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Abstract: Encapsulation of cargoes in nanocontainers is widely used in different fields to solve the
problems of their solubility, homogeneity, stability, protection from unwanted chemical and biological
destructive effects, and functional activity improvement. This approach is of special importance
in biomedicine, since this makes it possible to reduce the limitations of drug delivery related to
the toxicity and side effects of therapeutics, their low bioavailability and biocompatibility. This
review highlights current progress in the use of lipid systems to deliver active substances to the
human body. Various lipid compositions modified with amphiphilic open-chain and macrocyclic
compounds, peptide molecules and alternative target ligands are discussed. Liposome modification
also evolves by creating new hybrid structures consisting of organic and inorganic parts. Such
nanohybrid platforms include cerasomes, which are considered as alternative nanocarriers allowing
to reduce inherent limitations of lipid nanoparticles. Compositions based on mesoporous silica
are beginning to acquire no less relevance due to their unique features, such as advanced porous
properties, well-proven drug delivery efficiency and their versatility for creating highly efficient
nanomaterials. The types of silica nanoparticles, their efficacy in biomedical applications and hybrid
inorganic-polymer platforms are the subject of discussion in this review, with current challenges
emphasized.

Keywords: drug delivery; liposome; non-covalent modification; surfactant; peptide; macrocycle;
mesoporous silica; hybrid nanocarriers; cerasome

1. Introduction

One of the ways to improve the effectiveness of medical therapies is the use of drug
delivery systems. This makes it possible to increase bioavailability and biocompatibility of
drugs, to optimize their release profile, overcome biological barriers, and control targeting
properties, cellular uptake and intracellular trafficking [1–3]. Of particular interest is the
delivery of anticancer drugs that can, in the future, reduce the severity of disease and
mortality rate. The chemotherapy drugs used today for the treatment of tumors, such as
5-fluorouracil, methotrexate and doxorubicin (DOX), do efficiently suppress tumors, but
also cause concomitant tissue damage, which leads to the development of adverse reactions
comparable in severity to the underlying disease. In this concern, the nanosystems capable
of shielding a chemotherapy drug from interacting with healthy tissues and their release
after penetrating into tumor cells, are of great interest. Despite numerous publications
on the topic, this problem has not yet been fully resolved, and further progress in this
area is obviously related to a rational design of nanocarriers with controlled transport
properties, morphology and size, taking into account the behavior in biological media and
mechanisms of penetration into cells.

To construct drug carriers, numerous strategies are developed, in which different
factors should be taken into account, including size characteristics, composition of formu-
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lations, nature and therapeutic indications of the drug, and a route of administration. A
powerful tool for engineering the formulated medicines is their conjugation with functional
ligands, thereby producing prodrugs with beneficial characteristics. For this purpose,
polyethylene glycol (PEG), peptides and amphiphilic molecules are used [4–8], which
allow modifying pharmacokinetics, toxicity, targeting properties, stimuli responsibility and
other effects. Alternatively, encapsulation techniques are used, which provide effective
facilities for the design of drug delivery systems. Importantly, the combination of these
approaches may be successfully applied, resulting in synergic effect. Encapsulation strate-
gies address different techniques and involve numerous types of systems composed of a
variety of materials, which can be basically divided in organic and inorganic carriers. In
turn, the two main families of organic systems are those based on amphiphilic (lipid and
surfactant) [9–11] and polymeric [12,13] compounds. Both these groups provide marked
advances in efficacy of loaded drugs due to optimizing their circulation and stability in
bioenvironment. Essential feature of organic formulations is soft nature of the systems that
allow for tailoring of morphology and shape characteristics, thereby providing the diversity
of forms and sub-types of nanocarriers, including liposomes, solid lipid nanoparticles,
nanostructural lipid particles, nanoemulsions, cubosomes, polymersomes, etc. [14,15]. In-
organic nanoparticles, e.g., metal oxides, gold and silica particles, fullerenes, quantum dots,
etc., provide effective and versatile platform for the fabrication of drug delivery vehicles
and diagnostic imaging agents [16–18]. These materials demonstrate exclusive optical, mag-
netic and electric properties in combination with enhanced loading capacity, mechanical
stability, easy fabrication, controlled size and/or pore characteristics and other beneficial
features, which can be tailored through proper choice of synthetic and functionalization
techniques. Meanwhile, the highest biomedicine potential in terms of efficacy of therapy,
safety, targeted delivery, triggered release, reduced toxicity and side effect can be offered
by hybrid nanocarriers [19–22]. The current trends towards the development of hybrid for-
mulations allow for attaining the synergy of beneficial properties of organic/inorganic [18],
polymer/inorganic [19], lipid/inorganic [20], lipid/polymer [21] systems, etc.

The urgency of this review is motivated by an intensively developed sphere of drug
delivery, which is reflected in sharp growth of publications on this theme. High interest
of researchers in the design of different types of nanocontainers occurs, with a clear trend
towards multifunctional and complicated formulations observed. Meanwhile, there are
a number of recent comprehensive reviews in different specific aspects, in which drug
delivery systems are classified based on the chemical nature and prescription of a medicine,
the type of nanocarriers [9], the target site [3,23,24] and the administration route [25,26].
Alternatively, based on the above analysis, two distinct families of nanocarriers, namely,
lipid formulations and silicon-containing nanoparticles (Figure 1), as well as intermediary
cerasomes, have been chosen herein, with a focus on recent publications covering the drug
encapsulation technique and emphasizing the aspects insufficiently highlighted elsewhere,
e.g., development of hybrid formulations via non-covalent modification of nanocarriers
aimed at the improving of their stability, targeting effects, multicentered drug loading
and toxicity profile. First, liposomal formulations are discussed, with main attention
paid to those non-covalently modified with surfactants, peptide moieties, macrocycles
and other ligands that may offer targeting properties, morphological diversity, additional
binding sites for drugs, etc. Further, mesoporous silica nanoparticles are reviewed, with
those modified by polymers emphasized. Various liposomal forms containing inorganic frag-
ments, namely lipid-modified mesoporous nanoparticles and cerasomes are also considered.
Such structure of the review may allow researchers to receive comparative analysis of these
nanocarriers and their potential applications for different drugs and administration pathways.
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Figure 1. Main types of lipid- and silicon-containing nanoparticles, comprising many kinds of
nanocarriers that can be used to achieve the best medical performance.

2. Lipid Formulations: Modification with Surfactants, Peptides, and Macrocycles
2.1. Lipid Nanocarriers Modified with Amphiphilic Molecules

Liposomes are currently the most efficient and traditional drug delivery systems [1,2,9].
They are composed of phospholipids, which are the structural basis of all cell membranes,
providing a good penetration of liposomes to cells. The advantage of such nanocarriers is their
versatility, biocompatibility and biodegradability. In addition, liposomes are relatively easy to
obtain under laboratory and industrial conditions. For these reasons, many FDA-approved
liposomal preparations are available as anti-cancer and anti-fungal drugs, and even more
potential formulations are on clinical trials [9]. It is known that instability under physiological
conditions makes it difficult to use naked liposomes as targeted delivery systems without prior
modification. Therefore, serious efforts have been undertaken to develop further generations
of liposomal carriers, including stealth (PEGylated), antibody-conjugated liposomes, etc. [1,2].
Meanwhile, the problem of instability in bioenvironment may be reduced by inducing the
charge on the surface of liposomes. This in turn may increase their ability to overcome
biological barriers, thereby ensuring the loading and delivery of anionic forms of drugs and
gene material mediated by cationic lipid carriers [27,28].

Promising strategy is the functionalization of liposomes with surfactants, which al-
lows for controlling the size, shape and charge characteristics of vesicular nanocarriers,
improving drug loading, overcoming the biological barriers, etc. [29–36]. Key factors that
should be considered upon the modification are the nature of surfactant head group, hy-
drophobicity and presence of unsaturated C-C bonds in alkyl chains, and lipid/surfactant
ratio [29]. It was demonstrated that surfactants are capable of irreversible integration with
lipid bilayer far beyond their critical micellar concentration due to lateral interactions [30],
thereby markedly changing surface characteristics of liposomes. Surfactant-modified vesi-
cles exhibit essentially improved physicochemical properties and functionality, which
in some cases resulted in the isolation of special types of flexible or elastic (deformable)
vehicles with enhanced skin permeability, the so-called transferosomes [26,31–33], and
alternative carriers, niosomes [35].

Research activity of our group focuses on self-assembling amphiphilic systems,
with their design, aggregation ability and functionality as drug delivery systems
emphasized [2,37,38]. Recently, much attention has been paid to non-covalent modifi-
cation of liposomes with surfactants [37–40], with cationic liposomes attracting special
interest [41–47]. In [39,40] lipid nanoformulations based on L-α-phosphatidylcholine (PC),
cholesterol (CHO) and hybrid amphiphilic ligands–quaternary ammonium salts with a
sterically hindered phenolic (SHP) moiety with benzyl (SHP-2-Bn) and alkyl tails (SHP-2-R,
where R=CnH2n+1, n = 8, 10, 12, 16) were obtained and characterized. Cationic liposomes
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based on PC with a diameter of 100 nm, modified with benzyl derivatives of SHP, exhibit
more pronounced antioxidant activity than individual SHP-n-Bn. It has been found [39]
that the stability, encapsulation efficacy, loading capacity and release from liposomes of
a model dye, Rhodamine B, depend on the structure of SHP-n-Bn. Cationic liposomes
based on PC and SHP-2-Bn show good stability in time (1 year) and sustained release
(>65 h). A decrease in the antioxidant activity of SHP-n-Bn-liposomes with an increase
in the length of the spacer has been shown. Alkyl-conjugated SHPs exhibit inhibition
activity against acetylcholinesterase (AChE) and butyrylcholinesterase in combination
with antioxidant properties, which allowed them to be considered as candidates for drugs
against Alzheimer’s disease. Based on the data on self-assembly, their lipophilicity has
been optimized and the relationship between biological activity and toxicity has been
evaluated, which served as fundamentals for the development of multitargeted liposomal
formulations [40]. Intranasal (in vivo) administration of PC/SHP-2-Bn/SHP-2-16 lipo-
somes to rats (dose SHP-2-16 8 mg/kg) showed their ability to overcome the blood-brain
barrier (BBB), providing the inhibition of AChE in the brain (up to 15.46%) (Figure 2). This
makes it possible to develop potential effective drugs with a prospect in the treatment of
Alzheimer’s disease.
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AChE inhibition level in vivo (C) after intranasal administration of PC/SHP-2-Bn/SHP-2-16 nanoparticles. * p = 0.028 and
** p = 0.004 indicate differences by Mann–Whitney test. Reprinted with permission from [40]. Copyright 2020 Royal Society
of Chemistry.

Cationic liposomes were successfully used as drug carriers for overcoming the BBB,
both via intranasal and intravenous administration [41,43]. For this purpose, liposomes
based on PC were modified with double-chained surfactant dihexadecylmethylhydrox-
yethylammonium bromide [41]. This amphiphilic compound showed spontaneous self-
assembly under low concentration of 0.01 mM, along with high solubilization and an-
timicrobial effects. Cationic liposomes of 100 nm bearing zeta potential of +25 mV were
stable in time and characterized with high encapsulation efficiency of 90% toward encap-
sulated molecules, including AChE acetylcholinesterase reactivator pralidoxime chloride
(2-PAM). In this study, 12% reactivation of brain AChE poisoned by organophosphorus
pesticide, paraoxon, was achieved through intranasal administration of 2-PAM-loaded
cationic liposomes, which appeared more advanced compared to intravenous route.

Cationic liposomes modified with hydroxyethylated gemini surfactant 16-6-16(OH)
were designed in [43], based on fundamental data on self-assembly and functional activity
of the geminis [48,49]. Liposome composition was optimized (lipid/surfactant molar
ratio = 35:1), so that delicate balance was attained between colloidal stability and toxicity
caused by cationic surface charge. These 2-PAM-loaded liposomes were able to overcome
BBB and reactivate phosphorylated AChE by 27% after intravenous administration, with
no hemagglutination observed. Generally, toxicity of cationic formulation is one of the
serious limitations, which require special precautions in every case. It was shown [50]
that the increase of positive charge on the surface of the liposomes contributes to their
greater penetration through the nasal epithelium, thereby ensuring a longer residence



Int. J. Mol. Sci. 2021, 22, 7055 5 of 50

time for liposomal formulations in the nasal cavity. However, given the information that
this is accompanied by increase in toxicity, the modification of liposomal formulations
with biocompatible cationic polysaccharides, such as N-trimethyl chitosan or chitosan
was used [51], with the former demonstrating superior effects over the latter in terms of
biocompatibility and water solubility.

Today, mitochondrion is recognized as a key target in therapy of a large variety of
serious diseases, including diabetes, neurological and metabolic disorders, cancer, and
others [3,52–55]. Mitochondria biomedicine has developed progressively as a special
research field focusing on the design of mitochondria-tropic formulated drugs. In this
regard, positively charged carriers are of particular interest due to their electrostatic affinity
toward mitochondrion membranes bearing high negative potential. The most effective
mitochondria-targeted ligand is the lipophilic triphenylphosphonium (TPP) cation that can
be conjugated with different platforms, including liposomal vehicles [52–55]. In our recent
publications [56,57], self-assembly and solubilization capacities of homological series of TPP
surfactants have been evaluated with the aim of engineering of micellar nanocontainers and
gene carriers. Further, non-covalent strategy was evolved for the design of mitochondria-
targeted liposomes modified with TPP surfactants [42]. Considering that both the surface
charge and toxic effect depend on alkyl chain length of surfactants, liposomal composition
was optimized to ensure the balance between the stability, loading capacity and safety of
formulations. Confocal microscopy study testified that Rhodamine B-loaded TPP-modified
liposomes possess higher colocalization with the mitochondria of pancreatic tumor cells
compared to unmodified formulations.

Given the information available on physicochemical and self-assembly behavior of
two homological series of cationic surfactants with phosphonium and imidazolium (Im)
head groups [56–60], an idea appeared to test whether amphiphilic imidazolium cation
demonstrates the similar mitochondria-targeting effect as TPP analogs. For this purpose,
liposomal formulations based on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)
DPPC were subjected to non-covalent modification with TPP- and Im-based surfactants
with a tetradecyl hydrocarbon tails [47]. It has been shown that the obtained liposomes
have a high degree of encapsulation efficiency toward Rhodamine B and DOX, as well as
a significant positive charge, due to which their high shelf-life has been achieved (more
than 4 months). Modified liposomes loaded with DOX accumulate in large amounts in
duodenal adenocarcinoma and lung adenocarcinoma tumor cells, causing dose-dependent
apoptosis. Importantly, similar to TPP cation, Im-based ligand is able of imparting the
mitochondria-targeting to the nanocontainers (Figure 3), which was proven by confocal
microscopy assays exemplified by A-549 and HuTu 80 cell lines. In the latter case, even
higher Pearson coefficient occurs for Im versus TPP-based ligand.
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Im-modified liposomes exhibit excellent long-term stability and high loading capacity
toward a variety of drugs and spectral probes [44–46]. The authors of [44] obtained
70–100 nm sized liposomal formulations based on DPPC and Im-based amphiphiles with
various length of hydrophobic tail for the encapsulation of a drug metronidazole. It has
been shown that the modification of DPPC liposomes with such cationic amphiphiles
resulted in zeta potential increase from +3 mV to +45–70 mV and improved the particle
stability for a long time (more than 6 months, while unmodified liposomes decompose
after 2 weeks). Notably, hybrid liposomal formulations composed of octadecyl derivative
have the highest value of encapsulation efficiency of 75% for metronidazole.

Two types of nanocontainers, micellar and liposomal, were prepared in [45] for con-
jugated derivative of pteridine and benzimidazole with antitumor activity. For micellar
systems, an increase in solubility of the hydrophobic bioactive compound occurs in the
series Tween 80 < CTAB < Im-16 surfactants. Optimized DPPC-based liposomes with
lipid/Im-16 molar ratio of 50:1 exhibit long-term stability, size of 90 nm, low PdI ≤0.1 and
prolonged release profile. Liposomal bioactive formulations show high cytotoxic activity
toward M-HeLa cell line comparable with DOX, with a marked selective effect observed
(cytotoxicity toward Chang Liver cell line was 37-fold lower).

DPPC-based liposomal carriers modified with a hydroxyethylated imidazolium sur-
factant with hexadecyl tail (Im-16-OH) were loaded with two hydrophilic drugs, antibiotic
chloramphenicol and anticancer drug cisplatin [46]. Encapsulation techniques allowed
for a 4-fold decrease the hemolytic activity of chloramphenicol and enhanced antitumor
effect of cisplatin toward M-HeLa cells. Colocalization assay testified that decoration of
liposomes with Im cation facilitated targeting properties of formulations to mitochondria
compared to unmodified carriers.

To fabricate the cationic liposomes different ligands and techniques are documented.
The authors of [61] obtained cationic liposomes non-covalently modified with N,N,N-
triethyl-N-(12-naphthoxydodecyl) ammonium bromide loaded with β-lactam antibiotic
cefepime. It has been found that cefepime-loaded liposomes have a high inhibitory activ-
ity against Escherichia coli in vitro. The efficacy of cationic resveratrol-loaded liposomes
modified with stearylamine in the treatment of hepatocellular carcinoma was described
in [62]. The optimized liposomal formulation composed of soy lecithin, cholesterol and
stearyl amine was a sphere of 145.78 ± 9.9 nm with zeta potential of +38.03 ± 9.12 mV
and encapsulation efficacy (EE) of 78.14 ± 8.04%. The in vitro biocompatibility of such
liposomes was confirmed by the absence of cytotoxicity against fibroblast L929 cell lines,
as well as blood erythrocytes. In vitro cell culture assay showed an increased uptake of
resveratrol-modified liposomes by hepatocellular carcinoma (HepG2) cells, which leads to
a greater tumor cell killing ability compared with free resveratrol. In vivo pharmacokinetic
and pharmacodynamic studies revealed selective accumulation of modified liposomal
formulations in liver tumor tissue.

Alternatively, the synthesis of liposomes covalently modified with a quaternary ammo-
nium compound for combination therapy against bacterial infection has been given in [63].
The quaternary ammonium compound ((11-mercaptoundecyl)-N,N,N-trimethylammonium
bromide (MTAB)) has been attached to maleimide-functionalized liposomes via a thiol
linker. Modified liposomes have been characterized by physicochemical methods. Their
biological activity, in terms of antiadhesive activity and biofilm prevention in Escherichia
coli has been evaluated. The results showed that MTAB-functionalized liposomes inhibit
bacterial adhesion and biofilm formation, while reducing MTAB toxicity.

Thus, an analysis of the literature on the modification of liposomes with surfactants
has shown their efficacy in medicine as means of delivery and treatment of a number
of diseases. Stabilization of liposomal formulations, targeting effects and overcoming
of the biological barriers have been achieved by the presence of a charge on the surface
of liposomes, which can be obtained by non-covalent and covalent modification with
cationic surfactants. Non-covalent modification has a significant advantage over covalent
modification in that there are no time-consuming multi-step organic synthesis procedures.
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2.2. Peptides as Targeting Ligands for Lipid Formulations

Among other liposome modifications, a very promising way to enhance tumor speci-
ficity and therapeutic efficiency is to decorate liposomes with peptides. This can be easily
done by anchoring of a peptide to the bilayer with a lipid-like moiety. So far, peptides used
in liposomes have been conjugated to alkyl chains, hydrophobic amino acid sequences,
lipids and pegylated lipids. According to the current review, the most common method
of liposome modification in recent years is chemical conjugation of a peptide to a carboxy
group or a thiolated peptide to maleimide group at the tip of the PEG chain (typically,
1,2-Distearoyl-sn-glycero-3-phosphorylethanolamine (DSPE) is used as an anchor). This
approach is based on the need of liposomes to be long-circulating in the bloodstream,
which is achieved by PEG addition, and to be able to selectively bind to desired sites such
as tumor cells by providing a specific peptide modification.

Generally, a peptide attached to the liposomes serves a simple purpose of attachment
of the liposome to a desired cell type, so that the drug carrier is concentrated and retained
in tumor tissue to enhance the therapeutic effect and to lower systemic toxicity. Recently,
the tripeptide Arg-Gly-Asp (RGD) was the most frequently used sequence for tumor
targeting due to its short length and affinity to integrins, which are overexpressed on the
surfaces of many types of cancer cells [64,65]. Among others, the cell penetrating peptides
(CPPs) can be segmented to their own group; however, they lack cell specificity and are
usually used in combination with active targeting peptides to help increase the cellular
uptake [66]. Another group of peptides is targeting vascular endothelial growth factor
receptor 2 (VEGFR-2), human epidermal growth factor receptor 2 (HER2) that are abundant
in various cancer cell types and new tumor vasculature [67–69]. In the brain-targeted group,
the most common targets are nicotinic acetylcholine receptor α7 (nAChR α7), neuropilin-1
and Interleukin-13 receptor subunit alpha-2 (IL-13Rα2) [66,70–73].

The most common way of liposome modification is addition of a functionalized
pegylated lipid to the initial lipid mixture for thin film formation. Additionally, it was
proposed in 2002 that liposomes can be functionalized by the post-insertion method since
a hydrophobic anchor, present in such lipids as CHO or a lipid double chain moiety, is
thermodynamically driven to be inserted into the liposome bilayer [74]. Since then, not
much fundamental research has been devoted to this method, among which Kros’s group
has varied different hydrophobic moieties, such as adamantane, hydrocarbon chains, CHO
or lipid moiety, to compare their insertion efficiency and evaluate the ability of coiled
coil-forming peptides to facilitate intermembrane fusion [75,76]. The work has shown that
the hydrophobicity of the anchor can be crucial in some cases such as membrane fusion,
where alkyl tails are not sufficient and a bulkier CHO moiety is required. Further, the
nature of the hydrophobic anchor is important, as different anchors can induce different
peptide conformations and thus can affect the peptide affinity to the target site.

Nowadays the researcher is facing a lot of challenges when developing a liposomal
formulation. The liposomes, ideally, must be able to accumulate at a desired location in the
body, must be morphologically intact at any point before reaching the target, and once at the
desired location, they must undergo cellular uptake and bypass lysosomal decomposition,
and at this point, the contents should be released. Often one functional modification is not
enough for a liposome, so peptide combinations are used. Such approach of combinational
peptide liposome formulation has been done recently which allowed for glioma in vivo
targeting and blood–brain barrier crossing by combining a cell-penetrating peptide R8
and transferrin [77]. Alternatively, dual-functioning peptides are being used, usually
a cell-penetrating TAT peptide fused with a targeting peptide, for example, the NF-κB
essential modulator binding peptides (NBD), since they are targeted at cell nuclei and
must be able to traverse the cell membrane (Figure 4) [78]. Another recent example is
CB5005, a sequence that contains a Leu-Ala rich hydrophobic domain for cell-penetrating
properties and a targeting domain for nuclear localization [79]. The DP7-C sequence is
one of such peptides, since it promotes both caveolin- and clathrin-dependent uptake as
well as acting as an immune adjuvant, which makes the peptide an excellent ligand for
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mRNA delivery [80,81]. In fact, most promising peptides for nanocarrier modification
are the ones that possess multiple aspects of activity, such as cell-penetrating, targeting,
immune adjuvant, antimicrobial or stimuli-responsive properties.
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(HA/TN-CCLP). After intravenous injection, HA/TN-CCLP preferentially accumulate at the tumor tissues. (A) HA
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This different class of peptides can be outlined as the ones designed to possess pH-
dependent properties for targeting the low pH media of cancerous tissues. In this regard, a
novel pHLIP peptide was developed and demonstrated for sensing acidic environment and
trigger cargo release [82]. A H6L9 peptide designed to be pH-sensitive produces a negative
charge for the liposome surface at pH 7.4, but in tumor environment (pH 6.3) it obtains a
positive charge that makes liposomes adhere to the tumor cells, and in combination with
the RGD motif the developed formulation was found to accumulate in C26-based colon
tumor in vivo [83].

Another interesting approach to peptide design is retro inversion. A D-peptide was
developed based on A7R peptide (ATWLPPR) that targets VEGFR2 and neuropilin-1 which
is a retro inverso isomer DADTDWDLDPDPDR comprised of D-amino acids and it appeared
to be more efficient for in vivo glioma targeting that the L-counterpart [84]. Same was
found for the L- and D-versions of the CDX lipid that is targeted at nAChR α7 and the
combination of DCDX and DA7R was able to target modified liposomes to glioma cells
successfully in vitro and in vivo [70,71,85]. A DT7 peptide designed to bind to transferrin
was successfully screened on liposomes and showed very promising results in an in vivo
hepatocellular carcinoma xenograft model [86].

The well-known RGD sequence is still being used due to its simplicity and useful
integrin-targeting functionality to enhance cellular uptake [87,88]. Alternative αvβ3 tar-
geting sequences are being developed as well, which is important for the development of
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peptide-based formulation state of art. So, a mnRwr (lower case letters stand for D-amino
acids) sequence was developed to target αvβ3 integrin. The proposed motif has better
immunocompatibility compared to the c(RGDyK), and was more efficient at binding to the
αvβ3 integrin. Overall, the novel mmRwr peptide was able to target glioma, angiogenesis,
vasculogenic mimicry and produce a therapeutic effect when attached to DOX-loaded
liposomes [89]. Another novel peptide targeting this protein is P1c that was shown to
be efficient at targeting αvβ3 expressing cancer cells [90]. A similar trend can be seen for
cell-penetrating peptides. There are well-recognized sequences such as Pep-1, TAT that
are classified as CPPs, which are often used in combination with targeting functions [91].
However, search for novel peptide sequences for cell penetration is still ongoing and novel
motifs are introduced. For example, to significantly enhance docetaxel cytotoxicity on
PEGylated liposomes in the ng/L range of drug, the RIPL peptide was introduced [92].
While similar to the CPPs, the TD sequence is also able to temporarily open the paracellular
pathway and is best suited to enhance skin penetration for topical drug delivery [93].
A comparative study of six peptide ligands (Angiopep-2, T7, Peptide-22, c(RGDfK), D-
SP5 and Pep-1) was conducted by Chen et al. to find that a combination of cRGD and
Peptide-22 is very efficient at crossing BBB and blood-brain tumor barrier (BBTB) and tar-
geting tumor cells in vivo on intracranial glioma-bearing mice [72]. PSP peptide is a novel
penetratin-derived CPP incorporated in liposomes for treatment of fibrosarcoma in mice.
In a combination with the NGR peptide, it was used for simultaneous targeting of CD13
expressing tumor cells as well as enhanced cellular uptake [94]. Other recently developed
sequences such as RF [95] are being tested as CPPs. Another interesting sequence bearing
both cell-penetrating properties and pH sensitivity is H7K(R2)2, developed by Zhao et al.,
which is transitioning from a hydrophobic state in normal pH to a hydrophilic state in
acidic conditions, which destabilizes the modified liposomes for cargo release [96].

Various methods of liposome functionalization with peptides are shown in Figure 5.
The recent examples of novel successful peptides-based formulations are briefly listed in
Table 1. Most of the work devoted to peptide-modified liposomes involves pegylated lipids
capped with peptides for liposome modification. Although this approach does find success
in screening both in vitro and in vivo, there is yet some critique towards application of long
PEG chains capped with targeting ligands and towards the covalent methods of liposome
modification, such as variable coupling yield, possibility of side reactions, and necessity
of liposome purification after the insertion [97,98]. Furthermore, the general principle of
targeted liposome preparation has some limitations. Traditionally, PEG-2000 is chosen as a
stealth additive at 5–8 mol%. Later work has shown that there are practically no benefits
for using more than 2 mol% of PEG-2000. It is also now known, contrary to the idea of the
necessity of full liposome surface coverage, that while 2 mol% of PEG-350 is only covering
about 17% of a 100-nm liposome, it is increasing the circulation time by almost 8 times.
Protein binding and opsonization have been questioned as the crucial factors of circulation
time prolongation, and alternative explanation has been proposed that PEG chains shield
particles from coalescing and aggregating together in the bloodstream, keeping them as
intact nanoscale particles [98]. Further work on the details of PEG application has shown
that longer chains, starting with molecular weight of 2000 can obtain an undesirable coiled
conformation that may hide the tip of the chain, where the targeting ligand is located,
thus reducing the efficiency of targeting. It was shown that using short PEG-350 chains
for stealth properties, and a little bit longer PEG-550 chains with targeting ligands is the
optimal way to achieve efficient pegylated liposome uptake by the cells [97]. Despite
the discovered problems associated with PEG, very few publications [68,99] in the recent
years are utilizing the principles found by these fundamental papers. The researcher
is encouraged to apply these data to design more advanced peptide-based liposomal
formulations and to produce effort in liposome targeting technique optimization.
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Figure 5. Different examples of liposome modification methods: (A) chemical conjugation to prepared
liposomes (usually a fast reaction is applied such as thiol-maleimide coupling); (B) hydration with
aqueous solutions of functionalized lipids (CHO shown as a sample anchoring moiety), or post-
insertion; (C) incorporation of functionalized lipids to the initial lipid film.

Table 1. Recent work examples (5 years to date) involving peptide-modified liposomes listed with corresponding peptides,
targets or purposes, and the methods of liposome functionalization.

Ref Peptides Targets and Special
Properties Incorporation Mechanism Object

[70]
DCDX

(DGDRDEDIDRDTGDRDADEDRDWDS-
DEDKDF)

nAChR α7, overcoming
the BBB Thin film, DSPE-PEG anchor

U87 and mouse brain
microvascular endothelial

cells bEnd.3

[100,101] APRPG VEGFR-1, choroid
treatment

Carbodiimide mediated
conjugation to carboxyl on

lipids to prepared liposomes
C57BL/6J mice, eye

[80] DP7-C (VQWRIRVAVIRK) Dendritic cells, immune
adjuvant

Hydration with aqueous
CHO-anchored peptide

solution

293T and DC2.4, JAWSII
and bone marrow-derived

dendritic cells
C57BL/6 J mice

[87] cRGD
αvβ3 and αvβ5 integrins,
localization in lung, brain,

breast cancers
Thin film, DSPE-PEG anchor MDA-MB-231 breast

cancer cells

[66] PFVYLI and R9F2 and transferrin
Enhanced internalization

and targeting brain
capillary endothelial cells.

Thin film, DSPE-PEG anchor
1-day-old rat brain cell

cultures, Sprague Dawley
rats, C57BL/6 mice

[89] mn (mnRwr) αvβ3 integrin, localization
in glioblastoma Thin film, DSPE-PEG anchor

HUVEC, U87 MG,
HL7702, HEK293 cells,
BALB/c nude and ICR

mice

[79] CB5005
(KLKLAALALA-VQRKRQKLMP)

NF-κB (Nuclear factor-kB),
a mechanism that

suppresses apoptosis, to
overcome irinotecan

resistance

Thin film, DSPE-PEG anchor
and

Ethanol sol injection
A549, male nude mice

[91]
Pep-1

(KETWWETWWTEWSQPKKKRK-
VC)

Enhanced cellular uptake Thiol-maleimide conjugation
to prepared liposomes

5637 and MBT2 bladder
cancer cell lines

[71] D8 (DRTGDRDADREDW)
nAChR (nicotinic

acetylcholine receptor),
overcoming the BBB

Thin film, DSPE-PEG anchor Male SD rats, ICR mice,
BALB/c nude mice
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Table 1. Cont.

Ref Peptides Targets and Special
Properties Incorporation Mechanism Object

[92] RIPL (IPLVVPLRRRRR-RRRC)
Enhanced cellular uptake,

localization in hepsin
overexpressing tissue

Thiol-maleimide conjugation
to prepared liposomes SK-OV-3 cells

[67] THP (WNLPWYYSVSPTC)

HER2 (Human epidermal
growth factor receptor-2),

localization in breast,
ovary, gastric, prostate

cancers

Thin film, CHO anchor MDA-MB453 cells

[86] DT7 (D(HAIYPRH)) Transferrin receptor Post-insertion

Fresh mouse serum
HepG2, A549 and

SK-OV-3 cells
BALB/c nude mice

[78] TAT-NBD (YGRKKRRQRRRGTTL-
DWSWLQMEC)

NF-κB (Nuclear factor-kB),
a mechanism that

suppresses apoptosis, to
overcome drug resistance

Thin film, DSPE-PEG anchor

4T1, RAW264.7, HUVEC
cells

Female BALB/c nude
mice

[102] (RL)4G-NH2 Enhanced cellular uptake Post-insertion HEK cells

[90] P1c (CIRTPKISKPIKFELSG) αvβ3 integrin, localization
in liver

Post-insertion, DSPE-PEG
anchor U87MG and MCF-7 cells

[82]
pHLIP ((ACEQNP-

IWARYADWLFTTPLLLLDLALLV-
DADEGT)

Low pH, localization in
acidic media (tumors) Thin film, DSPE-PEG anchor Thorough liposome

characterization

[103]
BP100 (KKLFKKILKYL-NH2),

BP100-Ala-NH-C16H33,
Cyclo(1-4)-cILC-BP100

Antibacterial action Thin film
Escherichia coli,

Staphylococcus aureus,
Bacillus subtilis

[93] TD (ACSSSPSKHCG)

Transcellular permeation
by opening the

paracellular pathway,
melanoma treatment

Thin film, DSPE-PEG anchor
A375, B16F10, HUVEC

cells
BALB/c nude mice

[72] Angiopep-2, T7, Peptide-22,
c(RGDfK), D-SP5 and Pep-1

LRP1 (lipoprotein
receptor-related protein-1),
TfR (Transferrin receptor),
Low-density lipoprotein
receptor, αvβ3 and αvβ5

integrins, IL-13Rα2,
overcoming the

BBB/BBTB

Thin film, DSPE-PEG anchor
BCEC and HUVEC cells

Intracranial glioma
bearing mice

[88] cRGD, D-(KLAKLAK)2

Localization in tumors
and vascular endothelial
cells and mitochondria

targeting

Thin film, DSPE-PEG anchor 4T1 and HUVEC cells
BALB/c mice

[104] GNRQRWFVVWLGSTN-
DPV-propargylglycine

Fibronectin, localization in
bladder Thin film, DSPE-PEG anchor MB49 cells

[105] ASSHNGC Tumor vessels Maleimide conjugation

hEPC, B16BL6 and
Colon26 NL-17 cells

C57BL/6 and BALB/c
mice

[73] Cys-R4, Cys-R4-dGR, Cys-R6 and
Cys-R6-dGR

αvβ3 integrin,
neuropilin-1 Thin film, DSPE-PEG anchor

C6 glioma cells, tumor
spheroids,

Xenograft tumor-bearing
BALB/c mice

[68] KCC (KCCYSL)
HER2 (Human epidermal
growth factor receptor-2),

localization in breast

Thin film, DSPE-PEG and
DSPE-[Serine-Glycine]3,5,7

anchors

SK-BR-3 and
MDA-MB-231 breast

cancer cells

[106] L1 (EKEKEK-EPPPPGG)
Protection from protein

adsorption for stealth-like
properties

Direct hydration, freeze-thaw
cycles and extrusion.
Dipalmitoyl anchor

MIA PaCa-2 cells

DW4 (Transferrin receptor DNA
aptamer)

Transferrin receptor,
cancer cellular uptake

Thiol-maleimide conjugation
to prepared liposomes

[83] [D]-H6L9 and RGD Low pH medium and
αvβ3 integrin Thin film, DSPE-PEG anchor

C26 and MCF-7 cells
C26 tumor bearing

BALB/c mice

[96] H7K(R2)2

Cell penetration, low pH
responsiveness,

localization in glioma
Thin fil, DSPE-PEG anchor C6 and U87 MG cells

C6 bearing BALB/c mice
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Table 1. Cont.

Ref Peptides Targets and Special
Properties Incorporation Mechanism Object

[107] L(R/K)QZZZL (Z-hydrophobic
amino acids)

Transcytosis, overcoming
the BBB Thin film, DSPE-PEG anchor MBEC4 cells

[76] E4 [(EIAALEK)4] and K4
[(KIAALKE)4]

Membrane fusion for
endocytosis Thin film, CHO-PEG anchor HeLa-K and HeLa-M cells

Zebrafish HeLa xenograft

[94]

PSP
(CGRRMKWKK-1-(bromomethyl)-

4,5-dimethoxy-2-nitrobenzene), NGR
(CYGGRGNG)

Enhanced cellular uptake Post insertion, DSPE-PEG
anchor

HT-1080, MCF-7 cells
BALB/c mice

[95] RF (GLKKLARLFHKLLKLGC) Enhanced cellular uptake Maleimide conjugation to
prepared liposomes PC-9, bEnd.3 cells

[81] DP7-C
(Chol-suc-VQWRIRVAVIRK-NH2)

Enhanced cellular uptake,
antibacterial activity

Hydration with a
CHO-conjugated peptide

solution

HEK293 and LO2 cells
BALB/c mice with

MRSA-infectious murine
model

(methicillin-resistant
Staphylococcus aureus)

[69] c7AR
VEGFR-2 and

neuropilin-1, localization
in glioma

Thin film, DSPE-PEG anchor

HUVEC and U87 cells
Matrigel based model
SD rats, U87 xenograft
bearing BALB/c mice

[108] YSA (H6-PEG-YSAYPDSVPMMS)
EphA2 (ephrin type-A

receptor 2), localization in
lung

Post insertion, H6 anchor A549 cells
Nu/nu mice

[109] OVA-I (SIINFEKL), and OVA-II
(PSISQAVHAAHAEIN-EAPβA)

MHC (major
histocompatibility

complex) and dendritic
cells

Post insertion
DC2.4, EL4, E.G7-OVA

cells
Female C57BL/6 mice

2.3. Lipid Formulations: Modification with Macrocycles (Cyclodextrins, Calixarenes
and Porphyrins)

Despite the generally recognized benefits of liposomal carriers responsible for their
wide application [110,111], there are several problems limiting the application of liposomes,
such as stability issues, low drug entrapment, particle size control and short circulation
half-life of vesicles [112]. The non-covalent inclusion of macrocycles in the liposomal
structure helps to solve problems related to stability, inclusion of insoluble drugs into
liposomes, drug-to-lipid ratio, target delivery and toxicity. In 1994 for the first time,
the macrocyclic cyclodextrins (CDs) were entrapped into liposomes [113]. The inclu-
sion complexes of dehydroepiandrosterone, retinol and retinoic acid were formed with
2-hydroxypropyl-β-CD (HP-β-CD) or β-CD polymers. Then, water-insoluble drugs in
the form of CD-inclusion complexes were entrapped into the multilamellar liposomes by
the dehydration–rehydration procedure. When loaded liposomes were exposed to blood
plasma, almost all amount of CD remained inside the liposomes; however, the release of
drugs was considerable, which is explained by the partial displacement of the drug from
the CD cavity to the surface of lipid membrane.

In [114], β-CD, methyl-β-CD (M-β-CD), HP-β-CD inclusion complexes containing
poorly water-soluble drugs, sulfamerazine (SMR) and indomethacin (INM), in liposomes
prepared from egg PC and CHO were obtained. According to DLS (dynamic light scat-
tering) data, empty and drug-loaded liposomes were monodisperse small unilamellar
vesicles. The stability of liposomes with embedded drugs and CDs was determined by
the retention of calcein encapsulated in vesicle. The retention percentages for PC/CHO
(3:1) liposomes containing SMR or INM were over 70% and 95%, respectively, indicating
that the vesicles are stable even with the encapsulated drugs. Liposomes containing β-CD,
HP-β-CD remained their integrity (retention of calcein was over 80%), while liposomes
loaded with M-β-CD lost their stability within 48 h, which is explained by the ability of
M-β-CD to form micelles with lipids. The drug per lipid concentration values were 308.98
and 10.14 mmol/mol for SMR and INM compositions, respectively. Entrapment value for
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INM in the presence of HP-β-CD with PC/CHO (3:1) liposomes were 43 times higher, in
comparison with the pure liposomes. However, CDs did not improve the entrapment of
SMR into liposomes due to high affinity of this hydrophobic drug for the lipid bilayer.

To increase the solubility and stability of hydrophobic drug CUR in blood, the CD/CUR
inclusion complexes were entrapped into liposomes by the dehydration-rehydration vesicle
method [115]. Drug-in-CD-in-liposome (DCL) formulations have significantly higher (up to
~2 times) loading efficiencies for CUR, compared to the conventional liposome. Herewith,
liposomes containing HP-γ-CD complex demonstrate ~1.5 times higher loading efficiencies
than those with the HP-β-CD complex. DCL approach increases CUR loading by ~23 times
(depending on the lipid composition and CD used), resulting in higher solubility. CUR
stability (at 0.01 and 0.05 mg/mL) in 80% (v/v) fetal bovine serum was evaluated at
37 ◦C. CUR stabilization was similar in hybrid (CUR -in-CD-in-liposome) and conventional
liposomes. The entrapment of CUR in liposomes increases up to 56 times the amount of
intact CUR in FBS after 24 h.

With the aim to improve the aqueous solubility of clove essential oil and its main
component eugenol, DCL and double-loaded liposomes (DCL2), embedded with essen-
tial oil and eugenol were prepared at laboratory and large scale using a membrane con-
tactor [116]. The sizes of the liposomes obtained by syringe injection and in the reac-
tor were similar and well suited for further use in various industries (mean size from
199 ± 14 nm to 248 ± 29 nm with PDI from 0.150 ± 0.05 to 0.23 ± 0.06 and zeta potential
from −13.5 ± 1.9 mV to −4.7 ± 0.5 mV). When eugenol was loaded into liposomes in the
form of an inclusion complex with HP-β-CD, the loading rate increased by ~2 times for
DCL and ~2.8 times for DCL2 compared to conventional liposomes without a macrocycle.
For the first time, DCL formulations were freeze-dried and their stability was evaluated
after reconstitution of lyophilized liposomes. In contrast to DCL2 systems, DCLs were
stable in aqueous and lyophilized forms after 1 month storage at 4 ◦C. It was shown that
HP-β-CD loaded into the aqueous core of the liposome in the case of DCL protects the
system during freeze-drying [117].

The DCL approach was also used to improve the effectiveness of liposome load-
ing with anethole (ANE), an essential oil component [118]. HP-β-CD/ANE inclusion
complexes were encapsulated into liposomes (ACL), prepared from Phospholipon 90H
or Lipoid S100. Moreover ANE-double-loaded liposomes (ACL2), where ANE is addi-
tionally added to the organic phase, were obtained. According to DLS and transmission
electron microscopy studies, all the obtained vesicles had oligolamellar morphology. The
DCL system significantly improved the loading of ANE. The values of loading rate were
~2 and ~3.5 times higher for ACL-90H and ACL2-90H, respectively, in comparison with
ANE-loaded liposomes without HP-β-CD. Furthermore, the loading rates were higher
for formulations with Lipoid S100 than Phospholipon 90H. It was also shown that the
introduction of ANE in a complex with HP-β-CD into liposomes leads to an increase
in photostability. UV radiation protection of ANE was improved by ~12, ~36, ~45 and
~67 times for ACL-90H, ACL2-90H, ACL-S100- and ACL2-S100, respectively, in compari-
son with free ANE in aqueous solution. All formulations except ACL2-S100 were stable
after 15 months of storage at 4 0C and ensured the retention of more than 25% of ANE.
Further study [119] of the stability of ANE-loaded liposomes showed that the presence of
HP-β-CD protects liposomes prepared from hydrogenated (Phospholipon-90H and 80H)
phospholipids during freeze drying. Freeze-dried ACL-90H were physically stable upon
reconstitution in HP-ß-CD solutions and ensured the retention of ANE after 6 months of
storage at 4 ◦C.

In the next work [120], the authors used the same approach to improve the physico-
chemical properties of quercetin (Quer). Liposomes based on Lipoid E80 had small diame-
ter, narrow size distribution, and higher encapsulation efficiency of Quer as compared to
formulations with Lipoid S100 and Phospholipon 90H. However, DCLs showed a lower en-
capsulation efficiency of Quer than conventional liposomes without the macrocycle (EE %
for conventional liposomes and DCLs were 71.0 ± 2.0% and 27.9 ± 6.7%, respectively) due
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to the limited capacity of the aqueous core of liposomes to entrap CD/Quer inclusion com-
plex. The photostability of Quer-loaded liposomes prepared with Lipoid E80 were higher
than that with other lipids. Furthermore, the use of DCLs (sulfobutylether-β-CD/Quer in
Lipoid E80 liposomes) provides additional photostability in comparison with conventional
liposomes. Upon exposure of DCLs to 254-nm ultraviolet C during 72 h, more than 70% of
Quer remained in the solution. The stability of Quer in simulated gastro-intestinal fluids
was also higher with DCLs than conventional liposomes. All liposome formulations were
physically stable and effectively retained Quer after 1 year of storage at 4 ◦C.

The encapsulation of nerolidol, a natural sesquiterpene, into Lipoid E80 liposomes
as HP-β-CD/nerolidol complexes is described in [121]. The EE% values of nerolidol were
~97% and 93%, respectively, for HP-β-CD/nerolidol molar ratios of 1:1 and 2.5:1. However,
high encapsulation efficiency (>97%) of nerolidol was also observed in conventional lipo-
somes without HP-β-CD addition at different molar ratios of E80/nerolidol (100:1; 100:2.5;
100:5 or 100:10). The best loading capacity of nerolidol (70.76 ± 4.40%) was determined for
DCL with E80/HP-β-CD/nerolidol molar ratio of 100:30:30. DCLs delayed the nerolidol
release in comparison with CD/nerolidol inclusion complexes and conventional liposomes
due to more barriers (macrocycle, lipid bilayer) to be overcome before release. It was shown
that the release was more delayed with increasing CD/nerolidol molar ratios. Furthermore,
DCLs formulations demonstrated higher photoprotection of nerolidol than conventional
liposomes. The amount of nerolidol in liposomes and DCLs remained up to 99.99% and
98.67%, respectively, after storage for a year at 4 ◦C.

In order to improve the loading and delivery of paclitaxel (PTX), an anticancer drug,
the double loaded PEGylated liposomes (DLPLs) containing PTX and PTX- dimethyl-β-CD
complex were prepared by thin film hydration [122]. The solubility of pure PTX in water
was 0.38 ± 0.05 µg/mL at 25 ◦C, and it was increased to 11.1 ± 0.22 mg/mL in a complex
PTX/dimethyl-β-CD (1:20). According to DLS, the DLPLs were 162.8 ± 4.1 nm in diameter
with PDI of 0.18 ± 0.004 and −5.6 ± 0.14 mV zeta potential. The obtaining of nanoscale
particles was important for preventing of opsonization of the liposomes by phagocytes,
enhanced permeability to tumor sites, and retention effect. The DLPLs entrapped 1.2 mg of
PTX/mL, which was ~2 times higher than the loading efficiency of conventional PEGylated
liposomes, PLs (0.58 mg PTX/mL). The in vitro drug release study showed that liposome
formulations did not exhibit pH dependent release. Moreover, DLPLs had lower hemolysis
and higher cytotoxicity on SKOV3 cells resulting in IC50 values ~4.2 and ~2.5 times lower
than that for Taxol® and PLs, respectively, after 48 h. In vivo pharmacokinetic study in rats
revealed that PTX in DLPLs has a prolonged release profile, higher plasma concentration,
and is more slowly eliminated from the circulation in comparison with Taxol®. In addition,
the acute toxicity study with mice confirmed the safety of PTX-loaded liposomes.

The DCL approach was applied for temoporfin (meta-tetrakis(3-hydroxyphenyl)chlorin,
mTHPC), a clinically approved photosensitizer, to improve the targeting of poorly soluble
mTHPC [123]. The DCL formulations were prepared using various β-CD derivatives (HP-
β-CD, M-β-CD and heptakis(2,3,6-tri-O-methyl)-β-CD (TM-β-CD)) and different amounts
of mTHPC by thin film hydration. Using spectroscopic techniques, it was found that
mTHPC molecules are mainly located in the inclusion complexes with β-CDs in the inner
aqueous core of DCLs. The hydrodynamic diameter of DCLs varied from 125.7 ± 0.9 to
142.2 ± 0.8 nm with PDI between 0.037 ± 0.015 and 0.146 ± 0.040. The relatively strong
negative surface charge of DCLs from (−36.7 mV) to (−39.0 mV) could prevent their aggre-
gation ensuring colloidal stability. The DCL formulations with M- and trimethyl-β-CD as
well as Foscan® (commercial temoporfin formulation) remained stable more than 3 months.
However, DCL based on HP-β-CD tended to degrade after 1.5 month of storage at 4 ◦C
in the dark. The analysis of intracellular localization of mTHPC in HT29 human colon
adenocarcinoma monolayer cells and mTHPC distribution in HT29 multicellular tumor
spheroids after pre-treatment with DCLs showed that mTHPC distribution depend on CD
in DCL formulations. DCL based on trimethyl-β-CD showed an almost homogeneous
distribution of photosensitizer in tumor spheroids in contrast to DCL based on HP-β-CD
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and M-β-CD, as well as Foscan® with a heterogeneous distribution. The difference is
explained by a higher affinity of trimethyl-β-CD to mTHPC resulting in higher complex
stability and, accordingly, a deeper delivery of mTHPC into tumor tissue after liposome
destruction in the medium.

The entrapment of Estetrol (E4) hormone in HP-β-CD in liposomes has been applied
with the aim to increase the passage through the BBB followed by accumulation of E4
in the brain as an approach for the treatment of hypoxic-ischemic encephalopathy in
premature infants [124]. DCL system was 149 ± 6 nm in diameter with PDI of 0.06 ± 0.03
and 28 ± 2 mV zeta potential. Efficiency of E4 encapsulation for conventional liposomes
and DCL systems varied from 3% to 10% and from 15% to 35%, respectively. In vitro E4
release studies showed a high drug release, reaching ~80% after 6 h and ~95% after 24 h for
E4-loaded liposome and DCL. E4-loaded liposomes and DCL have been found to increase
E4 penetration through BBB in comparison with free E4. The in vitro passage of E4-loaded
liposomes and DCL through BBB model was ~5.0% after 2 h of contact, while BBB passage
for free E4 was ~1.0%. The penetration increased to ~9.0% for E4-loaded liposomes and
~13.0% for DCL after 6 h, while in the case of free E4 there was no increase in BBB passage.
The improvement of BBB passage was explained by the positive surface charge of the
liposomes, which provides the interaction with negatively charged BBB membrane.

TM-β-CD and heptakis(2,3-di-O-acetyl)-β-CD (HDA-β-CD) were entrapped into
unilamellar vesicles of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) [125].
The size of vesicles increased in proportion to the concentration of TM-β-CD and HDA-β-
CD, while the size of the β-CD-loaded liposomal systems was not concentration-dependent.
It was shown that functionalized TM-β-CD and HDA-β-CD, along with natural β-CD,
stabilize the liposomal system due to the formation of hydrogen bonds with phospholipid
head groups. According to the data of molecular dynamics modeling, these β-CDs do not
have the tendency to penetrate the lipid bilayer.

Calixarenes having hydroxyl groups, as well as CDs, are capable of forming hy-
drogen bonds with phospholipids, thereby stabilizing the liposomal system. In [126]
calix[4]resorcinols 1, 2 and calix[4]resorcinol cavitand 3 (Figure 6) were embedded in li-
posomes prepared from POPC. The stability of liposomal systems was estimated by the
spontaneous release of the entrapped 5(6)-carboxyfluorescein from liposomes. The intro-
duction of 1 and 2 in the phospholipid bilayer decreases the rate of carboxyfluorescein
release into the external environment by 2 times and liposome stabilization increases with
an increase in the concentration of calix[4]resorcinols. The key role in the stabilizing effect
of calix[4]resorcinols 1, 2 is related to the presence of hydroxyl groups in the structure
capable of hydrogen bonding with the head groups of phospholipids. The embedment
of cavitand 3 that does not contain hydroxyl groups, on the contrary, destabilizes the
liposomal system. The first-order rate constant of CF release for liposomes loaded with
cavitand 3 was higher than for pure liposomes.
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A stabilizing effect on DPPC liposomes was also achieved by calix[4]arenes SC4AB
and SC4AH substituted with sulfonate groups at the upper rim and alkyl tails at the
lower rim (Figure 7) [127]. The average size of liposomes embedded with calixarene was
around 100 nm with addition of SC4AH and SC4AB to 5 and 10 mol%, respectively. A
further increase in the calixarene content led to the destruction of large aggregates to
particles with a size of 20–60 nm. The negative surface charge of DPPC-SC4AH and
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DPPC-SC4AB liposomes (−40.8 and −20.4 mV, respectively) contributed to a long-term
storage of liposomal formulations up to 6 months due to electrostatic repulsion between
adjacent bilayers, which prevents their aggregation. It was shown that the addition of
bispyridinium salts of methyl viologen caused vesicle agglutination due to the guest-host
interaction between viologens and calixarenes. Further, the liposome surface was modified
with a fluorescent probe fluorescein isothiocyanate-conjugated pyridinium (FITCPy) and
biotinylated pyridine as a targeting ligand. The functionalized liposomes were transferred
to targeted cancer cells, demonstrating much better targeting activity toward MCF7 cancer
cells, a type of human breast adenocarcinoma cells in comparison with free fluorescent
probe and the nonfunctionalized mixed liposomes.
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A series of calix[4]arenes bearing two imidazole and two ether substituents at the
lower rim 1–3 were entrapped into POPC/CHO (7:3) large unilamellar vesicles (~0.2 µm)
with a calixarene/lipid ratio of 1:500 [128]. The ability of 1–3 to transport copper (I) through
the phospholipid membrane was studied by fluorescence spectroscopy using bathocuproin
disulfonate. It was shown that calixarenes 2 and 3 transfer Cu+ more than twice as fast as 1,
while the transport did not occur in the absence of calixarene in the liposomal system. The
binding of Cu+ was due to the presence of several nitrogen atoms in the calixarene struc-
ture. The structural fragment of calixarene, 2-((4-(tert-butyl)phenoxy)methyl)-1-methyl-1H-
imidazole, was not capable of transferring copper (I) across the membrane, which indicates
the importance of preorganization of imidazole groups on the calixarene platform.

The embedment of disubstituted imidazole derivative of calix[4]arene into DPPC
liposomes was also carried out to accelerate Suzuki-Miyaura coupling of 1-bromo-4-
nitrobenzene with phenylboronic acid in water [129]. The entrapment of calixarene into
multilamellar DPPC liposomes leads to their transformation into unilamellar ones, while
the particle size before extrusion decreased from 600 ± 63 nm for pure DPPC vesicles
to 60 ± 1 nm for calixarene-loaded liposomes at a calixarene-to-lipid molar ratio of 0.07.
Calix[4]arene in a complex with Pd(OAc)2 loaded into DPPC liposomes exhibited higher
catalytic activity in Suzuki–Miyaura coupling compared with pure Pd(OAc)2, calixarene-
Pd(II) complexes or Pd(OAc)2 entrapped into DPPC liposomes without calixarene.
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Other macrocyclic compounds, porphyrins, are also loaded in liposomal formulations
in order to solve the problems limiting their application as photosensitizers, such as water
solubility, delivery to the targeted area, internalization into tumor cells, biocompatibility,
damage to healthy tissue upon irradiation, or insufficient generation of singlet oxygen for
photodynamic therapy (PDT), etc. In order to enhance the delivery efficiency to tumor cells
in [130], four different derivatives of porphyrin (p-NH2, p-OH, p and p-py) were entrapped
in the lipid bilayer [131,132] of liposomes (Figure 8). Among the studied porphyrins,
5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin (p-OH) showed the best loading efficiency,
and the p-OH-loaded liposomes revealed the highest toxicity to cancer cells under and
without exposure to light. Additional coating of these liposomes with hyaluronic acid led
to an increase in the affinity of the liposome for cancer cells due to binding of hyaluronic
acid to MDA-MB-231 cells.
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In [133], photosensitive liposomes were prepared, based on three different phospho-
lipids (1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), 1,2-dioleoylsn-glycero-3-
phosphocholine (DOPC) or 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine (SLPC))
and then loaded with photosensitizers (5,10,15,20-tetrakis(m-hydroxyphenyl)porphyrin,
verteporfin, or pheophorbide a). Comparative analysis of the efficiency of the lipid mem-
brane destruction upon irradiation followed by the release of porphyrin showed that DOPC
liposomal formulation containing porphyrin with hydroxyphenyl groups was the most
effective one. In DOPC liposomes, the release of this macrocycle reached 40% after 6 h of
irradiation at a low dose of 2 mW/cm2.

The therapeutic efficacy of the combined use of PDT and liposomes loaded with plant-
derived porphyrin-related macrocycle, pyropheophorbide acid (PPa), as photosensitizer
was shown in [134]. Irradiated with a laser at 690 nm, PPa was activated for fluorescence
imaging and PDT of cancer. In vitro and in vivo experiments demonstrated that PPa-loaded
liposomes significantly inhibited the tumor growth under laser irradiation compared
to other control groups. Moreover, liposomes embedded with PPa showed long-term
circulation in blood and a high rate of accumulation in tumor after intravenous injection in
mice.

The photosensitizer Chlorin e6 (Ce6) and low-molecular citrus pectin (LCP) as antagonist
of galectin-3 were entrapped into liposomes of dialkyl PC lipids modified by 1,2-dioleoyl-
3-trimethylammonium-propane and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-
poly(ethyleneglycol)-2000 with a hydrodynamic diameter of ~130 nm [135]. Under irra-
diation, due to the presence of Ce6 in the lipid bilayer, the liposome was destroyed by
the oxidation of the phospholipid membrane, and LCP was released from the hydrophilic
core into the external environment. The studied effects of formed liposomes on A375
cells and tumor-bearing nude mice demonstrated that the released LCP moved to the
cytoplasm, where it inhibits the activity of galectin-3, which enhanced the PDT effect of
Ce6 in melanoma treatment, inhibited the ability to invade tumor cells and enhanced the
immune effect of lymphocytes.



Int. J. Mol. Sci. 2021, 22, 7055 18 of 50

The similar approach was used in [136], where the embedment of photosensitizers
BPD, AlPcS2, Ce6 and 5,10-DiOH into the lipid membrane of liposomes as light triggers
promoted the release of the calcein upon irradiation (Figure 9). Liposomal formulations
with BPD, AlPcS2 or Ce6 released calcein from 90% to 100% after 10 min of irradiation.
The highest release rate of 82 ± 7.24% after two min of irradiation at a wavelength of
420 nm was observed for liposomes loaded with 5,10-DiOH. The permeabilization of these
liposomes as well as those in [135] occurred at a low irradiation dose of 20 mW/cm2.
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The photosensitizer sinoporphyrin sodium (DVDMS) and PTX were entrapped into
the lipid membrane and aqueous core of liposomes prepared from DPPC, 1,2-distearoyl-sn-
glycero-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-2000] (DSPE-PEG 2000),
CHO and DOPC [137]. It was shown that, under laser irradiation, DVDMS-PTX-loaded
liposomes exhibit better antitumor activity against MCF-7 breast cancer compared to
DVDMS- or PTX-loaded liposomes. The treatment with DVDMS-PTX-loaded liposomes
induced a significant suppression of cancer cell viability and apoptosis in vitro. In vivo
studies proved the excellent anticancer activity of DVDMS-PTX-loaded liposomes due to
the synergistic effect of PDT.

pH-sensitive DOPC liposomes loaded with silica-attached 5,10,15,20-tetrakis(4-trime-
thylammoniophenyl)porphyrin (TTMAPP) were prepared for targeted delivery of sensitiz-
ers to tumor cells (Figure 10) [138]. By controlling the initial pH 7.5 of the liposomes and
varying the pH of the aqueous dialysate solution from 2 to 9 by adding acid or alkali, the
release of TTMAPP from the lipid membrane was monitored spectrophotometrically after
5 h of dialysis. The release of TTMAPP was about 10% at an alkaline pH (8–9), increasing
with increasing acidity of the solution, reaching 80% at pH 2.3. pH-dependent release was
also confirmed by singlet oxygen (1O2) emission upon irradiation of released TTMAPP, as
well as fluorescence decays and lifetime images of TTMAPP in the dry lipid film at acidic
and alkaline pH. Protonation of silanol groups led to the desorption of TTMAPP from the
silica surface and the destruction of liposomes. A toxicity study showed that light-induced
apoptosis in DU145, a human prostate cancer cell line, occurred at pH 5.4 and pH 6.3 when
treated with silica-TTMAPP-loaded liposomes.
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Liposomes embedded with hematoporphyrin monomethyl ether (HMME) as sonosen-
sitizer were prepared to assess the effectiveness of their use for sonodynamic therapy (SDT)
in cancer treatment [139]. The HMME-loaded liposomes were 105 nm in diameter with PDI
of 0.123 and 33.1 ± 3.56 mV zeta potential. Without sonication these liposomes showed
low cytotoxicity; however, after exposure to ultrasound, HMME produced reactive oxygen
species (1O2) which had a significant cytotoxic effect on human MCF-7 breast cancer cells.
Liposomes embedded with HMME inhibited tumor growth in vivo more strongly than
free HMME after 20 days of treatment.

To enhance delivery efficiency, the synthesized DVDMS-Mn sonosensitizer, a man-
ganese(II) porphyrin complex, was entrapped in DPPC/DSPE-PEG 2000/CHO liposomes [140].
Studies on the U87 human glioma cells showed that the simultaneous treatment with
DVDMS-Mn-loaded liposomes and ultrasound resulted in the death of cancer cells. In vivo
experiments showed that after intravenous administration of DVDMS-Mn-loaded lipo-
somes, SDT inhibits tumor growth and also significantly increases the survival time of
tumor-bearing mice compared to PDT.

In [141], a complex of 5,10,15,20-tetra-p-tolylporphyrin (TTP) with TiO was obtained,
followed by loading into liposomes based on lecithin, CHO and 1,2-distearoyl-sn-glycero-
3-phosphoethanolamine-N-[folate(PEG)-2000]. The system was expected to have a more
efficient photocatalytic effect due to the ability of the TiO-porphyrin complexes to catalyze
the conversion of H2O2, which is abundant in tumors, to singlet oxygen (1O2) through
the formation of a monoperoxo complex between TiO-TTP and H2O2. It was shown that
TiO-TTP loaded liposomes reduced the hypoxic state of the tumor and also inhibited the
tumor growth using PDT due to the sufficient amount of oxygen.

The problem of oxygenation was also solved by reducing the consumption of oxygen
by cancer cells due to the inclusion of metformin, a hypoglycemic agent, in the liposomal
formulation with porphyrin [142]. The hydrophilic metformin and hydrophobic Ce6
(hCe6) modified with hexylamine groups were entrapped into the corresponding aqueous
core and lipid membrane of liposomes prepared from DPPC, DSPE-PEG 5000, and CHO.
Photoacoustic imaging in vivo and ex vivo immunofluorescence staining showed that
tumor oxygenation was greater with intravenous administration of liposomes loaded with
metformin and hCe6 in comparison with free drug. In addition, tumor reduction in mice
after PDT was significantly higher after intravenous administration of these liposomes
than hCe6-loaded liposomes.

In order to reduce phototoxicity, increase the efficiency and selectivity of PDT, a photo-
sensitizer, hCe6, together with NIR dye 1,1′-dioctadecyl-3,3,30, 3′-tetramethylindotricarbo-
cyanine iodide (DiR) were entrapped into the lipid bilayer of DPPC-DSPE-mPEG 5000-CHO
liposomes [143]. The fluorescence and PDT effect of hCe6 in DiR-hCe6-loaded liposomes
was inhibited by DiR due to fluorescence resonance energy transfer and activated by irradi-
ation with a 785 nm NIR laser. Thus, non-activated DiR-hCe6 liposomes have much lower
skin phototoxicity in comparison with the hCe6-loaded liposomes.

In [144] it was proposed to take advantage of the hypoxic state of the tumor for its treat-
ment. Tirapazamine (TPZ) showing strong antitumor cytotoxicity under anoxia, was loaded
with Ce6 into the pH-sensitive liposomes of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine,
DSPE-PEG 2000 and CHO. Further, the liposomes were coated with a hybrid membrane
based on platelets and red blood cell as an outer shell to prolong blood circulation time.
Liposomes had a good ability to accumulate and retain in the tumor due to the biomimetic
surface coating. When exposed to ultrasound, Ce6 produced toxic reactive oxygen species
for SDT, and the hypoxic microenvironment activated TPZ. The implemented synergistic
treatment also significantly inhibits lung metastasis of 4T1 breast cancer cells and B16-F10
melanoma cells.

The amphiphilic molecule mPEG-Ce6-C18 was entrapped into the lipid bilayer of
liposomes prepared from lecithin and DSPE–PEG 2000–thiolated cyclic Arg-Gly-Asp-
D-Phe-Lys peptide (cRGD) (Figure 11) [145]. The indocyanine green (ICG) capable of
suppressing the PDT activity of Ce6, thereby reducing the side effects on healthy tissues,



Int. J. Mol. Sci. 2021, 22, 7055 20 of 50

and TPZ with significant antitumor activity under hypoxic conditions were encapsulated
in Ce6 loaded liposomes. The resulting liposomes were further bound with GdCl3 as
a contrast agent to form ICG/TPZ@Ce6-GdIII liposomes. After targeted delivery to the
tumor provided by cRGD, under the action of NIR (808 nm) laser radiation, the liposomes
were disrupted by ICG-induced hyperthermia, followed by the release of Ce6 and TPZ.
As in [144], a synergistic antitumor effect on A549 lung cancer cells was observed upon
sequential activation of Ce6 and TPZ.
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American Chemical Society.

The hydrophobic Ce6, hydrophilic TPZ and miRNA-155 gene probe were embedded
into the lipid bilayer and aqueous core of liposomes based on a mixture of lecithin, CHO,
DSPE-PEG 2000 and 2-nitroimidazole derivative linked to PEG (PEG-NI), respectively
(Figure 12) [146]. It was assumed that under the laser irradiation and hypoxic conditions,
reduced coenzyme II (NADPH) can catalyze the reduction of the –NO2 group in the PEG-
NI conjugate followed by the formation of the hydrophilic PEG-NA. As a result, liposomes
were destroyed with the release and activation of Ce6 and TPZ for synergistic action on
cancer cells. The miRNA-155 gene probe showed fluorescence upon interaction with the
target, which made it possible to distinguish tumor cells from normal cells during PDT.
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The hypoxic tumor microenvironment was also used to selectively destroy the ex-
tracellular matrix (ECM) of the tumor in order to improve the effectiveness of cancer
treatment [147]. First, olagenase encapsulated in pH-sensitive nanoscale coordination
polymers (NCPs) was loaded in liposomes prepared from DPPC, DSPE-PEG5k and CHO.
After intravenous administration in tumor-bearing mice, olagenase@NCP-PEG liposomes
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effectively accumulated in the tumor and were then destroyed by the acidic conditions of
the tumor. The released enzyme damaged collagens, the main component of the ECM of the
tumor, led to an increase in tumor perfusion and a decrease in hypoxia. Further, liposomes
embedded with a complex of modified Ce6 with 99mTc4+ were injected intravenously. It was
shown that the sequential administration of two types of liposomes leads to the enhanced
PDT effect in vivo as compared to the administration of only Ce6-loaded liposomes due
to better penetration of latter into the partially destroyed ECM of the tumor. In [148], an
increase in therapeutic sensitivity, suppression of tumor growth and metastasis in vivo was
also realized due to the destruction of ECM, a decrease in the biomechanical properties of
Taxol-resistant tumor cells during PDT using PC/DSPE-PEG/DSPE-PEG-RGD liposomes
loaded with porphyrin P-18.

Photosensitizer Ce6-polyvinylpyrrolidone (Photolon) was loaded into liposomes to
reduce its phototoxicity upon irradiation [149]. The authors, using their own patented
gel hydration technology, obtained unilamellar vesicles with a size of 124.7 ± 0.6 nm,
PDI = 0.055 and −5 mV zeta potential with high encapsulation efficiency (93 ± 6%) of
Photolon. The liposomal formulation did not cause toxicity in S. scrofa f. domestica or dark
cytotoxicity in cells in vitro and within 10 min was effectively accumulated by macrophages,
the cells involved in origin of atherosclerotic plaque formation, but not by vascular smooth
muscle cells or human umbilical vein endothelial cells (HUVECs). When irradiated with
a laser, Photolon loaded in liposomes generated reactive oxygen species, which caused a
cytotoxic effect in macrophage cell line, but not in accompanying vascular tissue.

The porphyrin complex with zinc (Zn-Por) was added to the liposomal formulation in
order to solve the problem of incorporating hydrophilic molecules into the hydrophobic
lipid membrane (Figure 13) [150]. 1,2-Dimyristoyl-sn-glycero-3-phosphocholine liposomes
were prepared with the addition of hydrophilic 4,4′-bipyridine (4), 3,3′-bipyridine (5), or
2,2′-bipyridine (6). The leakage of 4-6 from liposomes was 93%, 78% and 48%, respectively.
When a water-soluble inclusion complex of Zn-Por with TMe-β-CD was added to lipo-
somes, the Zn-Por complex was completely transferred from the TMe-β-CDx cavities to
the lipid membrane of the liposomes. Due to the coordination of Zn in the Zn-Por complex
with the nitrogen atom of 4 or 5, a significant decrease in leakage to 42% and 23% was
observed for hydrophilic 4 and 5 accordingly. The percentage of leakage in the composition
with 6 did not change due to steric hindrances preventing the coordination of Zn with the
nitrogen atom of 6.
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Meso-tetrakis(4-sulfonatophenyl) porphine (TPPS4) together with the contrast agent,
iodixanol, were entrapped into the aqueous core of positively charged PEGylated liposomes
prepared on the basis of DPPC, 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP),
1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[aminoPEG 2000] and CHO [151].
In the TPPS4/iodixanol-loaded liposome, being in spatial proximity, the heavy atom of
iodine affects the pi-electronic system of the photosensitizer, which leads to an increase
in the production of singlet oxygen. The study of PDT effectiveness in vitro showed



Int. J. Mol. Sci. 2021, 22, 7055 22 of 50

that TPPS4/iodixanol-loaded liposome has a higher phototoxicity compared to TPPS4-
loaded liposomes, mixture of TPPS4/iodixanol and free TPPS4. Moreover, the intracellular
fluorescence was more intense for liposomal formulations than for free TPPS4 due to the
better internalization of liposomes in cancer cells in vitro.

To solve the problem with the water solubility and photostability, chlorins were loaded
in liposomes prepared from POPC and DOTAP [152]. In vitro assessment of photodynamic
activity of liposomal formulations against bacteria and fungi showed that chlorins reveal
high activity against Gram-positive bacteria Enterococcus faecalis and Staphylococcus aureus.
The decrease in the growth of Gram-negative bacteria Escherichia coli occurred to a lesser
extent. However, Gram-negative bacteria Pseudomonas aeruginosa as well as the fungi
Trichophyton mentagrophytes and Candida albicans did not respond to PDT with chlorin-
loaded liposomes. It is well known that Gram-negative bacteria and fungi are often
more difficult to treat with photodynamic antimicrobial chemotherapy due to the specific
structure of the cell wall of these microbes.

Hydrophobic Mg-porphyrazines 7–9 (Figure 14) were embedded into the negatively
charged L-α-phosphatidyl-DL-glycerol (PG)/POPC liposomes, as well as positively charged
DOTAP/POPC liposomes [153]. It was shown that liposomal formulations with 7 and 9
exhibit a slight antitumor activity on the human prostate carcinoma cell line, there was a de-
crease in cell viability to 65% and 80%, respectively, in comparison with free 7 and 9. Liposo-
mal formulations with sterically unhindered 8, DOTAP/POPC-8 and PG/POPC-8, showed
high cytotoxicity upon irradiation with IC50 of 0.161 ± 0.002 mM, 0.166 ± 0.058 mM under
normoxic conditions and 0.600 ± 0.357 mM, 0.378 mM ± 0.002 mM under hypoxia, respec-
tively. In addition, DOTAP/POPC-8 liposomes exhibited a photodynamic antimicrobial
effect against strains of planktonic bacteria (Staphylococcus aureus ATCC 25923), in contrast
to PG/POPC-8 liposomes.
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The talaporfin sodium and anticancer drug, gemcitabine hydrochloride (GEM), were
co-encapculated into liposomes based on 1,2-distearoyl-sn-glycero-3-phosphocholine, 1,2-
dioleoyl-sn-glycero-3-phosphoethanolamine, CHO and DSPE-PEG 2000 [154]. In vitro
studies have shown that in the absence of a radiation source, talaporfin/GEM-loaded lipo-
somes did not show anticancer activity, while with NIR laser irradiation, strong cytotoxicity
was found towards the EMT6/P breast cancer cell line, higher than for talaporfin-loaded
liposomes and much stronger than for GEM-loaded liposomes. This means that talaporfin
acted not only as a trigger for the release of GEM by irradiation, but also as a PDT agent.

In [155], biocompatible hollow nanoparticles of calcium-polydopamine carbonate
(CaCO3-PDA) were coated with lipid bilayers of sodium 1,2-dioleoyl-sn-glycero-3-phosphate,
DPPC and CHO, followed by DSPE-PEG modification. Photosensitizer Ce6 loaded into
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the obtained liposomes was easily released in a weakly acidic environment due to the
high sensitivity of nanoparticles to pH and their rapid degradation under these conditions.
The increased Ce6 photoactivity was observed in tumors at low pH due to the increased
production of reactive oxygen species. In addition, the established high affinity of PDA for
the transition metal ions (Fe3+, Zn2+, Mn2+ and Co2+) makes it possible to use liposomes
for bioimaging. It has been shown that at normal physiological pH, Ce6@CaCO3-PDA-PEG
nanoparticles exhibit weak fluorescence due to quenching of the Ce6 signal in the presence
of PDA, which effectively reduces skin damage during PDT in vivo.

In summary of this section, the described work on lipid formulations with different
types of macrocycles have demonstrated that non-covalent modification of liposomes
with CDs or calixarenes significantly increases the stability of systems, and in the case
of porphyrins, it solves a number of problems that limit their use as photosensitizers.
Since the inclusion of highly hydrophobic molecules in liposomal formulations destroy
the lipid membrane, resulting in rapid release of the cargo, the use of the DCL system,
where CD acts as a host for the hydrophobic molecule, may solve the problem related to
the stability of the liposomes. In particular, a number of studies have shown that when a
drug has a higher affinity for CD than for the lipid bilayer, drug release can be delayed.
The presence of CD prolongs the shelf life of liposomes in aqueous and lyophilized forms.
The modification of liposomes with calixarenes, capable of forming hydrogen bonds with
phospholipids or bearing a negative charge on the upper rim, also leads to an increase in
the stability of the liposomal system and a decrease in the rate of drug release. A large
number of works on non-covalent modification of liposomal formulations with porphyrins
is devoted to increasing the efficiency and selectivity of tumor damage in PDT in vivo. The
disadvantages of porphyrins used as photosensitizers and sonosensitizers are partially
eliminated by their incorporation into liposomes of phospholipids. Lipid formulations
with porphyrins or metal–porphyrin complexes exhibit higher toxicity to cancer cells,
arrest the tumor growth and/or reduce the tumor, inhibit the metastasis and reduce
phototoxicity upon irradiation. Additional surface modification of liposomal formulations
with porphyrins can improve functions such as increased affinity for cancer cells, blood
circulation time of liposomes, PDT effect of photosensitizer (including antimicrobial effect)
and lymphocyte immune response. Thus, the inclusion of macrocycles in liposomes is a
promising strategy for improving their functional activity and overcoming their limitations
as therapeutic and diagnostic agents.

3. Hybrid Nanostructures with Silica-Like Surface
3.1. Mesoporous Silica Nanoparticles (MSN) as Perspective Vehicles of New Generation for
Drug Delivery

In the recent 20 years, drug delivery systems on the basis of mesoporous nanoparticles
of silicon dioxide, carriers of new generation, are intensively designed. They are widely
examined as effective and harmless vehicles for many pharmaceutics, genes and visual-
izers (probes and contrast agents) in the diagnostics and therapy of many diseases [156].
Mesoporous particles have been known since the 1970s [157]. In accordance with classifi-
cation suggested by M.M. Dubinin in 1972 [158], mesoporous material is a composition
with radius of pores in the range of 2–100 nm, which specific surface area S reaches
0.5–2 m2/g. The first nanocomposite with ordered distribution of pores by size was ob-
tained in 1990–1992 by Japanese and American researchers [159,160]. This product was
called Mobil Crystalline Materials or Mobil Composition of Matter (MCM-41) and became
the ancestor of the series of M41S mesoporous silica with P6mm space-group symme-
try [161]. These reports formed the basis for the series of investigations started from 1995
and dedicated to the design of novel types of mesoporous silica materials with variable
composition of reactants and reaction conditions. Depending on the synthetic approach
their physicochemical properties and characteristics of porosity could significantly differ
between each other. For example, SBA-type (Santa Barbara Amorphous) mesoporous silica
particles have a 2D hexagonal structure similar to MCM-41, but with the larger pores and
the thicker internal walls [162]; hexagonal mesoporous silica particles have disordered
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hexagonal structure and walls of high thickness [163]; KCC-1 particles are characterized
by a three-dimensional dendritic and fibrous structure composed of disordered network
of pores [164]. Folded sheets mesoporous materials (FSM-16) are composed of sheets of
mesoporous material and have high thermal and hydrothermal stability [165]. MSU-type
particles (Michigan State University) have a disordered structure of pore channels and
small size of particles with significant patterns of mesoporosity [166]. Among other types
of mesoporous silica particles, FDU-type (Fudan University Material) [167] and KIT-type
(Korean Technological University) particles [168] were described. Some selected types
of mesoporous silica nanoparticles and their physicochemical characteristics are listed in
Table 2 [169].

Table 2. Overview of the most studied types of MSN and characteristics of their structure, pore size,
volume and surface area. Reprinted with permission from [169]. Copyright 2020 Elsevier.

MSN Type Material
Structure Pore Size (nm) Pore Volume

(cm3/g)
Surface Area

(m2/g)

MCM-41 2D hexagonal
p6mm

1.6–10 0.7–1.2 1000

MCM-48 Bicontinuous
cubic Ia3d

3.3 0.53–0.80 660–1010

SBA-3 2D hexagonal
p6mm

2.6 0.98 1430

SBA-15 2D hexagonal
p6mm

4.6–10 0.56–1.38 630–1040

SBA-16 Cubic Im3m 4.74–5.60 0.37–0.61 660–939
COK-12 2D hexagonal

p6m
5.8–9.4 0.45–0.88 429–547

FDU-12 Face centered
cubic fm3m

10.2 0.60–0.68 654–716

KIT-6 Bicontinuous
cubic Ia3d

6.0–7.9 1.12–1.27 474–814

Pores in mesoporous silica particles could be structurally arranged in various ways
and, therefore, three different basic types of silica compositions could be established: (a)
MCM-41 (hexagonal arrangement of pores; (b) MCM-48 (cubic arrangement of pores [170]);
and (c) MCM-50 (lamellar arrangement of pores [170]).

There are several ways of preparation of mesoporous materials: methods of soft
and hard templates, the Stober method, approaches employing colloid templates, aerogel
technique [171] and spray pyrolysis method [172]. It should be noted that the latter method
can be used to obtain mesoporous particles on an industrial scale, since all stages of the
synthesis are carried out in one container. In the framework of this review only two of
them will be considered: the soft template method (interfacial synthesis) and hard template
method (core–shell technique). In the first technique organic template molecules (vesicles,
emulsions (oil-in-water and air-in-water), polymeric micelles) are used to fabricate the
structure of future voids with their further removing by physical or chemical ways [173].
The main disadvantage of this method is the lack of possibility to control the size and the
thickness of particle shells, since obtained dispersions are unstable. Hard template method
includes the precipitation of silicon dioxide on the template prepared from other materials
(for example, polystyrene [174] or inorganic spheres, multiwalled carbon nanotubes [172]
with its subsequent removing by physical or chemical methods, in particular, by dissolution
or calcination. Compared to the previous technique, with the hard template method the
shape and the size of voids of mesoporous silica nanoparticles could be easily and precisely
regulated by the selection of certain preliminarily prepared assemblies [175].

Unique physicochemical properties are responsible for the practical application of
mesoporous silica nanoparticles in various technologies including biomedical and phar-
maceutical spheres. In particular, since 2001 they are considered as nanocontainers for
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drug delivery [169]. United States Food and Drug Administration (USFDA) classifies meso-
porous silica particles as agents belonging to the Generally Recognized as Safe category, i.e.,
they are recognized as one of the most suitable nanoplatforms for clinical applications [176].
For example, recently USFDA has approved the first diagnostic system based on of meso-
porous silica particles called Cornell dots for the first phase of clinical trials [177]. Mainly,
these results are due to advantages of mesoporous silica structures over other drug deliv-
ery systems. In particular, inorganic origin of MSN walls prevents mechanical, thermal
and biological degradation of encapsulated cargo, which provides safe and effective drug
delivery [178]. High specific S (700–1200 m2/g) and variable pore size (2–50 nm) are key
factors determining type and amount of drug that could be encapsulated into MSN [179].
For instance, downsizing of pores results in the decrease of the drug loading, and the rate
of cargo release is reduced due to the higher density of molecules packed in mesopores.
Increase in S of pores improves the loading of drugs and accelerates the rate of their re-
lease. Moreover, mesoporous silicas can have sizes of particles in the desired range, which
influences several parameters of drug carriers, i.e., the time of semi-ejection, extravasation
across the vascular tree and absorption by macrophages [180,181]. Optimal MSN diameter
favoring the accumulation of vehicle in target tissue and providing more prolonged period
of semi-ejection is in the range of 50–250 nm; therefore, in the majority of cases mesoporous
silica nanoparticles meet the criteria for biomedical application. [182]. Another advantage
of MSNs is their capability to biodegrade [183] and excretion from the organism [184,185].
All the mentioned features of mesoporous silica nanoparticles strongly encourage intensive
research and design of these systems as delivery vehicles for drugs of wide spectrum of
activity. For example, in [186] mesoporous silica particles of variable size (the range of
diameter was 90–300 nm) and pores (3.5 nm to 7 nm) were tested as carriers for drug
resveratrol. The formulated drug demonstrated higher anti-inflammatory and anticancer
activity toward human colon carcinoma cell Caco-2 in comparison with resveratrol solution
and suspension. In [187] potential applicability of MSNs of MCM-41 and SBA-15 type as
drug delivery systems for clofazimine, an antibiotic of wide spectrum, was demonstrated.
The authors of [188,189] successfully used hollow mesoporous nanospheres (Figure 15)
with diameters around 400 nm for encapsulation of ibuprofen. Obtained systems were
characterized by prolonged drug release up to 45 h [188] and self-activating luminescence
properties [189].
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In [190] a novel MSN-based drug delivery system with a potential in the treatment of
lymphoma was suggested. It was loaded with isoimperatorin and exhibited high capability
to induce apoptosis of OCI-LY10 tumor cell line with no cytotoxic effect toward normal
organs of mice. In [191,192] nanoporous silica dioxide of MCM-48 and SBA-15 types
were used as vehicles for delivery of anti-inflammatory drugs INM and naproxen. These
nanoformulations were characterized by variable degree of encapsulated drug release
depending on pH of media in the range of 50–100% [191] and 30–80% [192]. Ibuprofen
was successfully encapsulated into MCM 41 mesoporous silica nanoparticles in [193].
This system was characterized by 30% w/w loading of drug into carrier. The authors
of [194] used MCM-41 type MSNs for transdermal delivery of methotrexate. The obtained
drug delivery system exhibited bioavailability toward HaCaT keratinocytes and a higher
accumulation of formulated drug in comparison with free methotrexate. Report [195]
was dedicated to the encapsulation of peptide bactofencin A in SBA-15 type mesoporous
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silica nanoparticles. Encapsulated drug demonstrated superior antibacterial properties
in comparison with free drug and was capable to suppress the growth of Staphylococcus
aureus bacteria by ~80%.

3.2. Modified Mesoporous Silica Nanoparticles as Drug Delivery Systems

One of the key structural features determining biological activity of mesoporous silica
nanoparticles is the presence of siloxane (Si-O-Si) and silanol groups (Si-OH) on their
surface. In particular, cytotoxicity of MSNs depends on the number of silanol groups, since
the proton in a silanol group could interact with various endogenous targets: (1) with
membranes of erythrocytes, which leads to hemolysis [196]; (2) with phospholipids based
on tetraalkylammonium resulting in the fabrication of surface silanolate and cytolysis; (3)
with cell membranes, inducing fabrication of reactive oxygen species and cell death through
necrosis or apoptosis [177,197]. At the same time, the number of silanol groups is related
to the porosity of MSN and its size. The presence of pore voids on the surface reduces
the interaction between silanol groups and cell membrane, which prevents death of the
cell [196,198]. Moreover, the presence of the silanol groups on the surface of nanoparticles of
silicon dioxide facilitates their functionalization. There are three areas for functionalization:
overall framework, pores and external surface of silica particles [199]. Rich possibilities and
various ways of modification of both interior and superficial MSN surfaces produce a wide
variety of mesoporous materials based on silica as impending candidates for biomedicine
and drug delivery. By selecting functional groups on the mesoporous carrier (Table 3 [174])
and taking into account the chemical nature of the molecule of the encapsulated drug,
it is possible to influence its loading and change its release profile. It is also possible to
significantly increase the loading of encapsulated substance (DOX, ibuprofen) by changing
only the pore volume (PV) and specific S of the mesoporous carrier (in the case of HMSNs
PV = 1.04 cm3/g and surface area S = 1210 m2/g, while PV = 0.73 cm3/g and S = 1106 m2/g
for MCM-41).

Table 3. Comparison of loading of various drugs in unfunctionalized and functionalized MSNs of
different types. Reprinted with permission from [174]. Copyright 2018 MDPI.

Carrier Drug Loading (wt %)

MCM-41
HMSNs * Ibuprofen 35.9

74.5

MCM-41
HMSNs DOX 48.2

112.1

HMSNs
HMSNs-NH2 *

HMSNs-COOH *
HMSNs-CN *

HMSNs-CH3 *

5-fluorouracil

18.5
28.9
20.7
22.5
12.1

MCM-41(C12) *
MCM-41(C16) *

SBA-15
Captopril

23.6
34.0
22.6

MCM-41
SBA-15

SBA-15(C8) *
SBA-15(C18) *

Erythromycin

29.0
34.0
13.0
18.0

MCM-41
MCM-41-NH2 *

SBA-15
SBA-15-NH2 *

Alendronate

14.0
37.0
8.0

22.0

MSN-C0
MSN-C10 Lysozyme 34

42
* HMSN—Hollow mesoporous silica nanoparticles; abbreviations of functional groups used for modification of
MSNs: C0—the absence of any modifying group, C8, C12, C16, C18—octyl, dodecyl, hexadecyl and octadecyl
alkyl tails, respectively; NH2—amino group; CN—nitrile group; CH3—methyl group.



Int. J. Mol. Sci. 2021, 22, 7055 27 of 50

The choice of modifying groups can significantly affect the functional the properties
of MSNs as drug delivery systems. For instance, functionalization of MSNs by targeting
ligands (sugar fragments, peptides, antibodies [200], nucleic acids, various low molecular
weight compounds [201], etc.) that could recognize and bind to cellular receptors improve
their targeting properties and therapeutic efficiency. There are two common ways to
modify mesoporous silica: co-condensation and postsynthetic functionalization [156]. In
the case of co-condensation, the internal surface of pores is functionalized, while in the
case of postsynthetic approach mostly external surface could be modified [197,202]. Co-
condensation (also called direct synthesis) includes the stage of insertion of organic species
into the framework of silica dioxide during synthesis process using the sol-gel method [203].
Postsynthetic functionalization represents the modification of MSN surface by organic
species after synthesis of the nanoparticles [204].

Since there are a lot of various approaches of the modification of MSNs, only selected
types of modification will be considered in detail. In particular, MSNs modified by synthetic
and natural polymers, as well as mesoporous silica nanoparticles decorated by lipids will
be discussed.

3.3. Mesoporous Silica Nanoparticles Modified by Synthetic Polymers

The first big group of modified mesoporous silica nanoparticles is their conjugates
with synthetic polymers. In the majority of cases, pH-responsive polymers are picked,
which have capabilities to change configuration upon slight changes of pH, that in turn
could provide controlled release of encapsulated cargo. Therefore, these systems are often
used as drug delivery systems [205–207]. For example, poly-(2-vinylpyrrolidone) was in-
volved in [208] for modification of the surface of mesoporous silica, where the composition
was used as an agent for delivery of antitumor drug 5-fluorouracil. Application of this com-
position allows one to reach pH-dependent prolonged release of encapsulated drug (about
82% of released cargo from the total amount after 70 h). Polyacrylic acid was also used for
covalent modification of the surface of mesoporous silica particles for peroral delivery of
DOX [209]. Obtained DOX delivery system made it possible to interrupt premature release
of encapsulated drug before reaching the colon, as was desired. Another example of deliv-
ery system for DOX is MSN modified by amphiphilic block copolymer poly(poly(ethylene
glycol) methylether methacrylate-co-p-(2-methacryloxyethoxy)benzaldehyde) [210]. The
system formed is capable to release content at pH 5.0 (64% of released drug from the total
amount after 72 h) and effectively penetrate into HepG2 cells (Figure 16).

The authors of [211] decorated the surface of mesoporous silica by glucose oxidase
and polyelectrolytes (sodium polystyrene sulfonate and poly(allylamine hydrochloride)),
which makes it possible to charge particles positively and target them towards cancer
cells. Grafted enzyme stimulates oxidative processes in the cancer cell, which results in pH
decrease. This process helps destabilize the polyelectrolytes, which increases the rate of
release of encapsulated cargo. Copolymer poly(ethylene glycol)methyl acrylate-co-itaconic
acid was used for functionalization of the surface of mesoporous carrier containing a
luminescent dye 10-phenylphenothiazine and cisplatin [212]. This nanoformulation was
characterized by improved stability in water, high encapsulation efficiency of cisplatin
and capability of pH-controlled cargo release. Gold nanoparticles (AuNP) were inserted
into polydopamine (PDA) for modification of the surface of mesoporous silica in [213],
and the fabricated composition was examined as DOX delivery system. PDA contains
catechin functional groups that provide pH-sensitivity of the obtained formulation in
aqueous media. MSN@DOX-PDA-AuNPs nanostructures exhibited synergetic photo-
and chemotherapeutic effect with high rate of DOX release in acidic media under near
infrared laser irradiation (19% of cargo released during 15 h). Hyperbranched polymer with
terminal amino groups combined with folic acid were used for modification of the surface
of mesoporous nanoparticles in [214]. The obtained system had high biocompatibility
and increased capability to be absorbed by lysosomes of HeLa and A549 cancer cells. The
presence of hyperbranched polymer made it possible to increase loading of tetrahexin
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up to 27% and induce pH-sensitive release of encapsulated cargo (drug release could be
prolonged up to 20 h at pH 7.4).
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Alongside pH-sensitive polymers, their thermosensitive counterparts are also used
for modification of mesoporous silica nanoparticles. Thermosensitive polymers are char-
acterized by capability to undergo a sharp phase transition from globular structure to
less ordered structures at a certain temperature [215,216], which provide selective and
controllable release of encapsulated cargo. In particular, the authors of [217] coated MSN
with copolymer poly(N-isopropylacrylamide-co-methacrylic acid) and used the obtained
composition for DOX delivery. The particles were able to release encapsulated drug in
conditions of pH variation and heating up to 37 ◦C under an alternating magnetic field.
This resulted in a higher efficiency of examined therapeutic composition in comparison
with the free drug. In [218] poly-N-isopropylacrylamide (PNIPAM) was grafted on the
internal and external surface of silica nanoparticles modified with organoalkoxysilane
bearing RAFT agent, with the fabricated formulation evaluated as a DOX delivery system.
Thoughtful selection of the hydrocarbon fragment in RAFT allowed one to change the
location of functional groups and control the conjugation of the polymer with silica matrix.
External grafting of polymer in the case of PNIPAM–COOH–MSN system was presented
as a thermosensitive system with superior encapsulation efficiency (61%) and drug release
properties (54% of released drug from the total amount during 24 h at 20 ◦C). Aliphatic
polyurethaneamine (PUA) was used in [219] for decoration of MSNs as a smart polymer
sensitive to temperature and pH; the obtained nanovehicle was used for DOX delivery,
where PUA functioned as a reversible valve that allowed the authors to regulate the rate of
drug release under influence of the temperature due to stretching and compression of its
polymer chains.

Special place is occupied by MSNs modified by polymers responsive to electric field.
For example, in [220] poly(3,4-ethylenedioxythiophen) doped by poly[4-styrenesulfonic
acid)-co-maleic acid] and modified by bipyridinium was used for MSN functionalization.
The prepared vehicle was examined as a carrier of fluorescent dye Rhodamine B. Pores of
obtained modified mesoporous particles were closed upon addition of negatively charged
polysaccharide heparin due to its interaction with bipyridinium. An external electric field
results in reducing of the charge of bipyridinium with following detachment of heparin
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and opening of pores. Electromotive force about 600 mV was demonstrated as sufficient
for the release of encapsulated Rhodamine B, which was absorbed by HeLa cells through
phagocytosis mechanism.

Another approach to enhance the specificity of MSNs toward certain cells, especially
cancerous, is their conjugation with long-chained polymers (stealth-polymers) combined
with ligands or antibodies. Stealth-polymers provide dispersability and biomembrane
permeability of the polymer–silica conjugate, inhibit its absorption by reticuloendothelial
system and prolong circulation of the carrier in vivo [221,222]. PEG and polypropylenegly-
col (PPG) are often applied as stealth-polymers. For example, a combination of PEG or PPG
with lactose as a targeting ligand was used for decoration of the surface of mesoporous
silica particles, and the prepared system was tested as a vehicle for DOX delivery [173]. The
conjugate with PPG exhibited high cytotoxicity toward HepG2 cells (IC50 = 0.07 mg/mL).
PEG with average molecular weight about 6000 g/mol combined with folic acid and rosin
as an organic additive was applied for modification of the surface of mesoporous silica [223].
The choice of this ligand was caused by the fact that folic acid receptors are overexpressed
on the surface of the majority of human cancer cells like ovary, breast, colon, lung and
prostate ones. Obtained formulation was tested as DOX delivery systems. The designed
DOX@MSN-x-PEG-FA system exhibited pH-dependent release of drug and caused apop-
tosis in significant amounts. In [224] for delivery of 5-fluorouracil, the authors designed
mesoporous silica nanoparticles decorated by poly(oligo(ethylene glycol) monomethyl
ether methacrylate) functionalized by cRGD-peptide into HCT116 colon cancer cell lines.
The obtained formulation demonstrated improved internalization ability and increased
accumulation capacity in these cancer cells both in vitro and in vivo. The authors of [225]
immobilized β-CD in combination with azobenzene/galactose-grafted polymer (GAP) on
the surface of mesoporous silica nanoparticles. The latter is a well-known ligand for target-
ing asialoglycoprotein receptors of HepG2 cells and controllable release of encapsulated
cargo. Fabricated conjugate was tested in terms of the applicability as a DOX delivery
system. The formed MSN@β-CD@GAP@DOX system was characterized by increased
antitumor activity, which could be induced by two factors: UV irradiation or the change of
pH. In [226] for DOX delivery MSNs were modified by two polymeric layers consisting of
polyethyleneimine (PEI) and hyaluronic acid that is a ligand targeted to CD44 receptors
overexpressed in lung, breast, pancreas and kidney cancer cells. HA-PEI-MSN-DOX parti-
cles demonstrated a capability to actively target A549 cancer cells and an ability to avoid
endocytic decomposition pathway, which increase therapeutic efficiency. This nanoformu-
lation exhibited high cytotoxicity toward A549 cells at low DOX concentrations (only 20%
of viable cells for 400 nM of the drug), which is comparable with cytotoxicity of free DOX.

Polymers are often conjugated to the MSN in order to induce certain structural or
morphological characteristics (particles size, pore structure, hydrophobic or hydrophilic
properties, colloid stability, biocompatibility etc.) that facilitate their application in in-
dustry and medicine. For example, in [227] MSNs were modified by poly(amido)amine
dendrimers (PAMAM) of the first and second generations for imparting mucoadhesive
properties to the carrier. Bioadhesion of these polymers was caused by electrostatic interac-
tions between positively charged dendrimers and negatively charged mucin of urothelium.
The authors showed that mucoadhesive properties and release of encapsulated DOX could
be controlled by the selection of the number of PAMAM layers immobilized on the surface
of MSNs. The designed formulation provided prolonged release of DOX at low pH values.
In [228] poly(2-ethyl-2-oxazoline) was used for decoration of the surface of MSNs in order
to increase hydrophilicity and biocompatibility of the mesoporous carrier. This polymer is
characterized by high stability, low viscosity and absence of toxic products formed during
the synthesis. Examination of fabricated formulations in terms of the capability to encap-
sulate PhE-OH luminescent dye showed that formed composites exhibited an intensive
yellow fluorescence upon photoexcitation, which could be used in a variety of biological
experiments for visualization purposes. The authors of [229] decorated the surface of meso-
porous silica by PEG and PEI containing carbon dots for inducing improved permeability
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as well as a capability to monitor the distribution and transport of nanoparticles in vivo
in real-time mode. This formulation was characterized by high degree of transepithelial
absorption and peroral bioavailability. In [230] colloid stability and protection through the
fabrication of hydrophilic layer of MSNs were provided by conjugation of silica matrix
with copolymer containing PEG and chitosan units. This nanovehicle was documented as
safe and effective for in vivo delivery and was characterized by improved 5-fluorouracil
loading (up to 65%) and prolonged release of the drug (up to 72 h). The main idea of [231]
was to induce colloid stability and sustainability toward various external pH values; there-
fore, MSNs were decorated by poly(trimethylolpropanetrimethacrylate). This formulation
was tested as diclofenac delivery system and is characterized by micrometer size and
specific S ~500 m2/g and high drug loading capability (90%). Application of this carrier
allows authors to avoid desorption of diclofenac in acidic media (less than 6% of desorbed
diclofenac after 2 h of contact), and therefore it looks attractive for the purposes of peroral
delivery. Report [232] was dedicated to enhancement of MSNs lubrication properties upon
drug injection into injured arthrodial cartilage. The authors grafted 3-[dimethyl-[2-(2-
methylprop-2-enoyloxy) ethyl] azaniumyl] propane-1-sulfonate on the surface of MSN.
This polymer forms tenacious hydration layer that remains almost rigid under pressure
and responds in a fluidlike manner under shear, resulting in a great reduction in interfacial
friction. Application of this composition allowed them to reduce friction by 80% and inhibit
release rate of encapsulated test cargo Rhodamine B by almost two times in comparison
with unmodified MSNs.

3.4. Mesoporous Silica Nanoparticles Modified by Natural Polymers

The other approach to modification of nanosystems on the basis of mesoporous silica is
their conjugation with polymers of natural origin. The main idea of this approach is (1) the
enhancement of the biocompatibility of the system due to the decoration of the surface of
silica particles by endogenous or nontoxic high-molecular weight compounds like proteins,
nucleic acids etc.; (2) infusion of the affinity of the system toward various target tissues
and cells due to molecular recognition of conjugated polymers and biocomponents. These
advantages of mesoporous silica nanoparticles look promising for targeted drug delivery,
and below, several chosen examples are considered in terms of their present or future
application in biomedicine.

In particular, decoration of the surface of mesoporous nanoparticles by poly-l-lactic
acid and chitosan allows authors to construct a pH-sensitive vehicle for anti-inflammatory
drug dexamethasone delivery applicable for bone tissue engineering [233] and nanocarrier
of thymoquinone for the delivery to glioma cancer cells [234].

However, the most frequently reported type of biopolymers used for modification of
mesoporous silica platform are proteins. There are a lot of examples of successful conju-
gation of silica matrix with polypeptides of various types suitable for several biomedical
applications Mainly, it is drug delivery, since these hybrid formulations demonstrate an
ability to effectively encapsulate pharmaceuticals, specificity toward certain cell lines,
prolonged release profiles and capability to penetrate through various biological barri-
ers. For example, a casein derivative was successfully applied for the preparation of
silica/polymer drug vehicle containing encapsulated PTX with increased permeability
through gastrointestinal barriers (Figure 17, [235]).

Another protein, bovine serum albumin was immobilized on mesoporous silica
nanoparticles that were engineered as core–shell carriers for biologically active compounds.
This composition was recommended for various applications such as regeneration of bone
tissue [236]. Conjugation of silica particles with peptides is an excellent approach to im-
prove specificity of nanovehicle toward certain cells. For instance, coating of silica particles
with Cyc6, a bladder cancer cell specific peptide, made it possible to reach enhanced bind-
ing efficiency and specificity of modified nanoparticles for cancer cells of bladder in vitro
and in vivo [237]. Another effective example in this direction is immobilization of tumor-
homing peptide CREKA on the surface of mesoporous silica nanoparticles for fabrication
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of the nanocarrier for methotrexate delivery. These formulations were able to prolong the
encapsulated drug release up to 60 h and the treatment of cell cultures by obtained formu-
lations showed good viability of MRC-5 fibroblast cells and suppression of HeLa cells [238].
The authors of [239] designed gelatin-coated mesoporous hollow silica nanospheres and
used them for glimepiride encapsulation. Formulations were characterized by high drug
loading (40%) and more than a 2-fold higher duration of hypoglycemic effect in comparison
with commercially available formulations, which allows researchers to recommend them
as perspective candidates for the treatment of type 2 diabetes. Mesoporous silica particles
decorated by sericin and transferrin were reported as effective carriers of DOX, with high
cargo encapsulation parameters, as well as pH-triggered and prolonged release [240,241].
One of the main features of compositions based on proteins or peptides immobilized on
the silica matrix is their capability to pass through various biological barriers. In particular,
modification of the surface of silica particles by lactoferrin was documented as a successful
approach allowing to guide carriers through BBB [242]. Application of polypeptides for
decoration of mesoporous silica particles opens opportunities for other potential direc-
tions of biomedicine: ε-polylysine was documented as a component for fabrication of
nanomotor-based removers of Pb2+ from the blood, which makes it a perspective candidate
for treatment of heavy metal poisoning [243].
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3.5. Mesoporous Silica Nanoparticles Modified by Lipid Shell

Among approaches to modification of mesoporous silica nanoparticles, special at-
tention is paid to the decoration of the carrier surface by a lipid bilayer. These struc-
tures of core–shell type allow authors to combine advantages of lipid bilayer based
nanovehicles, i.e., liposomes, (biocompatibility, prolongation of drug release, protection
of cargo from premature enzymatic decomposition) [2,244–246] and porous silica ma-
terial (nontoxicity and high encapsulation capability of various cargos). Usually as a
material for lipid bilayer fabrication various two-tailed amphiphilic compounds are ap-
plied, including 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE); 1,2-distearoyl-
sn-glycero-3-phosphoethanolamine (DSPE); 1,2-distearoyl-sn-glycero-3-phosphocholine
(DSPC), 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC), DPPC and their mixtures
in various proportions.
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Lipid bilayer-coated mesoporous silica particles, also called silicasomes, show a num-
ber of useful properties suitable for biomedical application. For example, there is a series
of reports dedicated to the development of drug delivery systems based on irinotecan
and AZD1080, inhibitor of enzymes responsible for phosphorylation, for treatment of
alimentary canal cancers [247–251]. In particular, application of silicasomes was shown to
demonstrate improved biodistribution and delivery of AZD1080 to the sites of colorectal
tumor CT26 and pancreas KPC cancer models [247]. Similar modification allows authors
to achieve excellent encapsulation capability of irinotecan, improved pharmacokinetics
and 6-fold higher amount of drug in colorectal and pancreatic cancer cells after 48 h of
treatment over free drug and its liposomal formulation [248]. Moreover, lipid-decorated
silica particles have perspectives in various approaches of cancer treatment including
chemotherapy and chemo-immunotherapy of pancreatic cancer [249,250].

All reports concerning lipid-bilayer decorated MSN particles could be divided in
several sections using the material of the shell as a determining criterion:

(1) DOPE-based lipid bilayer shells. Decoration of the surface of mesoporous silica
particles by lipid shell composed of this lipid was shown to 2-fold increase cellular uptake
of zoledronic acid by MCF-7 cancer cells by 2-fold [252] and to act as microenvironment
responsive gentamicin delivery agents against Staphylococcus aureus bacteria with no toxicity
to human organs [253]. Besides this, additional modification of MSN of this type by TPP
cation was demonstrated as a successful example of the design of docetaxel delivery system
with pH-sensitive release and organelle-targeting properties [254] (Figure 18).
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Figure 18. Schematic representation of preparation of MSN particle in lipid shell and mechanism of
its antitumor activity (MSN = mesoporous silica nanoparticle; TPP = triphenylphosphine; AIPH = 2,2′-
azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride; DTX = drug docetaxel; FA = folic acid; DOPE
= dioleoylphosphoethanolamine; DSPE-PEG2000 = 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-
N-[amino(polyethylene glycol)-2000] (ammonium salt). Reprinted with permission from [254].
Copyright 2020 Elsevier.
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(2) DSPE-based lipid shells. Notably, in the majority of cases this lipid is conjugated
with PEG with average molecular weight about 2000 g/mol. The reason of application
of this lipid–polymer conjugate is the inducing “stealth” properties to the system, i.e.,
inability to be spotted by immune system [255]. Transition from the lipid bilayer composed
of unsaturated lipid (DOPE) to its saturated counterpart (DSPE) allows researchers to
construct drug vehicles for arsenic trioxide aimed on the delivery to MCF-7 and HepG2
cancer cell lines capable to prolong drug release by more than 1.5 times [256] and to increase
the targeting efficiency toward glioma cells by 4-fold [257]. Moreover, this lipid shell was
used for fabrication of MSN-based drug delivery system of DOX for chemo-photothermal
therapy of cancer on the example of MCF-7 cells [258] and nanovehicles for successful co-
delivery of docetaxel and DOX demonstrating increased cytotoxicity towards MDA-MB-231
and MCF-7 cancer cell lines [259]. Combination of DOPE and DSPE in the lipid shell-coated
MSN was used for preparation of a nanovehicle for the delivery of antibacterial peptide
colistin for effective and selective treatment of lung infection Pseudomonas aeruginosa with
no cytotoxicity toward normal lung epithelial cells [260].

(3) Other lipids-based shells. The shell constructed from the mixture of DPPC and
DSPC was applied for the fabrication of nanocarriers of DOX for delivery into U-251
glioblastoma cells, which was characterized by 90% encapsulation efficiency and thermo-
responsive release [261]. The other example of coating of this type is soybean PC, which
is being combined with an additional layer of calcium phosphate on the surface of MSN,
allowing to construct the system for co-delivery of zinc (II) phthalocyanine and DOX. This
formulation had pH-triggered controllable drug release properties and induce HeLa cell
apoptosis [262]. 1-Palmitoyl-2-oleoylphosphatidylcholine-coated MSNs were described as
promising drug vehicles possessing acid-triggered release of encapsulated cargo [263].

At this point, the concept of MSNs is highly developed and the proposed drug delivery
systems often exhibit multiple aspects of activity, such as targeting, stimuli-responsive,
stealth properties. This allows for a very diverse range of their application. While being
relatively slow nanovehicles in terms of cargo release, silica nanoparticles are superior to
liposomes in the amount of drug they can hold, but at the same time, can be functionalized
by a wide variety of intelligent homing ligands as the liposomes. While non-toxic and
non-immunogenic, silica nanoparticles can exhibit some degree of toxicity due to traces
of synthetic precursors and catalysts, such as ionic surfactants, acids and alkali. A high
density of silanol groups on the surface can be a hazard in a bioenvironment leading to
hemolysis or protein denaturation. Yet, a large number of successful examples of developed
drug delivery systems based on MSNs, which have outstanding biomedical parameters,
allows researchers to expect their rapid advancement to clinical application, as long as the
abovementioned limitations are addressed with caution.

3.6. Cerasomes

Cerasomes are a hybrid class of organic-inorganic vesicles that have a bilayer mem-
brane and a siloxane surface [264]. Liposome-like morphology allows them to encapsulate
hydrophilic and hydrophobic substrates, and the siloxane coat provides an extraordinary
morphological stability and durability. Cerasomes consist of cerasome-forming lipids
(CFLs) that have three distinguishable parts: the hydrophobic domain, the so-called hydro-
gen belt, and a headgroup bearing at least one triethoxysilyl moiety [265]. The CFLs are
presented in a variety of forms that will be discussed later. An important notion to the CFL
structure is that inherently, the triethoxysilyl headgroup is hydrophobic and is therefore
disadvantageous for the bilayer self-assembly in water. A precisely controlled preliminary
hydrolysis is necessary to enable proper aggregates to form. Originally, Katagiri et al.
proposed a CFL that contains an ammonium fragment in the headgroup area, which allows
for the lipid to form bilayers without preliminary hydrolysis [266].

Consequently, the concept of a surface polymerizing liposomal structure has attracted
a lot of research interest (Figure 19) [267], so over the last two decades, many contributions
have been made to the cerasome concept. Originally, the high degree of siloxane formation
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was not achievable with lipids to full extent due to the fact that the lipid headgroup cross-
section is smaller than that of the hydrophobic domain and full linking is inappropriate
in terms of packing parameters for bilayer formation [264]. This could be avoided in two
ways: addition of tetraethyl orthosilicate or (3-aminopropyl)triethoxysilane (APTES) or
dodecyltriethoxysilane as was proposed by the original authors [268,269]; or by changing
the lipid structure, as Liang et al. have established, a structure–property relationship
involving the amounts of triethoxysilyl groups and hydrophobic tails in one CFL molecule,
and as a result, the hydrophilic as well as hydrophobic substrate release rate can be tweaked
by varying the building blocks [270]. It is also expected that overall structural sturdiness
can be higher, since 2- or 3-headed CFLs form more siloxane bonds with neighboring
molecules [270].
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undergo hydrolysis upon forming a bilayer and covalently link with each other via Si-O-Si bonds.
Reprinted with permission from [267]. Copyright 2014 Elsevier.

As a novel type of a nanocontainer, cerasomes were immediately subject to a toxicity
and pharmacokinetics study, which showed that recoverable acute toxicity is observed
at a relatively high concentration of 50 mg/kg of CFL, while cerasomes also provided
a significantly prolonged cargo release profile in vivo. The circulation time was higher
than that of the conventional liposomes, but lower than typical stealth liposome time, and
the sustained drug release resulted in slow cargo release, which was most significant for
cerasomes, compared to other liposomes and hybrid nanocarriers in the study. Overall,
the morphological stability of cerasomes seems to be the driving factor of their prolonged
circulation time in vivo [271]. The structural stability of cerasomes is also advantageous for
production of smaller sized vesicles, since covalently bound CFLs are not so prone to fuse
with neighboring membranes, as are conventional phospholipids due to curvature induced
strain on the membrane. On their own, 70 nm cerasomes exhibited excellent transfection
efficiency as was shown in [272].

The cerasome concept has been alternatively developed by Sebyakin and Gileva with
co-workers who developed an L-aspartate-based cerasome forming lipids which were
demonstrated to be able to form cerasomes comparable to the original cerasome forming
lipids [273,274]. The aspartate-based framework enables simpler selection of hydrophobic
tails, since in the original lipid structure the hydrophobic part is based on an amine that is
more laborious to synthesize, while providing the opportunity to impart a cationic group
in the structure to enable aqueous solubility as well. The silane coupling can be utilized for
easy cerasome surface functionalization, as was done in [275], where the authors coupled
TPP moiety to the silanol groups using APTES as a linker, forming a mitochondria-targeting
cerasome formulation.

The CFL can be mixed with phospholipids, which produce a more permeable mem-
brane to precisely tune release rates of any substrates, so, Dai et al. have compared a series
of liposomal formulations based on different molar ratios of DPPC and CFL [276]. As a
result, a series of hybrid cerasomal formulations which release the cargo at different rates
were evaluated in terms of insulin delivery and the cerasome was able to sustain a hypogly-
caemic effect in diabetic rats for 16 h. Another interesting effect that can be achieved by CFL
mixtures with phospholipids is thermal responsiveness, which is based on the lipid phase
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transition temperature, as was shown in [277], where the authors obtained a formulation
that released less than 20% of cargo at 37 ◦C within 90 min, but almost complete (80%)
release was observed within the same period at 42 ◦C. Additionally, high-intensity focused
ultrasound was widely applied for thermosensitive cerasomes, [278–280], showing a high
potential of controlled localized drug release. Ultimately, utilizing the exceptional cerasome
stability, researchers were able to encapsulate oxygen along with DOX to relieve tumor
hypoxia for enhanced chemotherapeutic activity (Figure 20) [280].
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Figure 20. The schematic demonstration of a complex chemotherapeutic system. The cerasomes
loaded with oxygen and DOX are delivered to tumor sites, where ultrasound irradiation helps
release the cargo for dual action of treating hypoxia to prevent drug resistance and metastasis,
and producing a cytotoxic effect caused by DOX for tumor mitigation. Reprinted with permission
from [280]. Copyright 2020 American Chemical Society.

It was shown that cerasomes can also be modified with contrast agents of radioactive
and fluorescent nature for effective in vivo imaging [281,282], can be modified with oxi-
dation sensitive fragments to create a redox-responsive nanocarrier [283], which can be
externally triggered to release the cargo in the presence of cellular reducing environment.

Meanwhile along the biomedical application of cerasomes, many attempts are being
made to develop novel functional materials using cerasomes as a framework. Song and
co-authors constructed a cerasome coated with gold nanoparticles for horseradish peroxi-
dase immobilization and electrocatalytical peroxide decomposition, which showed that
cerasomes can be used as a biomimetic membrane to investigate mechanisms of various
biological processes [284]. The same group used cerasome membrane as a catalyst for aero-
bic oxidation of thioglycol, and found that the metallophtalocyanine catalyst embedded
into the cerasomes has higher catalytic activity than in traditional vesicles, micelles and
organic solvents [285].

Overall, the cerasome emergence on the field of biomedical research is a significant
development of the liposome concept. Cerasomes, the morphologically stable liposome
analogues can bear all the benefits and modifications that are applicable to the liposomes,
but they are also more stable during storage and in harsh conditions, are certainly required
to develop novel ultimate drug formulations.

4. Conclusions

The review discusses the advantages of using modified liposomes as nanocarriers.
Much attention is paid to the non-covalent modification of liposomes with cationic sur-
factants, which increases their stability, ability to overcome biological barriers, as well as
ensure targeted drug delivery. In addition, non-covalent modification has a significant
advantage over covalent modification in that there is no time-consuming multistep organic
synthesis procedure. The problem of toxicity associated with cationic surfactants can be
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partially avoided by optimizing the composition of liposomes to compromise between the
stability/targeting/permeability effects and toxicity profile.

The modification of liposomal drug delivery systems with peptides has taken place
in research for more than 20 years. The peptides are usually applied to impart specific
affinities of drug nanocarriers to certain target tissues, they are uniquely tweakable to be fit
for any biomolecule and are indispensable assets in the design of modern drug delivery
systems. However, they are not the only criterion of a promising nanocarrier, and many
other techniques need to be applied to construct an all-round well-performing species,
since liposomes are also prone to opsonization and RES uptake, decomposition in biological
medium due to proteins, enzymes, oxidizers and other reactive species, aggregation during
storage and other problems. Yet, some sort of targeting mechanics is necessary in any
chemotherapeutic formulation, and for this purpose, there are countless peptide motifs fit
for almost any target in the bioenvironment, with much more to be designed in the future.

Liposomes can also be modified with various macrocycles (cyclodextrins, porphyrins,
calixarenes). Cyclodextrins, capable of forming guest–host complexes with hydrophobic
drugs, improve the stability of their liposomal formulations. In this case, the hydrophobic
drug is located in the cyclodextrin cavity rather than in the lipid bilayer, where its presence
reduces the stability of the system. The inclusion of calixarenes with groups capable to
bind to phospholipids or with charged functional groups also enhances the stability of
liposomal formulations. The disadvantages of porphyrins, widely used in PDT and SDT,
are eliminated by using them in the form of lipid formulations. Porphyrins loaded into
liposomes exhibit higher toxicity to cancer cells, prevent tumor growth and also contribute
to its shrinkage, prevent metastasis and reduce toxicity to healthy cells under irradiation.
Hence, all the presented examples clearly demonstrate the high interest and potential of
non-covalently modified lipid-based nanocarriers.

As an excellent inorganic alternative, mesoporous silica nanoparticles can be consid-
ered. Highly developed internal surface area allows them to encapsulate higher amounts of
cargo compared to other delivery systems. Toxicity of silica nanoparticles can be controlled
by their size and morphology, which may serve as the tool for avoiding of undesired side
effects upon their accumulation and metabolism. However, real potential of porous drug
carriers on the basis of silica is disclosed upon their various modification. Conjugation of
silica matrixes with polymers or their envelopment it into lipid shell may provide versatile
characteristics, stimuli-responsive properties (pH-responsive, thermosensitive, etc.), bio-
compatibility, thereby moving them towards clinical trials. Among the challenges in this
field, development of highly ordered mesoporous materials with narrow size distribution
should be mentioned. Upcoming investigations are predicted to address these points.

The combination of an inorganic silicon-containing component and an organic lipid
component has led to the creation of another class of nanocarriers, cerasomes. Nowadays
multiple research groups from different countries have significantly contributed to the
development of the cerasome concept. The simple idea of covalently linked bilayer of
hybrid amphiphilic monomers is a great and promising tool for the design of better
and newer drug nanoformulations that combine beneficial features of both organic and
inorganic carriers. Hopefully, more and more researchers would incorporate cerasomes into
their biomedical work and further improve the already promising drug delivery platform.
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Abbreviations

PEG polyethylene glycol
PC L-α-phosphatidylcholine
CHO cholesterol
SHP quaternary ammonium salts with a sterically hindered phenolic moiety
AChE acetylcholinesterase
BBB blood-brain barrier
2-PAM pralidoxime chloride
TPP triphenylphosphonium
Im imidazolium
DPPC 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
DOX doxorubicin hydrochloride
HepG2 hepatocellular carcinoma
MTAB (11-mercaptoundecyl)-N,N,N-trimethylammonium bromide
DSPE 1,2-Distearoyl-sn-glycero-3-phosphorylethanolamine
CPP cell-penetrating peptide
VEGFR vascular endothelial growth factor receptor
HER2 human epidermal growth factor receptor-2
nAChR α7 nicotinic acetylcholine receptor α7
IL-13Rα2 Interleukin-13 receptor subunit alpha-2
NBD NF-κB essential modulator binding domain
BBTB blood-brain tumor barrier
CD cyclodextrin
HP-β-CD 2-hydroxypropyl-β-CD
M-β-CD methyl-β-CD
SMR sulfamerazine
INM Indomethacin
DLS dynamic light scattering
CUR curcumin
DCL drug-in-CD-in-liposome
ANE anethole
ACL anethole-in-CD-in-liposome
ACL2 anethole-double-loaded liposome
Quer quercetin
PTX paclitaxel
DLPL double loaded PEGylated liposome
mTHPC meta-tetrakis(3-hydroxyphenyl)chlorin
TM-β-CD heptakis(2,3,6-tri-O-methyl)-β-CD
E4 estetrol
HDA-β-CD heptakis(2,3-di-O-acetyl)-β-CD
POPC 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
SC4AB p-sulfonatocalix[4]arene tetrabutyl ether
SC4AH p-sulfonatocalix[4]arene tetrahexyl ether
FITCPy fluorescein isothiocyanate-conjugated pyridinium
PDT photodynamic therapy
p-OH 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin
SOPC 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine
DOPC 1,2-dioleoylsn-glycero-3-phosphocholine
SLPC 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine
PPa pyropheophorbide acid
Ce6 chlorin e6
LCP low-molecular citrus pectin
DVDMS sinoporphyrin sodium

DSPE-PEG 2000
1,2-distearoyl-sn-glycero-phosphoethanolamine-N-[methoxy
(polyethyleneglycol)-2000]

TTMAPP 5,10,15,20-tetrakis(4-trimethylammoniophenyl)porphyrin
HMME hematoporphyrin monomethyl ether
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SDT sonodynamic therapy
TTP 5,10,15,20-tetra-p-tolylporphyrin
hCe6 hydrophobic Ce6
DiR 1,1′-dioctadecyl-3,3,30, 3′-tetramethylindotricarbocyanine iodide
TPZ tirapazamine
ICG indocyanine green
PEG-NI 2-nitroimidazole derivative linked to PEG
ECM extracellular matrix
NCP nanoscale coordination polymer
HUVEC human umbilical vein endothelial cell
TPPS4 meso-tetrakis(4-sulfonatophenyl) porphine
DOTAP 1,2-dioleoyl-3-trimethylammonium-propane
GEM gemcitabine hydrochloride
PDA polydopamine
MSN mesoporous silica nanoparticles
MCM Mobil Crystalline Materials/Mobil Composition of Matter
SBA Santa Barbara Amorphous
FDU Fudan University Material
KIT Korean Technological University
HMSN hollow mesoporous silica nanoparticle
PV pore volume
S surface area
APTES (3-aminopropyl)triethoxysilane
AuNP gold nanoparticles
PNIPAM poly-N-isopropylacrylamide
PUA polyurethaneamine
PPG polypropyleneglycol
GAP azobenzene/galactose-grafted polymer
PEI polyethyleneimine
PAMAM poly(amido)amine
DOPE 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine
DSPC 1,2-distearoyl-sn-glycero-3-phosphocholine
AZD1080 2-hydroxy-3-(5-(morpholinomethyl)pyridin-2-yl)-1H-indole-5-carbonitrile
CFL cerasome-forming lipid
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