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Abstract

Background

Many methods of spatial smoothing have been developed, for both point data as well as

areal data. In Bayesian spatial models, this is achieved by purposefully designed prior(s) or

smoothing functions which smooth estimates towards a local or global mean. Smoothing is

important for several reasons, not least of all because it increases predictive robustness and

reduces uncertainty of the estimates. Despite the benefits of smoothing, this attribute is all

but ignored when it comes to model selection. Traditional goodness-of-fit measures focus

on model fit and model parsimony, but neglect “goodness-of-smoothing”, and are therefore

not necessarily good indicators of model performance. Comparing spatial models while tak-

ing into account the degree of spatial smoothing is not straightforward because smoothing

and model fit can be viewed as opposing goals. Over- and under-smoothing of spatial data

are genuine concerns, but have received very little attention in the literature.

Methods

This paper demonstrates the problem with spatial model selection based solely on good-

ness-of-fit by proposing several methods for quantifying the degree of smoothing. Several

commonly used spatial models are fit to real data, and subsequently compared using the

goodness-of-fit and goodness-of-smoothing statistics.

Results

The proposed goodness-of-smoothing statistics show substantial agreement in the task of

model selection, and tend to avoid models that over- or under-smooth. Conversely, the tradi-

tional goodness-of-fit criteria often don’t agree, and can lead to poor model choice. In particu-

lar, the well-known deviance information criterion tended to select under-smoothed models.

Conclusions

Some of the goodness-of-smoothing methods may be improved with modifications and bet-

ter guidelines for their interpretation. However, these proposed goodness-of-smoothing
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methods offer researchers a solution to spatial model selection which is easy to implement.

Moreover, they highlight the danger in relying on goodness-of-fit measures when comparing

spatial models.

Introduction

Spatial smoothing is a technique used when modelling the underlying data-generating process

of spatial data to account for spatial autocorrelation, as expressed by Tobler’s first law of geog-

raphy: “. . . near things are more related than distant things” [1]. Neglecting spatial autocorre-

lation is akin to ignoring the order of time-series data, leading to greater uncertainty about the

model parameters, poorer predictions, and misguided inference. Conversely, when spatial

smoothing is applied, it has the benefit of more appropriately representing the statistical uncer-

tainty of model parameters, better predictions, and providing more insight into the layers of

the underlying data-generating process, similar to how the trend and seasonality help explain

layers of decomposed time series data [2, 3].

Many methods of spatial smoothing have been developed, for both point data as well as

areal data, including linear or non-linear functions based on distances, loess smoothing [4],

spline functions [5], kriging [6] and Gaussian process priors [7, 8], and empirical Bayes

approaches to spatial smoothing [9]. For an overview of smoothing techniques, see Kafadar [2]

and Tiwari and Rushton [10]. Empirical Bayes methods, which smooth estimates of points on

a spatial surface towards the global mean based on a distribution whose parameters are fixed a
priori, gained popularity as computing power increased and parameter estimation techniques

became more widely accessible. Fully Bayes methods have also been proposed [10, 11], where

the surface is typically estimated by one or more spatially varying parameters with purposefully

chosen prior distributions to account for the spatial autocorrelation.

Spatial smoothing plays an important role in a broad range of applications, including the

assessment of feature significance [12] and seafloor classification in geostatistics [13], monitor-

ing of groundwater contaminant plumes [14], image processing [11, 15], the calorific value

distributions in coal facies [16], and analysis of traffic accidents [17, 18] to name a few.

Notwithstanding the benefits associated with spatial smoothing, there seems to be a small

but growing awareness of the dangers associated with under- and over-smoothing. While

over-smoothing causes genuine deviations from the local or global mean to be obscured [13,

19], under-smoothing is equally undesirable as it exaggerates features in the surface, making

them indistinguishable from background noise, which defeats the point of spatial smoothing.

The negative effects of under-smoothing are a lot less vocalised in spatial modelling than in

time series modelling, where the link between under-smoothing and residual autocorrelation,

large prediction errors, and biased hypothesis tests have been articulated [20, 21].

Despite the growing awareness, there is very little guidance in the literature on how to assess

the appropriateness of the level of spatial smoothing, and according to our knowledge, any

efforts to account for such smoothing in model selection are non-existent. The latter is evident

by the widespread use of model selection criteria like the Bayesian information criterion (BIC)

[22], the deviance and related deviance information criterion (DIC) [23], and widely applica-

ble information criterion (WAIC) [24] to compare spatial models, ironically even in studies

which aimed to assess the presence of under- or over-smoothing (see for example, Rodrigues

and Assunção [25] and Law [26]). The problem is that these criteria are designed to quantify

goodness-of-fit (GoF), that is, the discrepancy between the observed data and the predicted
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values from the model, while penalising for over-fitting (model complexity), but they fail to

account for the spatial dependencies [27] and the effect that spatial smoothing has on model

fit. Put another way, the problem of model selection can be viewed as an optimisation problem

with several competing objective functions: in addition to GoF, model parsimony and predic-

tive capability, spatial models necessitate an additional objective function–“goodness-of-

smoothing” (GoS). Hence not only should a model which under- or over-smooths be given

less preference, but a model with an appropriate amount of smoothing should be preferred

over a model without any smoothing, even though it is likely to have a poorer GoF to the

observed data.

In the context of Bayesian spatial modelling, spatial smoothing is typically implemented

through a prior distribution using spatial weights to define the spatial dependencies; see

Cramb et al. [28] for a critical review of popular Bayesian spatial models. One of the most com-

mon prior distributions for spatial random effects (SREs) in a Bayesian spatial model is the

intrinsic conditional autoregressive (ICAR) prior [19, 29]. The BYM model [11] makes use of

the ICAR prior, but also includes unstructured (independent) SREs so that the estimated risks

are smoothed towards a local mean as well as a global mean [26]. The two random effects are

henceforth referred to as the structured (SSRE) and unstructured spatial random effects

(USRE). In response to the complexity of having two sets of SREs, Leroux et al. [30] proposed

a model in which the SREs were a weighted mixture of the USRE and SSRE, the latter modelled

by the ICAR prior. Although the BYM and Leroux models remain popular, especially in epide-

miology [25], some concern about the potential for over-smoothing has been expressed (for

example, see Smith et al. [19]; Law [26]; Kandhasamy and Ghosh [31], Lawson and Clark [32],

Best et al. [33] and Cramb et al. [28])

This paper has three aims: 1) to demonstrate that reliance on common GoF criteria for spa-

tial model selection is inadequate; 2) to propose several methods for quantifying the degree of

smoothing; and 3) to compare these methods against GoF statistics on real data. These meth-

ods were developed within the context of disease-mapping using areal data in a Bayesian

framework. However, some of these methods were inspired from methodology outside this

field and will equally be applicable to problems in other contexts, such as geostatistics; other

methods are more specific to the disease-mapping context, but could potentially be extended

to a broader class of models and problems with little modification.

Without loss of generality, we impose three constraints on our study. The first is the range

of models considered. We limit our analysis to the BYM and Leroux models for several rea-

sons: they are well known and widely used; the ICAR model, which underpins both the BYM

and Leroux models, has been criticised for being susceptible to over-smoothing; and as the

ensuing analysis reveals, a wide range of models with varying degrees of smoothing can be

achieved simply via changes to the hyperprior specification. For the purpose of quantifying

and comparing different degrees of smoothing, this is adequate. Moreover, given the large

influence of the hyperpriors on smoothing, the choice of model seems secondary. More

broadly, other approaches such as models based on Gaussian process priors will suffer similar

issues with respect to under- and over-smoothing.

The second constraint is investigating the effect of spatial smoothing parameters or spatial

weights on the degree of smoothing. Typically, in models such as the BYM and Leroux, spatial

weights are based on first-order adjacency. That is, each pair of spatial units (areas) are

assigned a weight of 1 if they are considered (typically geographically) adjacent and zero other-

wise. This simplifies the spatial covariance function substantially and improves computation

without substantial loss of information. However, many other formulations have been

explored (see for example Earnest et al. [27], Law [26], and Duncan et al. [34]). Not only has
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this issue already received much attention, but the conclusions suggest that binary first-order

adjacency weights are often a good choice anyway.

Third, the task of trying to determine the optimal amount of smoothing for a given model

is not considered. Again, this has already been addressed in the literature (e.g. Evers et al.

[35]), but more importantly, this task is impeded by the lack of guidance on how the degree of

smoothing can be quantified.

The structure of this paper is as follows. The Methods section describes the Bayesian spatial

models and introduces an important quantity derived from the model parameters which is

subsequently used in the analysis. Also described in this section are five approaches to quanti-

fying smoothing and three commonly used GoF measures, as well as the two spatial datasets.

The Results section reports the parameter estimates, the GoF and GoS criteria are evaluated

which are subsequently used to compare the models. These results and limitations of this

study are examined in the Discussion.

Methods

Bayesian spatial models

For specificity, we consider two spatial models for area-level count data that are commonly

used in epidemiological modelling. For each model, the data are assumed to follow a Poisson

distribution

yi � PoisðEie
miÞ

where yi and Ei are the observed and expected counts respectively, and μi is the log relative risk

for the ith area. Assuming k covariates and some weakly informative priors, the Leroux model

[30] is specified as

mi ¼ βTxi þ si

bk � N ð0; s2Þ

sijsni � N
r
X

j
wijsj

r
X

j
wij þ 1 � r

;
s2
s

r
X

j
wij þ 1 � r

0

@

1

A

r � Unifð0; 1Þ

s2

s � IGða; ZÞ

and the BYM model [11] is specified as

mi ¼ βTxi þ si þ ui

bk � N ð0; s2Þ
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sijsni � N

X

j
wijsj
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j
wij

;
s2
sX

j
wij

0

@

1
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ui � N ð0; s2

uÞ

s2

s � IGða; ZÞ

s2

u � N ð0; 10Þ
þ

where βT = (β0,. . .,βk)
T are the k + 1 regression coefficients, IG denotes the inverse-gamma

(IG) distribution, parameterised in terms of shape and rate, N ð�Þþ denotes a Normal distribu-

tion left-truncated at zero, and all Normal distributions including the truncated distribution

are parameterised in terms of mean and variance. The spatial weights wij were fixed a priori as

the binary, first-order adjacency weights, σ2 was held fixed at 100, while different combina-

tions of values of α and η were used to fit different models with varying degrees of smoothing.

Given the sensitivity to the hyperprior for s2
s , left-truncated Normal (LTN) distributions,

N ðp; nÞþ, were also trialled. Other hyperpriors are possible (see Gelman [36] for example),

but are not considered here for the sake of brevity. The specific values of α, η, v, and π are

included in S1 Table. It should be stressed that these values are not necessarily sensible from a

practical standpoint–they were chosen deliberately to induce a set of maps with varying

degrees of smoothing to test the methods for quantifying smoothing described below. This

yields a total of 4 models each with 12 model variants labelled A through L. While the relation-

ship between the informativeness of a prior distribution and the impact it will have on smooth-

ing is not straightforward, these model variants are approximately ordered in descending

order of smoothing intensity.

Extensions of the standardised incidence ratio. In the disease mapping context, the ratio

yi/Ei is called the observed or ‘raw’ standardised incidence ratio (SIR). This is usually unstable

due to low incidence and/or small populations at risk [10, 30, 37], and thus the goal is to pro-

vide a better estimate, given by the relative risk exp(μi), or posterior SIR.

We introduce a new quantity, the covariate-adjusted SIR (CASIR), which is a key compo-

nent of the methods below,

CASIRi ¼ expðmi � βTxiÞ

which is equivalent to exponentiating the SRE, exp(si). In the case of the BYM model, the

unstructured spatial random effects (USRE) are also subtracted from μi before exponentiating.

Similarly, we define the covariate-adjusted raw SIR (CARSIR) as

CARSIRi ¼
yi
Ei
expð� βTxiÞ

where yi/Ei is the raw SIR. As will become apparent, the smoothed SIR surface, given by exp

(μi), may not necessarily appear smooth, and paradoxically may appear less smooth when

more smoothing is applied, and vice versa. This is because the smoothness exhibited by the

SIR depends on the effect of the covariate(s), and their relative contribution to the SIR com-

pared to the SRE. Conversely, the CASIR directly reflects the degree of smoothing.

We justify use of the CASIR over the SRE for two reasons. First, the CASIR is comparable

to the SIR, the main parameter of interest in these epidemiological models, by converting the
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SRE to a ratio scale parameter. Second, it allows a theoretical bound on the potential values of

CASIR to be computed, which is a central feature of one of the approaches to quantifying

smoothing described below. Taking logarithms of the raw SIR to compute a range for si is not

reliable since yi may be zero.

Computation. The Leroux model with the IG prior distribution was fit using the R pack-

age CARBayes [38], for computational efficiency while the other three models were fit using

WinBUGS [39] via the R package R2WinBUGS [40, 41]. Although CARBayes can fit the

BYM model with an IG prior, only the sum of the estimated SREs are provided whereas sepa-

rate estimates of the SSRE and USRE are highly valuable for this analysis. These software use

Markov chain Monte Carlo (MCMC) techniques to estimate the posterior distribution.

Although other software is available which should produce very similar results, these software

were chosen for their reliability and convenience in fitting these particular spatial models.

Approaches to quantifying smoothing

There are potentially several ways to quantify the degree of smoothing attained by a given

model. To address the second aim of this paper, five ideas are explored. The origins of these

ideas and their technical details are described below.

Ratio of variograms. The classical variogram for area i at lag h is given by

giðhÞ ¼
1

2NiðhÞ

X

j�i

ðzi � zjÞ
2

where Ni(h) is the number of areas which are no more distant than the lag h from area i, and j
* i denotes all areas i and j which satisfy dij< h where dij is the distance between areas i and j,
and zi is a measured variable for area i [3, 6]. Instead of using the Great Circle distance between

the centroids of each area, we define dij as the minimum number of boundaries that must be

crossed to move from area i to area j, as proposed by Knorr-Held and Raßer [42]. This appears

to be more appropriate for areal data as it tends to provide smoother and more robust esti-

mates of the variogram, especially for small lag values. Additionally, under this construction,

adjacency of areas defines the autocorrelation in the variogram as well as the weights matrix in

the modelling.

The variogram, averaged over the areas,

gðhÞ ¼
1

N

XN

i¼1

giðhÞ;

provides a succinct visual representation of the spatial continuity of the variable z = (z1,. . .,zN).

Plotting the variogram of CASIR against the variogram of the CARSIR may be helpful in

assessing the degree of smoothing: a variogram that is too flat indicates over-smoothing, while

a variogram that is similar to that for the raw SIR indicates under-smoothing. As a quantitative

metric for assessing GoS, we propose the ratio of the variograms for CASIR to CARSIR, aver-

aged over the areas and lag parameter. This can be compared against a user-specified target to

determine whether the smoothing is appropriate.

Kurtosis preservation. Drawing on inspiration from developments in time series analysis,

we propose a method based on the work of Rong and Bailis [43]. The authors address the issue

of over-smoothing in time series analysis by using a simple moving average smoothing func-

tion such that the moving average window size minimises the “roughness” (defined as the

standard deviation of the first-order difference series) with the constraint that the kurtosis of

the smoothed time series must be greater than or equal to the kurtosis of the original,
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unsmoothed time series. That is, they aim to smooth a time series as much as possible while

preserving kurtosis. The result is that the smoothed time series retains rare large-scale devia-

tions while smoothing out more frequent modestly sized deviations.

This methodology presented in Rong and Bailis [43] not only provides a technique for

smoothing, but also a statistic for quantifying smoothness. It is the latter development that is

of interest here, since the spatial smoothing is performed as part of the Bayesian modelling.

However, spatial dependencies differ from longitudinal dependencies in terms of how individ-

ual units (areas or time points) are assumed to interact. As an analogy to first-order differences

in time, we consider a first-order neighbourhood approach in space, that is, differences

between a measure at a given area and the mean of its first-order neighbours. The roughness is

the standard deviation of these differences over all areas.

For a generic spatial variable zi associated with the ith area, the excess kurtosis is defined as

KurtðziÞ ¼
E½ðzi � �zðwiÞÞ

4
�

E½ðzi � �zðwiÞÞ
2
�
2
� 3

where �zðwiÞ is the weighted mean of {zi,; i = 1,. . .N}, and wi is the vector of spatial weights per-

taining to the ith area. The overall measure of kurtosis is given by averaging over all areas,

i = 1,. . .,N. A larger kurtosis implies that the variation is dominated by infrequent and extreme

deviations [43].

Note that whether z is defined as the CASIR or SIR, the kurtosis is very similar when com-

pared with their raw counterpart (i.e. CARSIR and raw SIR). However, the roughness can vary

substantially, making inference difficult. In our analyses, the SIR was found to be a more reli-

able measure, which is what is presented here. For consistency, SIR was also used to compute

the kurtosis, i.e. zi = SIRi.
Kappa. Cohen’s kappa statistic [44] has been used previously in the spatial context to

compare spatial agreement of patterns and to quantify the magnitude of spatial smoothing

(e.g. Sterlacchini et al. [45] and Earnest et al. [27]). The statistic is defined as

k ¼
PrðAoÞ � PrðAeÞ

1 � PrðAeÞ

where Pr(Ao) and Pr(Ae) are the observed and expected proportion of agreement between a

spatial variable respectively,

PrðAoÞ ¼
1

N

X

i¼1

cii

PrðAeÞ ¼
1

N

X
X

j¼1
cij �

X

i¼1
cij

N

and {cij} are the elements of a confusion matrix formed from the cross-tabulation of the catego-

ries of nominal variables [44]. To cross-tabulate values of continuous variables like the

observed and smoothed SIRs, they must first be categorised by specifying “epidemiologically

meaningful” thresholds [27, 46]. Following the suggestions of Earnest et al. [27] and Sterlac-

chini et al. [45], kappa was computed on the quantiles of CASIR and CARSIR using 3 catego-

ries (2 cut-offs: 0.25 and 0.75) as well as 5 categories (4 cut-offs: 0.1, 0.3, 0.7, 0.9).

In addition to being designed for categorical data, Cohen’s kappa has several criticisms.

Interpretation of kappa is not straightforward since its magnitude can be influenced by multi-

ple factors, and it may not be clear which factor(s) is responsible [45, 46]. While there is no
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consensus to interpreting kappa, some guidelines have been suggested in the literature (e.g.

Landis and Koch [47]). Broadly, kappa values less than or close to zero indicate a lack of agree-

ment, while kappa values close to 1 indicate substantial agreement [45–47]. However, the diffi-

culty of interpreting kappa is exacerbated in the spatial context. The statistic does not take into

account the spatial structure of the two variates being compared, and being symmetric, there is

no clear “baseline” for assessing agreement. Consequently, there is no unambiguous connec-

tion between kappa and the degree of smoothness exhibited by the spatial variables. This prob-

lem is illustrated in Fig 1.

In Fig 1A and 1B, there is perfect agreement between variables A and B. However, the sur-

faces in b) are not smooth, so a kappa value close to 1 does not necessarily indicate a high

degree of smoothness. In Fig 1C, there is perfect disagreement, yet both surfaces are smooth,

so the low kappa value should not be interpreted as a low degree of smoothness. In Fig 1D,

kappa is approximately 0.04. Regardless of how this is interpreted, it is not clear how it would

apply to surfaces A and B simultaneously.

If one of the two variables being compared is designated as the baseline, then this may help

in the interpretation. For example, consider the two variables raw and smoothed SIR. The null

hypothesis is that the raw SIR is not smooth. As smoothing increases, the disagreement

between these variables will increase, thereby reducing the kappa value. Thus it has been sug-

gested that smaller kappa values indicate greater smoothing [27].

In the absence of more definitive guidelines, the following metric to assess the GoS was

devised using the results from the other methods as calibration: k̂ < 0:05 indicates over-

Fig 1. Examples of Cohen’s kappa for 2 spatial variables categorised into 2 groups, illustrating the difficulty in

interpretation of kappa with respect to degree of spatial smoothing. The kappa values are a) k̂^¼ 1, b) k̂^¼ 1, c)

k̂^¼ � 1, and d) k̂^ffi 0:04.

https://doi.org/10.1371/journal.pone.0233019.g001
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smoothing, 0.05< k̂ <0.95 indicates a reasonable degree of smoothing, and k̂ > 0:95 indi-

cates under-smoothing.

Note that Earnest et al. [27] compute kappa for the raw and smoothed SIR. However, the

only covariates included in their models are temporal, not spatial, making these variables more

comparable to the CARSIR and CASIR respectively. As explained above when introducing

CASIR, it is necessary to remove the effect of spatial covariates when assessing spatial smooth-

ing. Consequently, in this paper, kappa is computed for the estimates of CASIR and CARSIR,

treating the latter as the baseline for agreement.

Fraction of spatial variation. Earnest et al. [27] and Law [26] also consider comparing

models based on the fraction of spatial variation explained by the model. This is defined as the

ratio of the empirical variance captured by the SSRE to the total spatial variation,

c ¼
VarðsÞ

VarðsÞ þ VarðuÞ

where s and u are the SSRE and USRE in the BYM model respectively–the only model consid-

ered by Earnest et al. [27]. As illustrated in Duncan et al. [34], this ratio, albeit using standard

deviations rather than variances, is helpful in solving the identifiability issue between s and u,

by modifying these random effects according to c, which has been applied to the results from

all the BYM model variants in this paper. It is not meaningful to compute this ratio again after

modification, nor is this ratio applicable to other models which have only one set of SREs, like

the Leroux model.

To generalise this concept to all spatial models with a SRE, s, we propose redefining the

total spatial variation to be VarðsÞ þ VarðεÞ where ε ¼ ðε1; . . . ; εNÞ
T

are the model residuals,

which for the BYM model includes the unstructured spatial random effect. That is, the residu-

als for the BYM model are defined as

εi ¼ Eie
mi � ui � yi

since the USREs do not contribute to an understanding of the spatial variation but rather rep-

resent spatial noise. To compute the ratio, the posterior median for a posterior sample of size

M is computed before computing the variance over the areas, i.e.

VarðsÞ ¼
1

N � 1

XN

i¼1

ðs�i � �s�Þ2

VarðεÞ ¼
1

N � 1

XN

i¼1

ðε�i � �ε�Þ2

where

s�i ¼ median
m¼1;...;M

fsðmÞi g

�s� ¼
1

N

XN

i¼1

s�i

and similarly for ε�i and �ε�. Whether a small or large fraction of spatial variation is preferred

depends on the reason for modelling the SIR [27]. Moreover, it is not obvious what values

would be considered small or large in general or in a particular application. Given the lack of

guidelines for interpreting this statistic for the purpose of assessing the degree of spatial
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smoothing, this criterion was not given further consideration when comparing the models.

However, the results are reported below for completeness.

Relative position of CASIR. The fifth approach to quantifying smoothing begins with the

observation that if no smoothing (i.e. no shrinkage) occurs, then the smoothed SIR and CASIR
become more similar to their raw counterparts. As the degree of smoothing increases, each

estimate of the SIR is smoothed towards the mean of its neighbours, subject to the model con-

straints and a priori knowledge imposed by the prior distributions. When the maximum

amount of smoothing is applied to area i,

CASIRi ! EðCASIRj�ijyÞ

which approaches 1 as the SRE tends to zero. This does not imply that all areas will be

smoothed towards the global mean, since areas may experience different degrees of smoothing.

In fact, some areas will undoubtedly be smoothed away from the global mean. Notwithstand-

ing some small deviations due to the use of posterior point estimates and properties of the pos-

terior sample such as convergence and effective sample size, the CASIRi estimate will lie

somewhere between CARSIRi and the posterior mean of its neighbours, E(CASIRj* i jy). If

the relative position of CASIR at these two extremes is denoted 0 and 1 respectively, then this

quantifies the degree of smoothing exhibited by a given area in relative terms. To quantify the

overall degree of smoothing for a given model, the distribution of these relative positions is

compared against a specified cut-off (see Table 1 for some examples).

Assessing GoS criteria. Several criteria were used to classify the models based on example

cut-offs, listed in Table 1. These cut-offs can be adjusted in the same way that different cut-offs

for DIC and WAIC can be specified to broaden or narrow the set of models considered

“good”. A “PASS” indicates that the model variant is neither under- nor over-smoothing

under the given criterion. Note that unlike the other GoS approaches, the kurtosis preservation

method only has 2 cut-offs as it is not obvious how this criteria can be adjusted to penalise

Table 1. Cut-offs used to construct the GoS criteria.

Statistic Cut-off

type

Criteria

Variogram ratio (u) The ratio, averaged over the lag, is between 0.2 and 0.8.

(c) The ratio, averaged over the lag, is between 0.25 and 0.75.

(pu) The ratio, averaged over the lag, is between 0.1 and 0.4.

Kurtosis Preservation (u) The kurtosis of CASIR� kurtosis of CARSIR and the roughness of CASIR is

less than the minimum roughness + 30%

(c) The kurtosis of CASIR� kurtosis of CARSIR and the roughness of CASIR is

less than the minimum roughness + 10%

Kappa (u) Kappa lies between 0.05 and 0.95.

(c) Kappa lies between 0.1 and 0.9.

(pu) Kappa lies between 0.05 and 0.7.

Relative position of

CASIR

(u) At least 75% of the N CASIR point estimates lie within the range 0.01 to 0.99

(inclusive).

(c) At least 85% of the N CASIR point estimates lie within the range 0.02 to 0.98

(inclusive).

(pu) At least 75% of the N CASIR point estimates lie within the range 0.2 to 0.98

(inclusive).

(u) = unbiased; (c) = conservative (less likely to choose under- or over-smoothed mode ls); (pu) = penalise under-

smoothing more heavily than over-smoothing.

https://doi.org/10.1371/journal.pone.0233019.t001
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under-smoothing in favour of models with more smoothing. For the reasons outlined above,

the fraction of spatial variation is excluded.

Goodness-of-fit and predictive performance

To address the first and third aims of this paper, we consider the following criteria commonly

used to measure GoF and check predictive performance. Many studies involving model selec-

tion amongst competing spatial models use DIC which evaluates the model GoF while penalis-

ing for model complexity (e.g. Law [26] amd Earnest et al. [27]). The DIC was proposed by

Spiegelhalter et al. [23] as a generalisation of Akaike’s information criterion (AIC) [48] using

information theoretic justification. The DIC can be defined as

DIC ¼ 2pD � 2logpðyj�θÞ

where pD is the effective dimension of the model and pðyj�θÞ is the likelihood evaluated at the

posterior mean of the unknown parameters, θ. The WAIC [24, 49] is a similar criterion,

defined as

WAIC ¼ 2pW � 2log
YN

i¼1

Ey½pðyijyiÞjyi�:

The advantages of WAIC over DIC include that it uses the entire posterior distribution, is

invariant to parameterisation, and closely approximates Bayesian cross-validation [49, 50].

Both GOF criteria are considered here for comprehensiveness.

Gelman et al. [49] propose two variants of pW. Here we use the second variant,

pW ¼
1

2

XN

i¼1

var½logpðyijyiÞjyi�

which, after simplification, leads to the specific WAIC criterion

WAIC ¼ 2
XN

i¼1

var
m¼1;...;M

½logpðyijy
ðmÞ
i Þ� � log

1

M

XM

m¼1

pðyijy
ðmÞ
i Þ

( )

where y
ðmÞ
i is the estimate of the unknown parameter(s) for the ith area andmth MCMC itera-

tion. Predictions, or theoretical future observations, denoted ~y, can be drawn from the poste-

rior predictive distribution

pð~yjyÞ ¼
Z

pð~yjθÞpðθjyÞdθ

which can be used to assess predictive performance. The idea is that if the model is adequate in

describing the data generating process, then the predicted data ~y will be close to the observed

data y. Thus these posterior predictive checks (PPCs) can be viewed as a variation on GoF

diagnostics [51].

One specific PPC is the conditional predictive ordinate (CPO) [52] which seeks to re-

observe a datum yi given all other observed data, denoted y/i,

CPOi ¼ pðyijyniÞ

¼
R
pðyijθÞpðθjyniÞdθ:

This metric is equivalent to the posterior predictive ordinate (PPO), pðyijyÞ, in the sense that

the set of leave-one-out marginal distributions fpðyijyniÞ; i ¼ 1; . . . ;Ng contain the same
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information about the predictive performance as the marginal distribution p(y) [51, 53]. How-

ever, the CPO avoids double use of the data since it is a leave-one-out cross-validation predic-

tive density. Additionally, unlike the PPO, the literature contains several useful guidelines for

interpreting the CPO [51]. For detecting outlying observations, Congdon [54] suggests scaling

the CPO values by dividing them by the maximum CPO value. Scaled CPOs less than 0.01 sug-

gest areas for which the model does not fit well. To compare models, several overall measures

of fit have been proposed (e.g. Ntzoufras [51] and Congdon [54]). However, the most numeri-

cally stable option seems to be the sum of the log CPO values, as suggested by Held et al. [55],

which we adopt here. The best model is taken to be the model which minimises

�
XN

i¼1

logðCPOiÞ:

In addition to these GoF criteria, we use Moran’s I statistic [56] to measure the degree of auto-

correlation remaining in the model residuals, checking the model assumption that the residu-

als are independent and identically distributed.

To compare models with respect to predictive performance, the minimum DIC and WAIC

were determined for each model, indicating the best model fit, and model variants with a DIC

or WAIC within 2 or 7 units were identified as having reasonable model fit, as per the com-

mon rule of thumb [23]. Smaller sums of log CPOs indicated better predictive performance,

and the model with the minimum was flagged. Moran’s I was compared across model variants

using p-values from the test assuming normality of the statistic under the null hypothesis of no

autocorrelation.

Data

Two spatial datasets are analysed. The first is the North Carolina sudden infant death syn-

drome (SIDS) dataset first presented by Atkinson [57], and subsequently augmented and ana-

lysed by Cressie and Read [37] and Cressie and Chan [58] amongst others. The observed data

represent counts of SIDS aggregated from 1979 to 1983 for each of the 100 counties in North

Carolina. The non-white birth rate over the same period is included here as a covariate. The

second dataset is the Scottish lip cancer dataset compiled by Kemp et al. [59] and first analysed

in Clayton and Kaldor [9]. This data has been previously analysed by Spiegelhalter et al. [23],

Leroux et al. [30], and Duncan et al. [34] amongst others. The observed data represent counts

of lip cancer across 56 counties of Scotland, and a spatial covariate representing the percentage

of the workforce acting as a proxy for sun exposure is included. A graphical summary of the

data is shown in Fig 2. To improve visual interpretation, the northeast island counties of Scot-

land, Shetland and Orkney, are excluded from all maps. This modification is limited to the

maps–data from these counties are still used and estimates for these counties are still generated

by the models.

These datasets were chosen for the following reasons: they each contain one useful spatial

covariate, which is essential in demonstrating the importance of CASIR; each study region

contains a sufficient number of areas to enable adequate evaluation of spatial effects; they have

been extensively analysed previously, corroborating the plausibility of the model specifications

and parameter estimates presented here; and they are publicly available data, facilitating repro-

ducibility. Additionally, these data represent real cases. This has the advantage over simulated

data which may not resemble realistic data, thus casting doubt on the authenticity of the

model results and accuracy of the approaches to quantifying smoothing.
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Results

For the sake of brevity, the ensuing figures relate mostly to the lip cancer data, with the remain-

ing results presented in S1 Appendix. Key parameter estimates for the BYM model with IG

hyperpriors fit to the lip cancer dataset are summarised in Fig 3. The values represent the pos-

terior means. The first four columns correspond to the linear scale parameters: the SSRE (si),
USRE (ui), covariate effect (βxi), and the logarithm of the smoothed SIR (μi). The last two

Fig 2. Summary of the two datasets. The observed and expected counts are shown in greyscale; the gradient is capped

at the maximum observed value (57 and 39 respectively); larger expected values are shown in black. The colour

gradient for the raw SIR reflects a ratio scale; darker shades of red indicate a higher raw SIR, while darker shades of

blue indicate a lower raw SIR.

https://doi.org/10.1371/journal.pone.0233019.g002
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columns correspond to the ratio scale parameters, namely the SIR (emi) and CASIR (esi). The

colour gradient is consistent within each of these two classes of variables (i.e. same hues indi-

cate the same values), but the legend reflects the range of values for the specific variable. Note

that the degree of smoothing generally decreases as the model variant increases from A to L.

Maps of the key parameter estimates for all the alternative models and variants, for both the

lip cancer and SIDS datasets are provided as supplementary material (see S1 Fig through S8 Fig).

The spatial pattern of the SIR appears similar across model variants, while the CASIR varies

considerably. The contrast between the SIR and CASIR is greater when more smoothing is

applied, highlighting the value of CASIR when trying to investigate the occurrence over-

smoothing. This is particularly true for this model applied to this dataset, as the maps of the

SIR look similar to the map of the raw SIR in Fig 2. A visual inspection of the SIR maps in Fig

3 (and maps of the remaining 7 model variants in S3 Fig) might lead one to conclude that all

model variants have under-smoothed, when in fact the majority of the model variants are

likely to be over-smoothed, as the subsequent analysis reveals. Moreover, aside from the SIR,

these model variants vary considerably in the estimated SSRE, USRE, and covariate effect, each

providing different statistical inference.

The smoothing paradox effect on the SIR surface is not readily observed in Fig 3, but is

quite noticeable in the results for the Leroux model variants on the lip cancer data (see S1 and

S2 Figs), and the BYM model variants on the SIDS data (see S7 and S8 Figs). The extent of this

effect depends largely on the contribution of the covariate effect to the log-risk surface and

how spatially autocorrelated the covariate is.

Fig 3. Maps showing the posterior mean estimates of the key model parameters for 5 select model variants of the BYM model with an

IG hyperprior (lip cancer dataset).

https://doi.org/10.1371/journal.pone.0233019.g003
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Goodness-of-fit criteria

The results for the GoF criteria and Moran’s I p-values are summarised in Figs 4 and 5.

The interpretation of Figs 4 and 5 is the same. For the DIC and WAIC, the model that mini-

mises the respective criterion is highlighted blue. This is the best model under this criterion.

Models with a DIC or WAIC value within 2 or 7 units are highlighted in lighter shades of blue,

indicating a reasonable model fit. For the CPO, the model which minimises the criterion is

highlighted. For Moran’s I, models with small p-values are highlighted red.

There are two important observations to be made here. First, the GoF criteria DIC, WAIC,

and CPO are rarely in agreement, and sometimes identify very different models. For example,

in Fig 4, for the Leroux LTN model, the model variants considered “best” under each of the

Fig 4. Values of the GoF criteria and Moran’s I p-values for each model variant fit to the SIDS dataset.

https://doi.org/10.1371/journal.pone.0233019.g004
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three GOF criteria are L, F, and C. Second, sometimes the best model under DIC coincided

with a low Moran’s I p-value. However, Moran’s I p-values should be interpreted cautiously–a

high degree of autocorrelation amongst near-zero residuals should not warrant the same con-

cern as highly autocorrelated residuals that are large in magnitude. This is especially true for

those models closer to variant L which have less smoothing and therefore generally have

smaller residuals (see S9 and S10 Figs).

Goodness-of-smoothing criteria

Ratio of variograms. The variograms for the lip cancer data are shown in Fig 6. Similar

results hold for the SIDS dataset (see S11 Fig). In general, as the smoothing decreases, the

Fig 5. Values of the GoF criteria and Moran’s I p-values for each model variant fit to the lip cancer dataset.

https://doi.org/10.1371/journal.pone.0233019.g005
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relative distance between the CASIR and CARSIR variograms decreases. That is, the ratio of

the CASIR variogram to the CARSIR variogram, averaged over the lag, increases.

Kurtosis preservation. The kurtosis and roughness for the models fit to the lip cancer

dataset are shown in Fig 7. Recall that the aim is to preserve the spatial kurtosis of the SIR with

respect to the raw SIR while minimising the roughness of the SIR. The kurtosis was generally

preserved for the Leroux models, and less frequently for the BYM models. The model variants

in the middle (e.g. S4 Fig through S9 Fig) tend to have less roughness, steering model choice

away from more extreme models which are likely to be over- or under-smoothing.

The results for the SIDS dataset (see S12 Fig) were less clear, with the SIR kurtosis values

being less than the raw SIR kurtosis except for 5 model variants. This suggests that it is not

only the type of model (i.e. Leroux vs BYM) that influences how well the kurtosis is preserved,

but that it may also depend on other factors including characteristics of the data. Also contrary

to the lip cancer data results, the roughness for the SIDS models generally increased with the

model variants from A through L.

Kappa. The values of the kappa statistic for the lip cancer data, representing the spatial

agreement between CASIR and the baseline CARSIR are shown in Fig 8. The values of

kappa generally increase with model variant, as expected. There is not much difference

between the kappa values whether 3 or 5 categories are used, but using fewer categories gen-

erally improves the robustness of this estimate since there is more information contributing

to each cell of the confusion matrix. The results are generally similar for the SIDS data (see

S13 Fig), although the kappa values start to decrease for some of the BYM model variants

with less smoothing.

Fig 6. Variograms for each model variant fit to the lip cancer dataset. The solid and dashed lines denote the variograms of CASIR

and CARSIR respectively, each averaged over the areas. The grey dots denote the area-specific variogram of CASIR. Note that the y-axis

has been capped at 1.3 for clarity.

https://doi.org/10.1371/journal.pone.0233019.g006
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Fraction of spatial variation. The results of the fraction of spatial variation for the lip

cancer dataset are shown in Fig 9. The results for the SIDS dataset exhibit a similar trend and

magnitude of values (see S14 Fig). For both datasets, the fraction of spatial variation ranges

between 0% and 10% approximately, and generally increases with model variant, similar to the

kappa statistic.

Relative position of CASIR. The posterior mean CASIR values and their relative position

for select variants of the BYM IG model fit to the lip cancer dataset are shown in Fig 10. These

results correspond to the maps shown in Fig 3. The mean CASIR estimates are denoted by the

filled circles, which are situated within the range of potential values. When the degree of

smoothing is large, these estimates tend to lie towards the end of the range representing the

mean of the neighbouring values. As smoothing decreases, these estimates tend to move

towards the opposite end of the range, representing the CARSIR estimates. Note that in general,

as smoothing increases, the CASIR estimates are smoothed towards the global mean of 1. How-

ever, the direction a given estimate of CASIR moves is not necessarily towards 1; sometimes the

CASIR estimate will be smoothed away from 1, depending on the neighbouring values.

Fig 7. Kurtosis and roughness for each model variant fit to the lip cancer dataset. The horizontal lines denote the kurtosis of the raw

SIR. The black dots denote the estimates of kurtosis and roughness.

https://doi.org/10.1371/journal.pone.0233019.g007
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The CASIR values may lay outside the range of potential values due to the flexibility

afforded by the prior distribution–the less informative the hyperprior for s2
s , the greater the

propensity. This effect is minimised by taking the posterior mean of the CASIR values, but

conversely, the effect is exaggerated when the range of potential values is very small, thus over-

estimating the effect of under- or over-smoothing for these areas. To address this, the relative

position of CASIR was not computed for areas when the logarithm of the range of potential

values was less than 0.03.

Fig 8. Kappa statistic between CASIR and CARSIR for each model variant fit to the lip cancer dataset, using 3 and

5 discrete categories. Values close to 0 suggest over-smoothing while values close to 1 suggest under-smoothing.

https://doi.org/10.1371/journal.pone.0233019.g008

Fig 9. Fraction of spatial variation for each model variant fit to the lip cancer dataset.

https://doi.org/10.1371/journal.pone.0233019.g009
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The distribution of the relative positions for each model variant fit to the lip cancer data is

shown in Fig 11. This gives an overall indicator of whether a given model variant is under- or

over-smoothing. If a large portion of the density is greater than or close to 1, this indicates that

the model is over-smoothing. Conversely, under-smoothing can be declared for densities close

to 0. Note that the values of the relative position of CASIR are capped at -0.2 and 1.2. The dis-

tribution of the relative positions for the models fit to the SIDS data is provided as supplemen-

tary material (see S15 Fig)

Model comparison

The GoF criteria are summarised in Figs 4 and 5. These criteria are often used to conduct

model selection on the basis of model fit and parsimony. However, as aforementioned, these

criteria often don’t agree, and can lead to poor model choices. In line with the aims of this

paper, we now compare the models based on the GoS statistics using the cut-offs described in

Table 1. The full results are provided in the supplementary material, S2 and S3 Tables.

Fig 10. Area-specific posterior mean estimates of CASIR and their relative position for select model variants of the BYM IG

model (lip cancer data). The coloured bars represent the theoretical range of CASIR values, coloured according the mean CASIR

estimates, with the cross symbol marking the endpoint corresponding to the CARSIR estimate. The dots represent the mean CASIR

estimate, coloured according to the relative position, with the pink and green colours indicating cases that are likely over- and

under-smoothing respectively (grey indicates areas that were excluded due to the theoretical range of CASIR values being too

narrow).

https://doi.org/10.1371/journal.pone.0233019.g010
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Fig 11. Distribution of the relative position of the CASIR estimates for each model variant (lip cancer data). Distributions with

substantial density close to 0 indicate under-smoothing; distributions with substantial density close to 1 indicate over-smoothing.

https://doi.org/10.1371/journal.pone.0233019.g011
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The criteria with unbiased and conservative cut-offs tend to favour under-smoothed mod-

els. If more smoothing is desired, then the cut-off that penalises under-smoothing is more

appropriate. Despite the differences between these GoS statistics mathematically and differ-

ences between the criteria definitions, there is substantial agreement among the results given a

particular cut-off (u, c, or pu). Focusing on only the criteria which penalise under-smoothing,

Fig 12 provides a consensus result, showing which model variants pass 2 GoS criteria and

which pass all 3. The best models under the GoF criteria are included for comparison.

Discussion

This paper presented three existing GoF measures and proposed five new GoS measures. Each

of these measures attempts to quantify one or more important characteristics of a model:

goodness of model fit, parsimony, and adequacy of spatial smoothing.

The GoS approaches vary from original proposals to reinventions and modifications of

existing ideas. Consequently, there are likely great improvements that can be made, both in

defining the statistics and the guidelines for their interpretation. For example, the kurtosis

preservation method appeared to be the least reliable GoS measure. This may be improved, for

example, if the spatial kurtosis were defined differently. Guidelines for the fraction of spatial

variation approach are notably lacking, which may be the main drawback of this otherwise

seemingly reliable and relatively simple method.

The third aim of this paper was to compare the results of the GoF and GoS statistics. The

criteria used for the GoF statistics were taken from the literature, while the criteria for the GoS

criteria were specifically designed to favour models with more smoothing rather than less.

Such criteria seem appropriate in practice given the benefits of spatial smoothing. Under these

particular criteria, summarised in Fig 12 and presented more fully in Figs 5 and 6 and S2 and

S3 Tables, there is a fairly strong consensus among the GoS approaches. Conversely, the GoF

criteria rarely agree on the best model, often choosing models with substantially different

degrees of smoothing, and even choosing models that are arguably greatly under- or over-

smoothed according to the GoS consensus results.

Out of the three GoS approaches forming the consensus, the relative position of the CASIR

approach coincided with the consensus (2 or more criteria) 91.7% of the time, the variogram

ratio approach coincided 88.2% of the time, and kappa coincided 85.4% of the time. The rela-

tive position of CASIR is the only GoS statistic that avoided selecting models with small Mor-

an’s I p-values. Thus the relative position of CASIR may be considered the most conservative

approach in that other GoS are likely to agree in identifying good models, but not necessarily

Fig 12. Consensus of the results based on the three GoS criteria that penalise under-smoothing, and the best

models according to the GoF criteria.

https://doi.org/10.1371/journal.pone.0233019.g012
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vice versa. To achieve the most robust model comparison on the basis of spatial smoothing, it

is recommended that multiple GoS methods and even multiple criteria are used. However, the

relative position of CASIR is likely to perform well if used independently.

While it is difficult to compare GoF against GoS in the absence of a ground truth, the GoS

does appear to identify better models more accurately than GoF based on the consistency of

the GoS approaches, and the fact that the model variants were intentionally specified to yield

over- and under-smoothed models closest to variants A and L respectively. This is corrobo-

rated by visual inference from maps such as those shown in Fig 3.

Using the consensus shown in Fig 12 as the benchmark, the problem with relying on GoF

measures to identify the best or even a good model becomes apparent. In particular, DIC

tended to identify under-smoothed model variants (variant L identified as best model 6 out of

8 times). The WAIC and CPO criteria tended to align better with the GoS criteria, but still

showing a tendency to favour models with less and more smoothing respectively. In fact, the

WAIC criteria always choose model variants at least as close to L if not closer than the CPO,

and DIC always choose model variants closer to L than the WAIC. Clearly there is a great dan-

ger in relying on DIC, and to a lesser extent other GoF measures, to perform model selection

among competing spatial models.

While the GoS approaches presented in this paper highlight a very important problem, they

offer only simple, empirical solutions to quantifying spatial smoothing. They are by no means

model-decision theoretic approaches. However, it is hoped that this demonstration of the chal-

lenge will motivate the development of more elaborate solutions, perhaps even combing multi-

ple objective functions into a single utility function to be optimised. In the meantime, these

simple GoS approaches should prove useful to researchers evaluating spatial models and per-

forming model selection.

The main limitations of this analysis are the scope of the data, models, and criteria used.

Both GoS and GoF criteria require subjective input from the user, usually in the form of cut-

offs. While care has been taken to use sensible criteria, different cut-offs may produce different

results. Only two datasets and two models were used, albeit with several variants. Another pos-

sible extension to this research is to compare these approaches compare across other models

and other datasets.
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16. Falivene O, Cabrera L, Tolosana-Delgado R, Sáez A. Interpolation algorithm ranking using cross-vali-

dation and the role of smoothing effect. A coal zone example. Comput Geosci. 2010; 36 (4): 512–519.

https://doi.org/10.1016/j.cageo.2009.09.015

17. Zeng Q, Wen H, Huang H, Abdel-Aty M. A Bayesian spatial random parameters Tobit model for analys-

ing crash rates on roadway segments. Accid Anal Prev. 2017; 100: 37–43. https://doi.org/10.1016/j.

aap.2016.12.023 PMID: 28088033

18. Ziakopoulos A, Yannis G. A review of spatial approaches in road safety. Accid Anal Prev. 2020; 135:

105323. https://doi.org/10.1016/j.aap.2019.105323 PMID: 31648775

19. Smith TR, Wakefield J, Dobra A. Restricted covariance priors with applications in spatial statistics.

Bayesian Anal. 2015; 10 (4): 965–990. https://doi.org/10.1214/14-BA927 PMID: 26753014

20. Peng RD, Dominici F, Louis TA. Model choice in time series studies of air pollution and morality. J R

Stat Soc Ser A Stat Soc. 2006; 169 (2): 179–203. https://doi.org/10.1111/j.1467-985X.2006.00410.x

21. McElroy TS, Politis DN. Time series: A first course with bootstrap starter. Boca Rato: CRC Press;

2019.

22. Gideon S. Estimating the dimension of a model. Ann Stat. 1978; 6 (2): 461–64. https://doi.org/10.1214/

aos/1176344136

23. Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A. Bayesian measures of model complexity and fit.

J R Stat Soc Series B Stat Methodol. 2002; 64 (4): 583–639. https://doi.org/10.1111/1467-9868.00353

24. Watanabe S. Asymptotic equivalence of Bayes cross validation and widely applicable information crite-

rion in singular learning theory. J Mach Learn Res. 2010; 11: 3571–94.

25. Rodrigues EC, Assunção R. Bayesian spatial models with a mixture neighborhood structure. J Multivar

Anal. 2012; 109: 88–102. https://doi.org/10.1016/j.jmva.2012.02.017

26. Law J. Exploring the specifications of spatial adjacencies and weights in Bayesian spatial modeling with

intrinsic conditional autoregressive priors in a small-area study of fall injuries. AIMS Public Health. 2016;

3 (1): 65–82. https://doi.org/10.3934/publichealth.2016.1.65 PMID: 29546147

27. Earnest A, Morgan G, Mengersen K, Ryan L, Summerhayes R, Beard J. Evaluating the effect of neigh-

bourhood weight matrices on smoothing properties of Conditional Autoregressive (CAR) models. Int J

Health Geogr. 2007; 6 (1): 54. https://doi.org/10.1186/1476-072x-6-54 PMID: 18045503

28. Cramb SM, Duncan EW, Baade PD, Mengersen KL. Investigation of Bayesian spatial models. Bris-

bane: Cancer Council Queensland and Queensland University of Technology (QUT); 2018. Available

from: https://eprints.qut.edu.au/115590.

29. Besag J. Spatial interaction and the statistical analysis of lattice systems. J R Stat Soc Series B Stat

Methodol. 1974; 36 (2): 192–236.

30. Leroux BG, Lei X, Breslow N. Estimation of disease rates in small areas: a new mixed model for spatial

dependence. In: Halloran ME, Berry D, editors. Statistical models in epidemiology, the environment and

PLOS ONE Goodness-of-smoothing criteria for assessing under- and over-smoothing

PLOS ONE | https://doi.org/10.1371/journal.pone.0233019 May 20, 2020 26 / 28

https://doi.org/10.7551/mitpress/3206.001.0001
https://doi.org/10.1002/9781119115151
https://doi.org/10.1002/9781119115151
https://doi.org/10.2307/2532003
http://www.ncbi.nlm.nih.gov/pubmed/3663823
https://doi.org/10.1007/3-540-26772-7_50
https://doi.org/10.1007/BF00116466
https://doi.org/10.1198/106186004X12515
https://doi.org/10.1016/0098-3004(96)89522-7
https://doi.org/10.1016/0098-3004(96)89522-7
https://doi.org/10.1016/j.scitotenv.2018.10.231
http://www.ncbi.nlm.nih.gov/pubmed/30586819
https://doi.org/10.1109/isbi.2004.1398664
https://doi.org/10.1016/j.cageo.2009.09.015
https://doi.org/10.1016/j.aap.2016.12.023
https://doi.org/10.1016/j.aap.2016.12.023
http://www.ncbi.nlm.nih.gov/pubmed/28088033
https://doi.org/10.1016/j.aap.2019.105323
http://www.ncbi.nlm.nih.gov/pubmed/31648775
https://doi.org/10.1214/14-BA927
http://www.ncbi.nlm.nih.gov/pubmed/26753014
https://doi.org/10.1111/j.1467-985X.2006.00410.x
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1111/1467-9868.00353
https://doi.org/10.1016/j.jmva.2012.02.017
https://doi.org/10.3934/publichealth.2016.1.65
http://www.ncbi.nlm.nih.gov/pubmed/29546147
https://doi.org/10.1186/1476-072x-6-54
http://www.ncbi.nlm.nih.gov/pubmed/18045503
https://eprints.qut.edu.au/115590
https://doi.org/10.1371/journal.pone.0233019


clinical trials. The IMA Volumes in Mathematics and its Applications, vol 116. New York: Springer;

2000. pp. 179–191. https://doi.org/10.1007/978-1-4612-1284-3_4

31. Kandhasamy C, Ghosh K. Relative risk for HIV in India–an estimate using conditional auto-regressive

models with Bayesian approach. Spat Spatiotemporal Epidemiol. 2017; 20: 27–34. https://doi.org/10.

1016/j.sste.2017.01.001 PMID: 28137675

32. Lawson AB, Clark A. Spatial mixture relative risk models applied to disease mapping. Stat Med. 2002;

21 (3), 359–370. https://doi.org/10.1002/sim.1022 PMID: 11813223

33. Best N, Richardson S, and Thomson A. A comparison of Bayesian spatial models for disease mapping.

Stat Methods Med Res. 2005; 14 (1): 35–59. https://doi.org/10.1191/0962280205sm388oa PMID:

15690999

34. Duncan EW, White NM, and Mengersen K. Spatial smoothing in Bayesian models: a comparison of

weights matrix specifications and their impact on inference. Int J Health Geogr. 2017; 16 (1): 47. https://

doi.org/10.1186/s12942-017-0120-x PMID: 29246157

35. Evers L, Molinari DA, Bowman AW, Jones WR, and Spence MJ. Efficient and automatic methods for

flexible regression on spatiotemporal data, with applications to groundwater monitoring. Environmetrics.

2015; 26 (6): 431–441. https://doi.org/10.1002/env.2347 PMID: 26900339

36. Gelman A. Prior distributions for variance parameters in hierarchical models. Bayesian Anal. 2006; 1

(3): 515–533. https://doi.org/10.1214/06-ba117a

37. Cressie N, Read RC. Spatial data analysis of regional counts. Biom J. 1989; 31 (6): 699–719. https://

doi.org/10.1002/bimj.4710310607

38. Lee D. CARBayes: An R package for Bayesian spatial modeling with conditional autoregressive priors.

J Stat Softw. 2013; 55 (13): 1–24. https://doi.org/10.18637/jss.v055.i13

39. Lunn DJ, Thomas A, Best N, Spiegelhalter D. WinBUGS–a Bayesian modelling framework: concepts,

structure, and extensibility. Stat Comput. 2000; 10 (4): 325–337. https://doi.org/10.1023/

A:1008929526011

40. Sturtz S, Ligges U, Gelman A. R2WinBUGS: a package for running WinBUGS from R. J Stat Softw.

2005; 12 (3): 1–16. https://doi.org/10.18637/jss.v012.i03

41. R Core Team. R: A language and environment for statistical computing [Internet]. R Foundation for Sta-

tistical Computing; 2019. Available from: https://www.R-project.org.

42. Knorr-Held L, and Raßer G. Bayesian detection of clusters and discontinuities in disease maps. Bio-

metrics. 2000; 56 (1): 13–21. https://doi.org/10.1111/j.0006-341x.2000.00013.x PMID: 10783772

43. Rong K, Bailis P. ASAP: prioritizing attention via time series smoothing. Proceedings VLDB Endow-

ment. 2017; 10 (11): 1358–1369. https://doi.org/10.14778/3137628.3137645

44. Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas. 1960; 20 (1):37–46.

https://doi.org/10.1177/001316446002000104

45. Sterlacchini S, Ballabio C, Blahut J, Masetti M, Sorichetta A. Spatial agreement of predicted patterns in

landslide susceptibility maps. Geomorphology. 2011; 125 (1): 51–61. https://doi.org/10.1016/j.

geomorph.2010.09.004

46. Sim J, Wright CC. The kappa statistic in reliability studies: use, interpretation, and sample size require-

ments. Phys Ther. 2005; 85 (3): 257–68. https://doi.org/10.1093/ptj/85.3.257 PMID: 15733050

47. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;

33 (1): 159–174. https://doi.org/10.2307/2529310 PMID: 843571

48. Akaike H. Information theory and an extension of the maximum likelihood principle. In: Petrov BN,
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