaining for the nerve injury marker ATF3
(Fig. 3B), confirming successful and complete axotomy of these neurons.

We then investigated the effect of axotomy on Kv2 mRNA expres-
sion, at a time where pain behaviours are established in the SNT
model (Fig. 3C). When compared to sham controls (left panels), the
ISH signal for Kv2.1 and Kv2.2 was substantially decreased at 7 d post-
axotomy (right panels), both in terms of percentage (Kv2.1, 27.2%
reduction; Kv2.2, 61.7% reduction; p b 0.01, n = 3, unequal variance
t-test; Fig. 3D, left) and signal intensity (Kv2.1, 57.2% reduction; Kv2.2,
77.8% reduction; p b 0.01, n = 3, unequal variance t-test; Fig. 3D,
right). In order to analyse the time-course of this downregulation in
more detail, we quantified Kv2 mRNA levels by qRT-PCR (Fig. 3E),
which revealed significant transcriptional downregulation of both
Kv2.1 and Kv2.2 by axotomy. More specifically, mRNA levels for both
subunits were significantly reduced by approximately 50% at 24 h
after injury and continued to decrease reaching minimum levels at 7 d
(Kv2.1, 73 ± 1.3% reduction; Kv2.2, 80 ± 1.7% reduction; p b 0.001
compared to uninjured for each subunit, n = 3, one-way ANOVA with
Tukey's,). Thus, the emergence of pain phenotypes in the SNT model
was correlated with decreases in Kv2 mRNA expression. Of note, some
residual expression could be detected after 28 d, which could be
exploited for compensatory treatments with Kv2 openers.

Given the dysregulation we observed after peripheral nerve injury,
we asked whether injury of the central processes could inflict similar



Fig. 2.Kv2.2mRNA expression in rat DRGneurons. (A) Brightfield and polarized light images of Kv2.2 silver grains in rat lumbarDRG.Overlaid image demonstratesKv2.2 expression in the
vastmajority ofmedium-large diameter neurons (arrows), aswell asmany small diameter (arrowheads) cells. Asterisks denote examples of cells negative for Kv2.2mRNA. (B)Kv2.2 cell-size
distribution in naïve DRG neurons. (C) Similar signal distribution using a second Kv2.2 mRNA probe. (D) Competition of labelling control reaction. (E) DRG section stained with antibodies
against neuronal markers (left) and Kv2.2mRNA signal (middle). Overlay identifies Kv2.2-positive neurons that are immunoreactive for NF200 (arrows), CGRP (arrowheads) or IB4 (double
arrowheads). Scale bars = 50 μm.
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phenotypic changes. To achieve this, the dorsal rhizotomy model was
used to compare Kv2 expression levels in DRG neurons of the injured
(ipsi, right side in Fig. 4A) and uninjured (contra) sides, at 7 days
after injury. Immunostaining for glial fibrillary acidic protein (GFAP)
confirmed astrocyte activation at the ipsilateral dorsal root entry zone,
indicating successful central axotomy (inset). Counts of Kv2 mRNA-
containing neurons on the rhizotomized side were not significantly
different compared to uninjured side (Kv2.1, 99.1 ± 2.5%; Kv2.2,
95.4 ± 3.8% of contra side; n = 3, paired t-test) (Fig. 4B & C). Quantifi-
cation of silver grain intensity in those neurons also revealed no differ-
ence compared to control (Kv2.1, 98.1 ± 1.7%; Kv2.2, 97.1 ± 0.7% of
contra; p N 0.05, n = 3, paired t-test) (Fig. 4C). In summary, Kv2
mRNA expression in the DRG is significantly reduced by peripheral
axotomy but remains unaffected by rhizotomy.
Table 1
Summary of Kv2.1 mRNA cell-size distribution counts.

Cell size DRG neurons ± SE (%)

Kv2.1(+) cells in each class Allocation of Kv2.1(+)
cells within each class

Small (b30 μm) 55.4 ± 3.2 54.9 ± 3.3
Medium (30–40 μm) 76.9 ± 1.8 31.0 ± 1.6
Large (N40 μm) 72.2 ± 0.3 14.1 ± 3.9
Kv2 dysregulation promotes DRG neuron hyperexcitability

To further investigate the involvement of Kv2 dysregulation in the
electrophysiological properties of myelinated DRG neurons, we setup
ex vivo intracellular DRG recordings (Fig. 5A & Table 5). The conduction
velocity range for neurons analysedwas 4.83–26.98 m/s, indicating that
they were medium to large sized neurons (McCarthy and Lawson,
1990).We initially examined biophysical parameters of the APs evoked
by dorsal root stimulation, including AP amplitude (AP amp), AP half
width (APD50), AP after-hyperpolarisation amplitude (AHP amp) and
half width (AHPD50) (described in Fig. 5B). In injured neurons, APD50
was dramatically increased compared to naïve (0.73 ± 0.11 ms vs
1.27 ± 0.12 ms, n = 13 per group; p b 0.001, Mann–Whitney U test),
suggesting a much slower repolarisation. The amplitude of AHP
Table 2
Summary of Kv2.2 mRNA cell-size distribution counts.

Cell size DRG neurons ± SE (%)

Kv2.2(+) cells in each class Allocation of Kv2.2(+)
cells within each class

Small (b30 μm) 45.0 ± 3.3 47.0 ± 2.8
Medium (30–40 μm) 90.0 ± 3.5 34.1 ± 3.2
Large (N40 μm) 92.2 ± 1.3 18.9 ± 5.2
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Table 3
Counts of Kv2.1 mRNA co-localisation with DRG neuronal subgroups.

Marker DRG neurons ± SE (%)

Kv2.1(+) cells in each group Allocation of Kv2.1(+)
cells within each group

CGRP 49.2 ± 0.5 25.2 ± 2.5
IB4 34.5 ± 2.6 19.1 ± 1.2
NF200 80.4 ± 1.3 60.0 ± 1.2

Table 4
Counts of Kv2.2 mRNA distribution in DRG neuronal subpopulations.

Marker DRG neurons ± SE (%)

Kv2.2(+) cells in each group Allocation of Kv2.2(+)
cells within each group

CGRP 42.7 ± 2.6 20.1 ± 3.6
IB4 48.7 ± 5.6 27.6 ± 2.4
NF200 71.4 ± 1.4 64.2 ± 2.4

Fig. 3.Kv2 subunits are reduced by peripheral axotomy. (A) Development ofmechanical allodyn
not on the contralateral side (mean ± SEM, n = 8, two-way ANOVAwith Tukey's, **p b 0.01, *
surgery. Virtually all L5 DRG neurons feature an injured phenotype, evident by upregulation o
mRNA hybridization in DRG neurons from uninjured (left) or SNT (right) animals, 7 days after ax
intensity (right) in control and SNT animals, 7 days after axotomy (mean ± SEM, n = 3 anim
quantification of Kv2 downregulation time-course after peripheral injury (mean ± SEM, n =
Scale bars = 50 μm.

120 C. Tsantoulas et al. / Experimental Neurology 251 (2014) 115–126
was also significantly reduced in injured neurons (−8.85 ± 1.01 mV vs
−13.25 ± 1.24 mV, n = 13 per group, p b 0.05, Mann–Whitney U
test). These changes are consistent with previous reports of reductions
in various Kv conductances in injured neurons (Chien et al., 2007; Kim
et al., 2002; Park et al., 2003; Rasband et al., 2001). We also observed
a decreased maximal rising rate in injured neurons (362.22 ±
38.93 V/s vs 242.31 ± 27.24 V/s, n = 13 per group, Mann–Whitney
U test), in line with previously documented alterations in the expres-
sion, trafficking and kinetic properties of sodium channels (Devor,
2006). These changes were not associated with any change in input
resistance or resting membrane potential. Other parameters like AP
amp and AHPD50 were not altered by injury (Table 5).

To further investigate the involvement of Kv2 dysfunction in DRG
neuron excitability, we utilised the Kv2 channel gating modifier ScTx,
which shifts Kv2.1 and Kv2.2 channel activation towards more
depolarized potentials (Bocksteins et al., 2009). Application of ScTx to
naïve neurons did not cause any changes in AP amp, APD50, maximal
rising rate or AHP amp, in accordancewith the relatively slow activation
kinetics of Kv2 conductance (Johnston et al., 2010). However, ScTx
reduced AHPD50 by 18% (3.36 ± 0.29 ms vs 2.76 ± 0.30 ms, n = 13,
p b 0.05, paired t-test; Fig. 5A & C), consistent with a role of Kv2 in
ia (top) and thermal hyperalgesia (bottom) on the ipsilateral hindpaw of SNT animals, but
**p b 0.001 vs baseline). (B) Lumbar DRG stained for β3tubulin and ATF3, 7 days after SNT
f ATF3 expression in the nucleus. (C) Overlaid images of Kv2.1 (top) and Kv2.2 (bottom)
otomy. (D) Percentage neurons expressing Kv2mRNA (left) and quantification of ISH signal
als/group, unequal variance t-test for each subunit, ***p b 0.001, **p b 0.01). (E) qRT-PCR
3, one-way ANOVA with Tukey's, ***p b 0.001 compared to uninjured for each subunit).
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Fig. 4. Kv subunits are not regulated by dorsal rhizotomy. (A) A transverse section of the spinal cord with DRGs attached, illustrating the dorsal rhizotomy of the right central processes,
stained for NF200, CGRP and IB4. Inset, GFAP staining illustrating astrocyte activation at the dorsal root entry zone of the injured side. (B) Bright field and polarized images of DRG sections
from the contralateral (left) or ipsilateral (right) side of rhizotomized animals (7 days), subjected to ISH for Kv2.1 (top) or Kv2.2 (bottom) mRNA. (C) Percentage of neurons positive for
Kv2 mRNA expression and quantification of signal intensity with or without dorsal rhizotomy (mean ± SEM, n = 3 animals/group, paired t-test for ipsilateral vs contralateral sides for
each subunit, *p b 0.005). Scale bars = 50 μm.
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the repolarization and hyperpolarisation phases. In contrast, recordings
from SNT injured neurons (Fig. 5A, right) showed that AHPD50 and all
other examined parameters remained unaffected by ScTx treatment
(pre-ScTx, 4.02 ± 0.20 vs ScTx, 3.86 ± 0.21 ms; p N 0.05, paired
t-test). This result suggests that a substantial reduction of Kv2 con-
ductance is already established in injured neurons, in accordance with
the Kv2 downregulation we documented following axotomy. Finally,
the AHPD50 following injury was not significantly different compared
to naïve (n = 13, p N 0.05, Mann–Whitney U test). Given the docu-
mented Kv2 downregulation by injury and the shortening of AHPD50
by Kv2 inhibition, a reduced AHPD50 might be expected. However,
the neuropathology associated with nerve lesions is characterized by
parallel dysregulation of multiple ion channels. Thus, other injury-
induced changes in conductances involved in after-hyperpolarization,
like those of Kv1, Kv3 (Johnston et al., 2010), Ca+2-activated potassium
channels (Scholz et al., 1998), and hyperpolarization-activated cyclic
nucleotide-gated (HCN) channels, maymask the Kv2 effect on AHPD50.

The observed reduction in after-hyperpolarization duration by ScTx
in naïve neurons is postulated to shorten inter-spike intervals during
repetitive discharge. To further address this hypothesis, we measured
the AP refractory period (RP) in naïve neurons, before and upon ScTx
application (Fig. 6A). Indeed, ScTx treatment led to a significant reduc-
tion in RP, from 3.76 ± 0.54 ms to 3.48 ± 0.48 ms (n = 15, p b 0.05,
paired-t-test; Fig. 6B). This reduction was more evident in neurons
with longer baseline RP, illustrated by the correlation between baseline
RP and relative change upon ScTx application (Fig. 6C; r = 0.79,
p b 0.001, Pearson's correlation test). This finding demonstrates that
in DRG neurons RP duration is associated with the amount of Kv2
current. Thus, the more Kv2 conductance present in a neuron, the
wider the AHPD50 and longer the refractory period, and vice versa.

Individual APs represent the basic unit of neuronal signalling,
whereas sensory communication and chronic pain in particular depend
on sustained firing. We therefore investigated the direct effect of Kv2
inhibition on the ability of myelinated neurons to faithfully conduct
APs following repetitive stimulation (Fig. 7). In normal conditions, fail-
ure of AP conduction to the soma was observed after approximately
50–60 stimuli at 100 Hz. Increasing the stimulation rate to 200 Hz
caused AP failure initially at every other stimulus and even more
frequently after the first 40 stimuli (Fig. 7). Upon ScTx application how-
ever, the fidelity of the response was substantially improved at both
frequencies and neurons followed the stimulation train much more
efficiently. Thus, quantification of theAP conduction probability showed
a significant increase following ScTx treatment (0.70 ± 0.04 vs
0.61 ± 0.02; n = 10, paired t-test, p b 0.001). This result is in line
with the notion that Kv2 dysfunction in chronic pain facilitates the
high firing rates of injured primary afferents, triggered either spontane-
ously or following stimulation. Taken together, our data suggest that
injury-induced Kv2 downregulation confers electrophysiological
changes that underlie important aspects of the hyperexcitable pheno-
type encountered in neuropathic pain states.
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Fig. 5.Effects of ScTx application onDRGneuron excitability. (A) Recordings fromnaïve and SNT-injured neurons showing evokedAP after dorsal root stimulation (indicated by the arrow)
in the absence (grey) or presence (black) of ScTx. The inset shows the AHP on a larger scale. In naïve the AHP duration is shortened upon ScTx application, however in injured AHP is
unaffected by ScTx application (B) Top, markers denoting the AP parameters calculated. Bottom, derivative of differentiated AP from top; arrow indicates the maximal rising rate.
(C) Paired data demonstrating that treatment of naïve neurons with ScTx decreases the duration of after-hyperpolarization. The continuous black line connects mean ± SEM (n = 13,
*p b 0.05, paired t-test).
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Discussion

Several studies have provided evidence for differential expression of
Kv subunits in diverse classes of sensory neurons (Gold et al., 1996;
Rasband et al., 2001). The distinct distribution, combined with subunit
tetramerization and extensive post-translational modifications equips
sensoryneuronswith a sophisticatedmachinery to differentially encode
and respond to varying intensities of stimuli. In support of such a func-
tional diversity, up to six pharmacologically and kinetically distinct K+

currents have been recorded in DRG (Gold et al., 1996). Some of these
currents are specifically detected in neurons of defined sizes, while
other studies suggest that even within a restricted functional group,
such as large cutaneous afferent neurons, there is considerable variation
in the biophysical characteristics of recorded K+ currents (Everill et al.,
1998). A distinction between neurons of different sizes and specific K+
Table 5
Comparison of electrophysiological parameters before and upon ScTx application in naïve and

Naive RMP IR AP amplitude

Pre-ScTx −65.68 ± 1.64 14.56 ± 1.65 90.97 ± 3.55
ScTx −65.04 ± 2.55 16.61 ± 3.28 85.73 ± 3.16

SNT RMP IR AP amplitude AP

Pre-ScTx −62.67 ± 1.01 21.06 ± 2.52 83.94 ± 3.36 1.
ScTx −60.89 ± 1.23 20.61 ± 3.31 80.92 ± 2.63 1.

RMP: resting membrane potential, in mV; IR: input resistance, in MΩ; AP amplitude: in mV; AP
amplitude: inmV; AHPD50: AHP half width, inms. N = 13 for all data. Statistics for paired data
and SNT before ScTx application were done by using Mann–Whitney U test.

⁎ p b 0.05.
# p b 0.05.

### p b 0.001.
currents has also been reported in trigeminal ganglia (Catacuzzeno
et al., 2008). However, electrophysiological assessment of K+ currents
can often be inconclusive for the precise identification of contributing
channels, due to the overlapping pharmacology (Johnston et al.,
2010), modifications introduced by phosphorylation (Misonou et al.,
2005) and interactions with auxiliary partners (Kerschensteiner
and Stocker, 1999; Pongs and Schwarz, 2010; Vacher and Trimmer,
2011). Therefore, a supplementary classification based on expression
of potassium channel subunits can further elucidate the underlying
associations.

This study provides the first comprehensive characterisation of Kv2
subunit expression in DRG neurons. Kv2.1 and Kv2.2 were detected in
cells of all sizes, and were particularly abundant in medium-large
NF200 neurons which give rise to A-fibres. These include the Aδ
nociceptors signalling mechanical and heat pain and the Aβ fibres,
SNT-injured DRG neurons.

APD50 Max rising rate AHP amplitude AHPD50

0.73 ± 0.11 362.22 ± 38.93 −13.25 ± 1.24 3.36 ± 0.29
0.77 ± 0.11 313.27 ± 30.52 −13.27 ± 1.46 2.76 ± 0.30⁎

D50 Max rising rate AHP amplitude AHPD50

27 ± 0.12### 242.31 ± 27.24# −8.85 ± 1.01# 4.02 ± 0.20
45 ± 0.20 218.09 ± 20.37 −8.44 ± 1.14 3.86 ± 0.21

D50: AP half width, in ms; Maximal rising rate: in V/s; AHP: after-hyperpolarization; AHP
in naïve or SNT groupswere performedusing paired t-test. All comparisons between naïve
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Fig. 6. ScTx treatment shortens the refractory period of DRG neurons. (A) Representative traces illustrating that refractory period is shortened upon ScTx application. The refractory period
was defined as themaximal inter-pulse interval at which the second stimulus fails to elicit an AP at a strength of 2 × threshold current. In naïve neurons (top), black trace shows that the
second AP fails when interval is 6.2 ms (arrow). Following ScTx application however (bottom), the second AP fails at the interval of 5.1 ms (arrow). Inter-pulse intervals successfully
eliciting APs are shown in grey and correspond to 6.3, 6.5, and 7.0 ms (pre-ScTx) and 5.2, 5.5, and 5.8 ms (ScTx). (B) Paired data showing refractory period in naive uninjured neurons
is significantly shortened by ScTx (continuous black line indicate mean ± SEM, n = 15, *p b 0.05, paired t-test). (C) Correlation between refractory period before ScTx application and
the change upon ScTx application in naive neurons (r = 0.79, p b 0.001, Pearson's correlation test).
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which are predominantly low-threshold mechanoreceptors. Although
Aβ fibres do not contribute to painful sensations under physiological
conditions, they become spontaneously active after neuropathic lesions
(Calvo and Bennett, 2012; Kajander and Bennett, 1992; Liu et al., 2000;
Michaelis et al., 2000). The spontaneous activity in A fibres can trigger
central sensitization in the spinal cord, which amplifies the input and
contributes to neuropathic pain sensations (Michael et al., 1999;
Molander et al., 1994; Noguchi et al., 1995). Kv2 subunits were also
expressed in approximately half of small unmyelinated neurons. These
were identified as peptidergic and non-peptidergic nociceptors, which
encodemultiple painmodalities and have an established role in chronic
pain syndromes. A corresponding delayed rectifier current modulated
by ScTx has been detected in small nociceptors and this represented
the majority of sustained Kv conductance in vitro (Bocksteins et al.,
2009). In summary, the expression pattern we detected supports a
physiological role for Kv2 subunits in both small and medium-large
sensory neurons.

A substantial body of work has established an association between
reductions in potassium currents and enhanced excitability of primary
sensory neurons (Abdulla and Smith, 2001; Everill and Kocsis, 1999;
Tan et al., 2006). Thus previous studies have related aspects of the
altered phenotype to downregulation of Kv1 (Park et al., 2003; Yang
et al., 2004; Zhao et al., 2013), Kv4 (Cao et al., 2010; Chien et al., 2007)
or Kv7 (Rose et al., 2011) or Kv9 (Tsantoulas et al., 2012) subunits in
sensory neuron subsets. Our study complements these by relating di-
minished Kv2 mRNA expression and function to specific electrophysio-
logical changes following traumatic nerve injury. Both Kv2.1 and Kv2.2
subunits showed a rapid and uniform transcriptional downregulation in
all cell types commencing within 24 h post-injury, while the bulk of
expressional changes were established by day 3 and were long-lasting,
coinciding with the onset of hyperexcitability and pathophysiological
pain in this model (Kajander et al., 1992; Liu et al., 2000). A limitation
of this study is that onlymRNA levelswere assessed. Although transcrip-
tional downregulation typically (but not always) results in concomitant
reductions in the encoded protein, the magnitude of the effect can vary
considerably (Vogel andMarcotte, 2012). More importantly, the current
analysis does not allow determination of whether changes in Kv2
protein precede the establishment of pain phenotypes. Supplementary
investigations using specific antisera to Kv2 subunits should clarify
these questions. Nevertheless, a diminished Kv2 function once pain is
established is in agreement with the finding that ScTx application
7 days following injury did not affect the biophysical properties of
axotomized neurons, as determined via intracellular recordings.

Consistent with the putative role of Kv2 downregulation in neuro-
pathic pain, we found no change in Kv2 mRNA 7 days after dorsal root
rhizotomy, a procedure that does not produce hyperexcitability
(Sheen and Chung, 1993; Yoon et al., 1996) or pain behaviours in
rodents and humans (Loeser, 1972; Sukhotinsky et al., 2004). Although
it is possible that rhizotomy led to more transient alterations that had
already recovered by that time, previous studies suggest that hallmark
changes in this model, such as glial marker induction, are established
as early as day 2 and persist for at least 14 days (Chew et al., 2011). In
linewith this, GFAP immunoreactivity at 7 days revealed astrocyte infil-
tration, reflecting the formation of a non-permissive glial scar at the
injury site.

Kv2 channels are activated slowly after large membrane depolarisa-
tions and therefore do not generally affect spike thresholds. However,
during AP firing Kv2 opening contributes to membrane repolarisation
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Fig. 7. ScTx application enhances AP conduction during prolonged stimulation. (A) Naive DRG neuron responses to a train of 80 stimuli delivered at either 100 Hz (top) or 200 Hz (bot-
tom), before or after ScTx application. At both frequencies, repetitive stimulation eventually causes AP conduction failure (100 Hz, failed after 50–60 stimuli; 200 Hz, failed regularly every
other stimulus but more so after 40 stimuli). In the presence of ScTx however the fidelity of the response is improved and the neuron can more efficiently follow the stimulation train at
both frequencies. (B) Quantification of AP conduction probability before and after ScTx treatment. The continuous black line connects mean ± SEM (n = 10, ***p b 0.005, paired t-test).
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and hyperpolarization back to resting potential. Furthermore, the
characteristic slow kinetics of activation and inactivation mean that
the role of Kv2 becomes more pronounced during sustained input,
due to the cumulative recruitment of activated channels. Indeed,
Kv2.1 has a key role in controlling somatodendritic excitability of
hippocampal neurons during high frequency input (Du et al., 2000),
while Kv2.2 conductance regulates excitability of medial nucleus of
the trapezoid body neurons during sustained firing by hyperpolarising
inter-spike potential and thus allowing sodium channels to recover
more quickly from inactivation (Johnston et al., 2008). Interestingly, in
our experiments Kv2 inhibition in sensory neurons did not affect the
amplitude of after-hyperpolarisation but reduced its duration, suggest-
ing a slightly different mechanism. Importantly, this reduction in the
after-hyperpolarisation phase was also associated with a decrease in
the AP refractory period. We reasoned this shortening of spike intervals
could accommodate higher firing rates. Indeed,whenwe challenged the
neurons with a train of stimuli we discovered that Kv2 inhibition im-
proved the fidelity of AP conduction in the DRG soma during sustained
high frequency stimulation. In hippocampal and cortical neurons, the
dominant effect that Kv2 channels exert on conduction is assisted by
their specific localisation in the axon initial segment, where they act
as a bottleneck low-pass filter to control AP output (Hwang et al.,
1993; Sarmiere et al., 2008). Whether such particular axonal targeting
also exists in primary sensory neurons is currently unknown, but is a
tempting possibility given the influence of branching points onDRG im-
pulse conduction (Stoney, 1990). The lack of any ScTx effect on the
repolarisation and after-hyperpolarisation phases in injured cells sug-
gests that conduction probability would remain unaffected by ScTx
treatment, although we did not directly test this hypothesis. Future val-
idation of thiswould further support a causal link betweenKv2dysfunc-
tion and conduction changes in axotomised neurons.
Our study is the first to demonstrate that blocking Kv2 channels in
A-fibres enhances conduction fidelity. Although we only assessed
medium-large neurons, the finding that Kv2 subunits are also substan-
tially downregulated in unmyelinated neurons creates the possibility
that a similar mechanism may affect C-fibre excitability. The down-
stream effects of Kv2 dysfunction could be even more pronounced in
C-fibres, since these afferents are particularly reliant on conduction
of impulses at high-frequency during pain signalling. Such enhanced
C-fibre activity during sustained stimulation could feed the spinal cord
with a barrage of impulses that drives central sensitisation, and thus
mediates exaggerated pain sensations (Raja et al., 1988; Wu et al.,
2001). Intriguingly, changes in C- and A-fibre following frequency
due to reduced conduction failure have also been described in non-
traumatic models of pain, such as osteoarthritis and diabetic neuropa-
thy (Sun et al., 2012; Wu and Henry, 2013). Taken together, these
results put forward the hypothesis that under physiological conditions
Kv2 channels act as an essential excitability brake in sensory neurons.
Diminished Kv2 function due to axotomy or pharmacological blockade
contributes to neuronal hyperexcitability by promoting repetitive firing
driven by sustained input. Besides direct stimulation, another likely
source of such heightened input is the spontaneous activity that typical-
ly develops in neuropathic pain states (Kajander and Bennett, 1992; Liu
et al., 2000). Interestingly, Kv2.2 dysfunction in cortical neurons also in-
duces pain hypersensitivity, indicating that normal Kv2 activity may be
instrumental at higher levels of the nervous system as well (Thibault
et al., 2012).

We have previously reported that diminished function of Kv9.1, a
modulatory subunit of Kv2 that is exclusively expressed in myelinated
DRG neurons, leads to pain behaviours linked to augmented spontane-
ous and evoked firing and persistent after-discharge (Tsantoulas et al.,
2012). Interestingly, in vivo inhibition of Kv9.1 also reduces the after-
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hyperpolarisation duration in the same fashion that Kv2 inhibition by
ScTx did (Tsantoulas et al., 2012). Combined, these two studies strongly
\suggest that the downstream effect of Kv9.1 silencing is reduced
Kv2 conductance, which in turn causes profound excitability changes
during sustained input and pain phenotypes. Since Kv9.1 has been
shown to associate with Kv2 subunits in heterologous systems
(Salinas et al., 1997b), one interpretation for these effects is the elimina-
tion of a Kv9.1/Kv2.x heterotetramer; however more work is needed to
decipher the exact Kv2 heterotetramer composition and properties in
DRG neurons.

The molecular injury-induced trigger that controls Kv2 expression
remains elusive. The divergent Kv2 regulation in peripheral versus
central axotomy may be indicative of the involvement of a peripheral
target-derived trophic factor. Although not systematically tested
yet, there is indeed some data suggesting that Kv regulation by
neurotrophins is physiologically relevant (Cao et al., 2010; Everill and
Kocsis, 2000; Park et al., 2003; Sharma et al., 1993; Zhu et al., 2012).
Interestingly, it was recently found that injury-induced Kv1.2 down-
regulation and associated pain behaviours can be reversed by targeting
an endogenous non-coding RNA which modulates Kv1.2 expression in
DRG (Zhao et al., 2013). Given the degree of conservation amongst Kv
channels it is plausible that similar mechanisms also govern Kv2
expression. Additionally, Kv2.1 conductance is regulated by AMIGO,
an auxiliary subunit that co-localises with Kv2.1 in the brain (Peltola
et al., 2011). Whether AMIGO or other yet unidentified proteins exert
similar roles in the peripheral nervous system remains to be determined.

Our results suggest that nerve injury does not completely ablate Kv2
expression, which has implications for treatment. Developing specific
openers to target residual Kv2 expression could compensate the loss-
of-function, dampen neuronal activity and thus provide pain relief
following nerve lesions, similarly to Kv7 openers (Blackburn-Munro
and Jensen, 2003; Dost et al., 2004; Mishra et al., 2012; Roza and
Lopez-Garcia, 2008). The same endpoint could be accomplished via
activation of the PKC, CDK5, Src and AMP-activated protein kinases,
since Kv2 phosphorylation can facilitate Kv2 currents and reduce excit-
ability (Cerda and Trimmer, 2011; Ikematsu et al., 2011; Park et al.,
2006; Song et al., 2012). Lastly, instigation of a recently identified nitric
oxide signalling cascade can also robustly increase Kv2 currents in CNS
neurons (Steinert et al., 2011).

In conclusion, Kv2 activity appears to be a key component that helps
fine-tune neuronal excitability. Pharmacological modulation of this
activity may create novel therapeutic opportunities for neurological
disorders and chronic pain management in particular.
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