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Abstract

Faithful replication of chromosomes is essential for maintaining genome stability. Telomeres, the chromosomal termini, pose quite a
challenge to replication machinery due to the complexity in their structures and sequences. Efficient and complete replication of chro-
mosomes is critical to prevent aberrant telomeres as well as to avoid unnecessary loss of telomere DNA. Compelling evidence supports
the emerging picture of synergistic actions between DNA replication proteins and telomere protective components in telomere synthesis.
This review discusses the actions of various replication and telomere-specific binding proteins that ensure accurate telomere replication
and their roles in telomere maintenance and protection.
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Introduction

Telomeres, telomerase and their roles 
in genome stability

Maintenance of stable chromosome ends, telomeres, is a key
 contributor of genome stability. Chromosomal abnormalities due to
dysfunctional telomeres have been implicated in cancer and prema-
ture aging disorders. Telomeres are special nucleoprotein structures
composed of double-stranded (TTAGGG)n DNA repetitive sequence
ranging from ~3 to 15 kb and a number of telomere associated pro-
teins. The ds telomeric DNA terminates at a 3�  single-stranded 
G-rich overhang of about 12–500 bases [1–3]. This protruding 3�

end can invade the duplex DNA and form a  lariat-like structure called
‘t-loop’, establishing a protective cap that shields chromosome ends
from being recognized as damaged DNA and prevents nucleolytic
degradation and inappropriate fusions of telomeres. The t-loop is
stabilized by a complex of ds and ss stranded telomere binding 

proteins known as the ‘shelterin’ proteins (telomere repeat binding
factor 1 and 2 [TRF1, TRF2], protection of telomeres 1 [POT1],
TRF1 and TRF2 interacting nuclear protein 2 [TIN2], TINT1-TIN2
interacting protein, PIP1-POT1 interacting protein, PTOP-POT1 and
TIN2 interacting protein [TPP1] and repressor activator protein 1
[Rap1]) [4]. The  primary role of shelterin is to mark telomeres as the
natural chromosome ends and suppress the DNA damage response
pathways at telomeres [5]. Readers are referred to the excellent
comprehensive reviews about the end-protection mechanisms con-
ferred by the shelterin complex [5–6].

Due to the inability of the conventional DNA polymerases to
completely duplicate linear chromosomal DNA and additional
nuclease degradation of telomeric DNA, telomeres in human
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somatic cells progressively shorten as cells divide [7]. Critically
short telomeres result in telomere deprotection and activate DNA
damage response pathways, leading to cellular senescence or
apoptosis. Such progressive loss of telomere DNA is visualized as
a mechanism to limit the proliferative ability of the dividing cells
[7]. Telomere damage response can also be triggered by disrupt-
ing the functions of shelterin proteins.

The majority of tumour cells acquire cellular immortality and
stabilization of telomere length by activating a normally  dormant
enzyme, telomerase, which extends the 3� end of the chromo-
somes to replenish the telomeric repeats in a sequence-specific
manner. Telomerase is a special reverse transcriptase consisting
of an RNA subunit hTR that serves as the template and a catalytic
protein subunit telomerase reverse transcriptase (hTERT). It is
expressed during early embryogenesis and subsequently down-
regulated in most somatic cells [8]. The activity of telomerase is
tightly  regulated in vivo at the level of its expression as well as its
 biogenesis [9–13].

The fact that the majority of cancer cells require telomerase
activity to maintain telomeres makes telomerase an attractive tar-
get in clinical medicine. Telomerase inhibition therapies targeting
hTERT, hTR or its associated proteins are picking up pace.
Inhibition can be carried out by using telomerase inhibitor ligands
such as Imetelstat (lipid modified 13 mer oligonucleotide
N3�→P5� thiophosphoramidate [GRN163L]) [14–18] and anti-
sense oligonucleotides [19–21]. Applying more than one strategy
is also in place to enhance the anti-cancer effect. Strategies such
as combining RNAi with hammerhead ribozymes [22] or using
natural telomerase inhibitor with chemotherapeutic agents have
been reported [23]. Telomerase immunotherapy has also been
shown to have promising developments [24].

Apart from cancers, dysfunctional telomeres are associated
with a number of disorders such as dyskeratosis congenita 
(DC). Mutations seen in DC patients involve genes such as hTR
[25–26], hTERT [27], dyskeratosis congenita 1 (DKC1) (encoding
dyskerin), components of H/ACA small nucleolar ribonucleopro-
tein complex (NOP10 and NHP2) [28–30]. The latter three genes
are key components of telomerase ribonucleoprotein complex
[31]. Defective dyskerin, NOP10, NHP2 impair the assembly of
telomerase complex. Mutations in hTR impair the level and accu-
mulation of telomerase RNA and mutations in hTERT leads to hap-
loinsufficiency in telomerase activity [32–33]. In a recent report,
mutations in a shelterin component TIN2 also lead to DC [34].
Taken together, it is suggested that DC is a telomere maintenance
disorder. Patients with DC display bone marrow failure, pulmonary
fibrosis, mucocutaneous abnormalities and defects in the highly
replicating tissues such as the hematopoietic cells. Extensive
chromosomal recombinations and greater susceptibility to acute
myeloid leukaemia and other cancers are associated with DC
patients as well [35–36]. Other dysfunctional telomeric  disorders
that are associated with inherited mutations in genes responsible
for telomere maintenance include aplastic anaemia, acute myeloid
leukaemia and idiopathic pulmonary fibrosis [35–36]. Therefore,
telomere maintenance and telomerase are currently the promising
targets in cancer and aging related therapeutics.

Telomere DNA replication: 
not a cake walk for the replication fork

Faithful replication of chromosomal DNA is critical for genome
stability. Replication of telomeric DNA is thought to be initiated
from origins located in the sub-telomeric region [37]. The
TTAGGG (G-rich) strand is replicated by discontinuous lagging
strand synthesis initiated by small RNA primers. After the last RNA
primer is removed, there is no mechanism to fill in the gap,  
leaving the daughter telomeres shorter than the parental ones.
Meanwhile, the CCCTAA (C-rich) strand is replicated by continu-
ous leading strand synthesis, making them blunt-ended. The 
C-rich strand is further processed/resected by nucleases and
 helicases including mammalian Apollo to generate longer ss 
G-overhangs [38]. These ss G-overhangs are finally converted into
the protective t-loops to stabilize telomeres.

Due to the unusually long G-rich repetitive tracts and the unique
telomere chromatin structures at chromosome ends,  replication
fork faces a number of potential challenges while passaging through
the telomere region. Examples of these  challenges that are very 
stable in vivo and difficult to resolve include G-quadruplexes, 
heterochromatinized DNA and the special t-loop structure.

G-quadruplexes, also referred to as G-quartets or G4, are  stable
inter- or intra-molecular structures held intact by four  guanine
residues through Hoogsteen base-pairing [39]. During replication,
separation of ds telomeric DNA exposes the ss G-rich strand, trig-
gering the formation of G-quadruplexes. Their resolution requires
the actions of helicases such as Bloom syndrome protein (BLM)
and Werner syndrome protein (WRN) to further the movement of
replication fork. The activities of ss DNA  binding protein replication
protein A (RPA) and the shelterin component POT1 are also neces-
sary towards this end [40–41]. Thus, various players contribute
towards the reduction of this structural difficulty for the passage of
the replication fork through the telomere region to ensure a faithful
replication. On the other hand, strategies to promote and stabilize
the G4 structure with small molecules such as telomestatin and G4
ligand 3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium
methosulfate (RHPS4) induce defective telomere replication, and
are effective cancer therapeutic approaches [23, 42–43].

Chromatin in the telomeric and sub-telomeric regions is highly
repressed and termed as heterochromatin. Heterochromatinized
environment is proposed to be a mechanism that negatively reg-
ulates telomere elongation, as the loss of chromatin modifiers
leads to a substantial elongation of telomeres [44]. Furthermore,
lack of DNA methylation deregulates telomere length homeosta-
sis and leads to accelerated telomere recombination events [45].
It appears that a higher-order epigenetic regulation may control
both telomere length homeostasis and telomeric protective
function. Although this regulatory  mechanism is poorly under-
stood, a formal possibility is that the heterochromatinized envi-
ronment poses a challenge for the  replication fork to pass
through the telomeric repeats. Efficient and accurate resolution of
heterochromatin structure is necessary for the faithful replication
of telomeric DNA and proper maintenance of chromosome ends.
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In addition, t-loop itself poses a challenge to DNA replication.
This special chromatin structure bound by various proteins is
unlikely to rotate freely and is considered as a topological barrier.
As the replication fork approaches telomere end, superhelical
stress in the unreplicated DNA accumulates. Unwinding of t-loop
is essential for resolving such topological stress and allowing effi-
cient and complete replication of telomeric DNA.

The above events may result in replication fork stalling which
then activates ataxia telangiectasia mutated-/ataxia telangiectasia
and Rad3 related (ATM-/ATR)-mediated DNA damage response,
leading to cell growth arrest or creating a situation that may lead
to accelerated telomere attrition. In fact, telomeres resemble fragile
sites resulting from defects in replication and are prone to  deletions
and chromosome rearrangements [46]. In higher eukaryotes these
issues seem to be tackled by mainly two protein consortiums:

(1) Actions of replication proteins at telomeres: To deal with the
difficulties in telomere replication, replication proteins ought
to have robust activities. In addition, they perform multiple
functions and participate in multiple pathways including
DNA repair to ensure genome stability. The mechanism of
the actions of replication proteins at telomeres is still poorly
understood, and whether it is the same as general replica-
tion or enhanced at telomeres is yet to be explored.

(2) Actions of telomeric proteins in resolving the challenges
faced by the replication fork: Passage of replication fork
through telomeric tracts requires coordinated actions of
telomeric proteins with replication factors. This may involve
either the resolution of structural difficulties or just aiding in
the assembly of the higher-order replication complex (RC).

Functions of replication proteins 
in telomere maintenance

Studies of the activities of replication proteins from lower eukary-
otes such as yeast and ciliates indicate that telomerase extension
of telomeres is in close collaboration with replication machinery.
However, the complexity of telomere structure in higher eukary-
otes requires more enhanced mechanisms to be functional. Here,
we review a number of proteins playing multiple roles in replica-
tion, repair and other processes, and discuss their roles specific to
telomere DNA replication.

DNA polymerase �-primase (pol�/primase)
The pol�/primase complex consists of four subunits responsible
for initiating the lagging strand DNA synthesis de novo [47]. The
p48 and p58 subunits form the catalytic primase that synthe-
sizes a short RNA primer. The 180kD subunit of the complex,
p180 or pol�, synthesizes short stretches of DNA following the
RNA primer, while another subunit, p70 or the B subunit or
PolA2, is thought to regulate the p180 activity [47]. The pivotal
role of pol� in telomere maintenance was initially reported in

lower eukaryotes. In budding yeast pol� is essential for telom-
erase extension of telomere ends [48]. Mutations in pol� lead to
a telomerase-independent increase in the amount of G-over-
hangs specifically in S phase [49–50], and show telomerase-
dependent telomere elongation [51]. Furthermore, pol� interacts
with Cdc13p, a telomere binding protein that regulates telom-
erase-mediated telomere extension [52]. Analogous physical
interaction between lagging strand replication machinery and
telomerase has also been detected in the ciliate Euplotes crassus
[53] and fission yeast [54]. In fission yeast, mutation in pol�
leads to telomere length abnormalities and decrease in telom-
erase protein stability [54]. Taken together, it is likely that in
lower eukaryotes, replication apparatus and telomeric com-
plexes aid in the fine tuning of telomerase action to generate the
homeostatic telomere length.

Pol� has been implicated in telomere maintenance in higher
eukaryotes as well. In a mouse mutant cell line harbouring a temper-
ature sensitive allele of pol�, inhibition of pol� induces an increase
in the amount of G-overhangs and increases POT1 and TRF1 bound
to telomeres [55]. Such alteration in telomere structure contributes
to genome instability as revealed by an increase in Robertsonian
chromosome fusions. In human cells, pol� localizes to telomeres in
both S phase and G2 phase [56], presumably for DNA synthesis and
the delayed C-strand synthesis (see below) [57]. Due to the com-
plexity of the genome in higher eukaryotes, homeostatic telomere
length may be achieved by unique mechanisms. This may involve
additional roles of replication proteins in close collaboration with
telomeric factors. At present, the function of pol� in telomere main-
tenance in higher eukaryotes remains poorly understood.

Replication protein A
RPA binds to and stabilizes the ssDNA intermediates encountered
during various DNA metabolic processes by using the evolutionar-
ily conserved oligonucleotide/oligosaccharide (OB)-fold domains
[58–59]. Initially thought as a DNA replication component, RPA has
emerged as an important player in DNA repair, checkpoint activa-
tion, and cell cycle regulation. It is now known to be important for
telomere maintenance and participates in multiple activities at
telomeres, thus validating its role as a genome guardian [60].

RPA is a heterotrimeric complex consisting of three subuints –
RPA70, RPA32 and RPA14 [61]. During DNA replication, RPA
coats ssDNA and acts as a molecular platform for the assembly
and activation of the pre-RC, thus recruiting the pol�/primase
complex to the origin of replication [62]. During DNA repair, RPA
interacts and activates components like PCNA, RFC and pol�, per-
haps to stabilize the ssDNA structures arising during repair [59].
RPA also has a role in checkpoint activation by mediating an ATR-
mediated DNA damage response [63].

In budding yeast, a double mutant for RFA1 (hRPA70 homo-
logue) and yKu70 showed a synergistic shortening in telomere
length, indicating a role of RPA in telomere length regulation [64].
In fission yeast, a mutant similar to the above double mutant dis-
plays both DNA damage sensitivity and shortened telomeres [65].
Both Rfa1 and Rfa2 (hRPA34 homologue) localize to telomeres

© 2011 The Author
Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd



6

during the S phase, and a mutant Rfa2 lacking the N-terminus
showed impaired binding by Est1p, suggesting a role of RPA in
telomerase action [66].

Our understanding on human RPA primarily comes from 
biochemical assays with purified proteins. In vitro, human RPA mod-
ulates telomerase activity, stimulates WRN’s activity in disrupting 
D-loops, and is able to unfold telomeric G-quadruplexes [40, 67–69].
During replication of genomic DNA, RPA is thought to coat ss DNA
as replication fork passes. However, biochemical analysis shows
that its affinity to ss G-rich DNA is about two times weaker com-
pared to the shelterin protein POT1 [70], raising the question of how
the ss telomeric DNA is protected during replication at the telomeric
region. It will be interesting to know how RPA interplays with shel-
terin components such as POT1 and other ss DNA binding proteins
(e.g. Cdc13-Stn1-Ten1 [CST]) during the replication of telomeres.

RecQ helicases
RecQ is a conserved family of helicases including RecQ1, RecQ4,
RecQ5, BLM and WRN. These enzymes are essential for maintaining
genomic integrity, as mutations in these proteins are associated
with hereditary cancer predisposition syndromes [71–73].

Cumulative evidence suggests the importance of RecQ heli-
cases in telomere replication. In budding yeast, RecQ helicase
Sgs1 helps in efficient resolution of telomeric recombination.
Failure to do so leads to premature aging in yeast mother cells
[74–76]. Studies on cells derived from Werner syndrome patients
show that WRN-deficient cells specifically lose telomeres repli-
cated by lagging strand synthesis, and a dominant-negative
mutation in WRN leads to increased telomere loss and aberrant
chromosomal recombination [70, 77–78]. Comparable telomere-
associated phenotype has been observed in mice null for both
WRN and mTerc [79–80]. Given that WRN localizes to telomeres
during the S phase [78], and the helicase activity of WRN
unwinds G-quadruplexes [81–82], it is highly possible that WRN
is an important player in resolving structural barriers generated
during replication. In agreement with this view, the amount of ss
G-rich DNA significantly increases during S phase upon the
removal of WRN, suggesting replication fork stalling at lagging
telomeres [70]. Notably, both TRF2 and POT1 are able to stimu-
late WRN’s helicase activity in vitro [81, 83–84]. Taken together,
it appears that the WRN helicase activity is enhanced by telomere
specific proteins for efficient telomere replication.

Another mammalian RecQ helicase, BLM, may play an overlap-
ping function alongside WRN. BLM gene is mutated in Bloom’s
syndrome, an autosomal recessive disorder associated with cancer
predisposition and premature aging [73]. Bloom’s syndrome cells
show increased genomic instability, sister chromatid exchanges
and elevated levels of chromosomal aberrations including translo-
cations [85–87]. Like WRN, BLM is able to unwind G-quadruplexes
[88–89]. It binds to TRF1 and its helicase activity can be stimulated
by certain shelterin proteins on a variety of DNA structures in vitro
[81, 83, 90]. Thus, its helicase activity is likely to be needed for effi-
cient replication of telomeric DNA as well. Indeed, BLM-deficient
cells show a high frequency of fragile telomeres [46].

Flap endonuclease 1 (FEN1)
FEN1 is a conserved, structure-specific endonuclease involved in
various DNA metabolic pathways [91–92]. It recognizes a dsDNA
with a 5� displaced flap structure, a common intermediate  arising
during lagging strand replication and long patch base excision
repair [92]. FEN1 possesses three distinct nuclease activities:
5�→3� FEN, 5�→3� exonuclease and gap-dependent endonucle-
ase (GEN) [93]. The FEN activity is used in the removal of RNA
primers during Okazaki fragment processing either alone on short
flaps, or with Dna2 on longer flaps [94–96]. FEN1 is also needed
in DNA repair, particularly in the removal of damaged base [93].

Studies from budding yeast suggest that the FEN1 homologue
Rad27 is likely to be responsible for the generation of G-over-
hangs at the lagging telomere ends [97–98]. Possibly due to the
role of Rad27 in G-overhang generation, deletion of rad27 causes
an accelerated senescence phenotype in strains also lacking com-
ponents required for telomerase activity [98].

In human cells, FEN1 localizes at telomeres during the S and
G2 phases of cell cycle and associates with at least one  shelterin
protein, TRF2 [56, 99]. In telomerase-expressing cells, FEN1
forms a complex with the catalytic component of  telomerase,
hTERT [100]. Although the functional importance of this associ-
ation is yet to be explored, it has been shown that FEN1 deple-
tion leads to progressive telomere shortening in  cancer cells
[100], suggesting that FEN1 may assist telomerase in elongating
telomeres. In addition, FEN1-deficient mouse embryonic fibrob-
lasts showed increased telomere end-to-end fusions [100].

In telomerase negative human fibroblasts, depletion of FEN1
leads to the loss of sister telomeres replicated by lagging strand
synthesis, and as a consequence, resulting in an increase of dys-
functional telomeres as revealed by �-H2AX precipitated telomere
DNA [101]. This is attributed to FEN1’s GEN activity, which has
been implicated in replication fork re-initiation [102–103].
Mutational analyses indicate that both FEN1’s GEN activity and its
ability to interact with WRN helicase are required for its role at
telomeres, suggesting that stimulation of FEN1 activity by WRN is
essential for replication fork re-initiation. This is reminiscent of the
observation that WRN stimulates FEN1 through direct interaction
[104], and that FEN1’s GEN activity is shown to be required for
resolving stalled replication forks [102]. Consistent with its role in
lagging strand replication of telomeres, FEN1 appears to be able to
efficiently process 5� DNA flap substrates bearing G4 quartets
[105]. Taken together, FEN1’s collaborative role with other factors
to re-initiate stalled replication forks may be one of its functions,
yet the functional significance of its interactions with telomerase
and TRF2 remain to be determined.

Dna2
Dna2 is a helicase and nuclease whose function is implicated in
the maturation of Okazaki fragments alongside FEN1 on longer
flap intermediates [96]. In Saccharomyces cerevisiae, Dna2 
localizes at telomeres in a cell cycle regulated manner and has a
role in both telomere replication and perhaps capping as well
[106]. In S. pombe Dna2 is also involved in the generation of
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telomeric overhangs [107]. However, its telomeric function in
higher eukaryotes remains largely unknown.

Functions of telomere binding proteins 
in telomere replication

Shelterin proteins that tightly bind to telomeric DNA were once
considered as blockades for telomere replication. It was thought
that they might be displaced from telomeres as replication fork
moves along the telomere region until recent studies suggest that
efficient and faithful replication of the repetitive telomeric DNA
requires the participation of these telomere protective proteins.

TRF1
TRF1 is an abundant shelterin protein that binds to the duplex telom-
eric repeats with a role in telomere length regulation. Recently, its
role has emerged to be predominant in efficient telomere replication.
Loss of TRF1 leads to aberrant telomere structural changes resem-
bling common fragile sites, which activate the ATR kinase in S phase
[46]. Single-molecule analysis of replicated DNA reveals that the
absence of TRF1 greatly weakens replication efficiency, suggesting
that TRF1 promotes efficient replication of telomeric DNA by prevent-
ing fork stalling [46]. This study further stresses the notion that the
telomeric region poses a great challenge to replication machinery.

Consistently, deletion of Taz1 (TRF1 homologue) in fission
yeast causes a block in telomere replication, resulting in aberrant
telomeric fragments [108]. As a consequence, Taz1 depleted cells
show rapid telomere loss in the absence of telomerase [108].
Collectively, it is obvious that TRF1 not only helps in telomere cap-
ping and telomere length control, but also promotes efficient
telomere replication, perhaps by recruiting helicases such as BLM
and RTEL1 and other factors to the stalled replication forks [46].

TRF2
Like TRF1, TRF2 is also a duplex DNA binding shelterin protein
essential for telomere end protection and length regulation. It
plays a monumental role in the formation of the protective t-loop
structure. Recent studies have discovered TRF2 as an essential
player in assisting efficient replication of telomere DNA, but likely
with a mechanism different from TRF1. First, TRF2 preferentially
binds to positively supercoiled DNA in vitro and is enriched at
telomeres upon the loss of topoisomerase 2 (Top2�) activity
[109]. TRF2 also induces positive supercoiling of DNA, suggest-
ing that its binding to positive supercoils may be energetically
favoured [110]. Such activities are proposed to be used for sens-
ing the topological stress created by fork progression and then
recruit proteins such as Apollo and Top2� to release the topolog-
ical strain [109]. Second, TRF2 is potentially involved in the
 dissolution of t-loops and holliday junctions [110]. This event is
speculated to be aided by local telomere unwinding factors such

as BLM and WRN. Furthermore, TRF2 is likely to be involved in
the formation of pre-RC in order to initiate replication at telom-
eres, as TRF2 interacts with the origin recognition complex (ORC)
and reduction of TRF2 leads to reduced ORC binding and pre-RC
assembly at telomeres [111–112]. In agreement with this view, a
recent in vitro study using Xenopus cell free extract shows that
TRF2 binds to the telomeric DNA substrates to initiate replication
in an origin-dependent manner [113]. Notably, pre-RC proteins
such as ORC2, minichromosome maintenance (MCM)6, Cdc6
also assembled following the binding of TRF2 [113]. How TRF2
could promote all these activities  probably relies on the formation
of different protein complexes through its wide array of pro-
tein–protein associations [114]. Some of these associations in
the context of replication are Apollo, WRN, BLM and FEN1 [84,
90, 99, 109]. It has been proposed that TRF2 essentially acts as
a protein hub and coordinates the associations with various pro-
teins by recruiting them to telomeres at different stages during
the cell cycle for efficient telomere maintenance [115].

Apollo
Apollo is a 5→3� exonuclease acting in a TRF2-dependent manner
in protecting telomere ends from DNA damage response during
the S phase [116–117]. Its nucleolytic activity is implicated in the
protection of leading strand telomeres and efficient G-overhang
maintenance in mammalian cells [38], but appears to be dispen-
sable for G-overhang generation in human cells [109]. Expression
of the nuclease-inactive Apollo results in S-phase specific defec-
tive telomeres, leading to increased telomeric fusions and acceler-
ated onset of senescence [109, 117]. Apollo’s nuclease activity is
also crucial for protecting interstitial telomere repeats [109],
strongly suggesting that Apollo could be involved in the progres-
sion of replication fork through telomeric chromatin. Such protec-
tion is achieved by the cooperation between TRF2, the nuclease
activity of Apollo, together with Top2� to effectively resolve the
positive superhelical stress generated during the replication of
telomeric DNA [109]. However, the molecular mechanism of this
coordination remains to be elucidated.

POT1
POT1 binds to ss G-overhang and plays an essential role in telom-
ere capping and chromosome end-protection [12, 118–123]. It
represses the activation of ATR-mediated DNA damage response
induced by dysfunctional telomeres [123–124]. Moreover, bio-
medical analysis shows that human POT1 protein stimulates the
activities of the helicases WRN and BLM in unwinding G-quadru-
plexes in vitro [81]. In the absence of WRN, POT1 is required for
normal replication of leading daughter telomeres [70]. It is further
demonstrated that purified POT1 possesses a higher affinity to ss
G-rich DNA than RPA, which accumulates at telomeres when WRN
is deficient [70]. It is possible that POT1, together or in competition
with RPA, binds to ss G-strand during replication and prevents a
full replication fork stalling and activating the ATR kinase.
Alternatively, POT1 may have additional functions in compensating

© 2011 The Author
Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd



8

for the absence of necessary factors like WRN to carry out telomere
replication, such as preventing the formation of G-quadruplex
structures in telomeric DNA [41].

The above findings have revealed that shelterin proteins are
required for solving telomere replication problems in addition to
their protective functions in telomere capping, telomere length
regulation and repressing DNA damage response. It will be inter-
esting to know the roles of other shelterin components such as
TPP1, TIN2 and Rap1 in telomere replication. A model summariz-
ing the roles of various proteins in telomere DNA replication is
provided in Fig. 1A.

The delayed telomeric C-strand 
synthesis at late S/G2 phase – 
an additional regulatory step 
of telomere maintenance

Elongation of telomeres requires extension of both strands of
telomeric DNA. While telomerase elongates the G-strand,  extension
of C-strand is thought to be accomplished by a DNA polymerization
step similar to lagging strand synthesis. Lack of this synthesis

© 2011 The Author
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Fig. 1 (A) Activities of shelterin and replication factors during telomere replication. Challenges encountered while replication fork passes through  
telomere repeats are G-quadruplexes, heterochromatin, topological barriers and t-loops. The roles of various proteins in resolving these structural barri-
ers that hamper replication fork progression is illustrated. WRN and BLM helicases unwind G4 and help in dissolving t-loops. TRF2, POT1 and RPA may
also participate in unfolding G4 by stimulating the activities of WRN and BLM. TRF2 is essential for both forming and dissolving the t-loop. Progression
of replication fork toward telomere ends causes local unwinding and subsequent accumulation of positive supercoils in the unreplicated DNA, which are
efficiently resolved by TRF2 along with Apollo and Top2�. TRF2 and FEN1 may possibly resolve the branched structures. (B) Diagram showing the
 possible events occurring at telomeres during and after telomere replication. Telomeres are replicated throughout the S phase. Replication of lagging
strands produces ss G-overhangs, which are bound and extended by telomerase. During the late S/G2 phase, Pol� is recruited back to telomeres, most
likely by CST, to carry out C-strand synthesis. In order for the blunt ended leading telomeres to be accessible to telomerase, they undergo initial  
resection to generate ss overhangs immediately after replication. It is unclear whether leading telomeres experience further end resection and C-strand
synthesis during the late S/G2 phase. The processed telomere ends are converted into the protective t-loops.
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would give rise to excessive long ss G-rich DNA, which could harm
telomere protection. Indeed, this additional DNA synthesis process
termed C-strand fill-in or C-strand  synthesis has been observed in
S. cerevisiae. Remarkably, C-strand  synthesis occurs at the same
time as telomerase extension of telomeres and appears to regulate
telomerase activity in yeast [48, 125–126]. Recently, two
independent  studies have revealed that human telomeres undergo
C-strand synthesis as well [57, 127]. However, in human cells, this
synthesis step is delayed until the late S/G2 phase, following global
DNA replication and telomerase extension of telomeres [127], sug-
gesting that it is independent of telomerase action (Fig. 1B).
Therefore, the delayed C-strand synthesis could be more divergent
in evolution. The current prevailing model of telomerase extension
following telomere replication and being separate from C-strand
synthesis may be an enhanced mechanism to avoid the persistence
of excessive ss G-rich DNA generated  during replication and further
counteract accelerated telomere shortening in mammals.
Regardless of the purpose of C-strand fill-in, this delayed synthesis
may be unique to telomeres and mechanistically different from gen-
eral lagging strand replication, thus providing a new strategy for
cancer therapeutics. Inhibition of C-strand synthesis in tumour cells
is expected to  disrupt telomere maintenance without actually affect-
ing the overall telomere replication. This opens up a new arena 
of research toward understanding the precise mechanistic details of
C-strand synthesis and determining the factors responsible for 
regulating this event.

Our lab has recently shown that inhibition of pol� activity during
the late S/G2 phase completely blocks C-strand synthesis, sug-
gesting that C-strand synthesis requires the activity of pol� [57].
Furthermore, inhibition of the activity of one of the major kinases
regulating the cell cycle progression, cyclin-dependent kinase 1
(CDK1), accumulates ss G-overhangs at late S/G2 phase, indicat-
ing that C-strand synthesis may be under the control of CDK1 [57].
These observations provide molecular insight into the mechanism
regulating C-strand synthesis in human cells.

The CST complex
While the molecular targets of CDK1 at telomeres and how it controls
pol�-mediated C-strand synthesis still remain to be determined, an
evolutionarily conserved RPA-like heterotrimeric complex, the CST
complex, has emerged as a key player in regulating C-strand synthe-
sis [57, 128–129]. In budding yeast, telomerase action and C-strand
fill-in is excellently coordinated by the CST complex. CST specifically
binds to telomeric ssDNA via the putative OB-fold domains and 
protects telomere ends in multiple ways by repressing telomerase
activity, restricting extensive nuclease degradation of C-strand and
mediating C-strand fill-in [52, 126, 130–136]. Cdc13 has a dual role
in both positively and negatively regulating telomerase. It binds to 
G-rich strand DNA and recruits telomerase (Est2 and Est1) to telom-
eres [130]. Dysfunction of Cdc13 leads to extensive C-strand degra-
dation and G-overhang elongation [126, 137]. Yeast Stn1 negatively
regulates telomerase action and coordinates DNA replication of the
opposing telomeric C strand [133–134, 136–137]. Based on the
associations of both Cdc13 and Stn1 with pol�, it is proposed that
this complex could mediate the C-strand fill-in [52, 138].

The presence of the CST homologues in higher eukaryotes has
recently been validated [128–129, 139–140]. The mammalian CST
is formed by Ctc1-Stn1-Ten1 [129]. This complex binds to ssDNA
in a sequence-independent manner and localizes at telomeres [129].
Depletion of components of CST leads to a significant increase of 
G-overhangs in human telomeres and induces  telomere dysfunction
[57, 128–129]. Interestingly, hCtc1 and hStn1 is also known as �
accessory factors AAF132 and AAF44 due to their ability to stimulate
pol� activity in vitro [141]. Thus, it is highly likely that mammalian
CST may promote the recruitment of pol�/primase complex to the
telomere DNA to carry out C-strand synthesis (Fig. 1B).

Given the multifunctional roles of yeast CST at telomeres, it is
likely that mammalian CST may play additional roles such as
telomerase regulation, telomere capping and perhaps restricting
C-strand resection. Consistent with this notion, hStn1 associates
with one telomere capping protein TPP1 and C-terminal deletion
of hStn1 results in telomere elongation [142]. Furthermore, recent
genome-wide association analysis has linked the genetic variation
of hStn1 with alteration in telomere length [143]. These observa-
tions underscore the necessity to further our understanding of the
telomeric function of mammalian CST.

Conclusions and perspectives

The last couple of decades have seen a surge of complex and
dynamics world at telomeres. With the discovery of the growing
number of proteins involved in telomere maintenance, it becomes
evident that coordination between their actions is necessary for 
fulfilling the protective function of telomeres. Efficient strategies for
cancer therapeutics can be developed only when a detailed 
mechanistic knowledge prevails on all the events taking place at
telomeres. Examples of important areas that remain to be investi-
gated are: t-loop structure formation and resolution before and
after replication, the effects of telomeric heterochromatin on telom-
ere maintenance, the concerted action of replication proteins and
telomeric factors in safeguarding telomere integrity, the interplay
between CST and shelterin components for regulating telomerase
activity and telomere stability and regulation of C-strand synthesis.
With the increasing wealth of knowledge and the advancement of
technology, we expect rapid progress in unravelling the enigmatic
events of telomere maintenance in the years to come.
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