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Abstract

High quality daily testing for the presence of the SARS-CoV-2 in workplace settings has

become part of the standard and mandatory protection measures implemented widely in

response to the current pandemic. Such tests are often limited to a small fraction of the

attending personnel due to cost considerations, limited availability and processing capabili-

ties and the often cumbersome requirements of the test itself. A maximally efficient use of

such an important and frequently scarce resource is clearly required. We here present an

optimal testing strategy which minimises the presence of pre-symptomatic and asymptom-

atic infected members of the population in a workplace setting, derived under a series of

simplifying statistical assumptions. These assumptions however, retain many of the gener-

alities of the problem and yield robust results, as verified through a number of numerical sim-

ulations. We show that reduction in overall infected-person-days, IPD, by significant

percentages can be achieved, for fixed numbers of tests per day of 5% and 10% of the pop-

ulation, of 30% and 50% in the IPD numbers, respectively.

Introduction

Within the context of the present COVID-19 pandemic, it has become clear that thus far, the

most efficient strategy towards reducing the spread of the disease includes strict social distanc-

ing rules, reinforcing basic hygiene measures and the imposition of lockdown policies on the

part of local and national governments. This last however, must clearly be tempered by the

obvious need to keep essential workplace facilities operating. Examples of the above include

hospitals, energy production facilities, food production and distribution infrastructure, and

pharmaceutical industries, to mention but a handful of the most obvious such cases.

Continual operation of such facilities has firstly included the adoption of safety and hygiene

protocols during working days, and crucially, strict Sanitary Checkpoints, protocols for the

daily entrance of persons attending. Sanitary Checkpoints (SC) serve the purpose of identify-

ing symptomatic individuals which can then be tested directly for the virus, or in any case, sent

home for a certain safety period.
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Unfortunately, in the present pandemic, SC implementation is a measure of only limited

efficacy, due to the important contribution of pre-symptomatic and asymptomatic infected

persons [1, 2]. It is now clear that a substantial fraction of transmissions are in fact the result of

interactions with pre-symptomatic and asymptomatic individuals [3]. This has led to the

implementation of testing strategies, where a certain sample of persons attending are selected

for direct, accurate testing, typically through PCR or more recently antigen testing e.g. [4].

These accurate tests however, were initially not widely available and remain relatively scarce in

certain areas, particularly outside big cities and in developing countries [5]. Further, such tests

are somewhat cumbersome to implement, as well as expensive and generally not amiable to

massive, daily implementation. Indeed, the need for such testing has given rise to a number of

innovative and imaginative solutions, e.g. the use of mobile testing clinics as described in [6].

For the above reasons, in most facilities where PCR testing is used, only a small fraction of the

regular work force is sampled on any particular day e.g. [7]. Thus, we have a situation where it

is of the utmost urgency to apply optimal strategies to select the daily test sample, a scarce and

expensive resource that must clearly be used to maximal efficiency.

It is important to note that the identification of asymptomatic persons is not only of rele-

vance for the safe operation of an essential production facility, but also as a clear means of

reducing the overall extent of the pandemic. As more infected individuals are identified any-

where (and hence identified for surveillance, contact tracing, early treatment and/or quaran-

tine protocols), the more successful societies will be in controlling epidemics.

While the importance of small screening intervals has been pointed out [8], such

approaches assume a copious availability of daily tests, a situation which is not always practica-

ble. The optimal arrangement and practical implementation of SC facilities such that a large

number of daily tests can be performed with a minimal disturbance and a maximal efficiency

is an important topic which has been treated by various authors e.g. [9].

In this paper we present an optimal sample selection strategy which maximises the number

of asymptomatic infected persons identified from a fixed population, under the restriction of a

given fixed number of daily tests available. In the following section we present simple probabi-

listic arguments showing that a randomly selected daily sample, from which persons which

have already tested negative within the immediate τI day period have been excluded, should

minimise the total number of infected-person-days (henceforth IPD) over any fixed period of

time. τI is the timescale over which the general population of infected persons is replaced by a

new one, under the common assumption of a constant 15 day infection period, τI = 15 days.

The value of probabilistic simulations not only in the modelling of the evolution of epidem-

ics, but also for estimating the effects of interventions aimed at mitigating aspects of such

events is well established. We here cite only a few recent examples in the context of the current

pandemic, where the effectiveness of practical strategies is gauged through numerical model-

ling within particular imposed restrictions e.g. [10–13].

In our results section we implement a number of numerical simulations following idealised

populations subject to a number of infection probabilities, percentages and evolution of pre-

symptomatic and asymptomatic fractions and fraction of available daily tests. We show that

indeed the optimal strategy presented results in a minimal number of IPD over any fixed

period of time, and that this result is general to the epidemiological evolution, a constant or ris-

ing overall infection fraction in the population. The discussion addresses a number of caveats

of the approach presented, as well as generalisations and expected developments.

While a number of idealised assumptions remain in the model, it can be shown that the

conclusion is sufficiently robust to warrant attention as a further element in aiding the control

of the present pandemic.

PLOS ONE On an optimal testing strategy for workplace settings operating during the COVID-19 pandemic

PLOS ONE | https://doi.org/10.1371/journal.pone.0264060 March 2, 2022 2 / 14

https://doi.org/10.1371/journal.pone.0264060


Probabilistic developments

We begin with simple considerations, imagine a constant infection fraction phase of the epi-

demic at a particular location, where the average fraction of infected individuals, If, is a small

constant number. If the infection period for all, symptomatic or asymptomatic persons, is a

constant τI number of days, and if we imagine a cohort of simultaneously infected persons, it

is clear that over the period over which they are infected, they must each infect one healthy

individual, to ensure If remains a constant. Hence, assuming the probability of becoming

infected in any single day for a healthy person in the general population is a constant, PI, and

taking a linear approximation for the cumulative infection probability, the probability of

becoming infected after a τI day period, Pτ, will satisfy:

PðtÞ ¼ tIPI ¼ If ; ð1Þ

such that after a τI day period, each healthy individual has a chance If of having been infected,

and therefore, the next cohort of infected individuals again represents the same fixed If fraction

of the total. If the fraction of infected individuals is a constant If, it is reasonable to assume that

on average, the probability that a healthy individual has of becoming infected on any particular

day, will be a constant, PI. From the above linear approximation, given values of If and τI, the

daily infection probability can be estimated as:

PI ¼ If=tI ð2Þ

It is clear that cohorts of infected individuals will not be temporally exclusive, but will occur

in a scrambled fashion over time, not altering the above equation, provided If and τI remain

constant over time. If additionally, a certain person had a negative test result on a particular

day, we shall assume that the probability of that individual being infected that day is zero, i.e.

no false negatives are assumed on tests being performed. Thus, the probability of that individ-

ual becoming infected the following day becomes PI, and the probability of the individual not

becoming infected on the day following his negative test is (1 − PI). The probability of not

becoming infected after two days following the negative test is now (1 − PI)2, and in general,

on average, after n, days, the probability of being infected becomes a non-linear function given

by:

PðnÞ ¼ 1 � ð1 � PIÞ
n
; ð3Þ

which corrects the linear approximation given previously. Again, over a τI day period, the

above probability must yield If, if this fraction is to remain constant, so that:

1 � ð1 � PIÞ
tI ¼ If ð4Þ

From this equation PI can be calculated, for given values of If, and τI. Notice that for PI� 1,

a Taylor expansion of Eq 4 to first order recovers the zero-order intuitive result of Eq 2, as is

evident from writing the term in brackets in Eq 4 as ð1 � PIÞ
tI ¼ 1 � tIPI þOðP2

I Þ, yielding τI
PI = If, to first order in PI, which corresponds also to Eq 1. In order to develop an optimal test-

ing strategy, we shall assume that we have a fixed number of persons attending the facility in

question every day, having, in the absence of any test, an equal infection probability as the gen-

eral population, If. Thus, the first order testing strategy, if NT is the number of tests available

every day, is simply to draw a random sample of NT members from the attending population

at the workplace setting every day. However, notice that if someone tested negative on one par-

ticular day, the probability that this person is infected will begin to grow from zero on the days

following the negative test, while the probability that a random member of the population is
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infected, prior to any tests, will be If. Thus, we should endeavour to test attending persons hav-

ing the highest probability of being infected, so that the limited number of tests available are

used optimally towards identifying more effectively the infected members. Clearly, a member

who has tested negative on a particular day should be excluded from the testing pool until the

probability of this member being infected becomes again equal to that of the average popula-

tion. Such a member should be excluded from the testing pool for a period nex such that:

1 � ð1 � PIÞ
nex ¼ If : ð5Þ

Clearly, Eqs 4 and 5 are identical, and therefore,

nex ¼ tI; ð6Þ

which is the main result of this section. A graphic representation of this is presented in Fig 1,

which shows the logarithm of the probability of being infected after an n day period, P(n) of

Eq (3), for PI = 6.69798 × 10−4. This value of PI corresponds to a steady infection fraction of

If = 0.01 and τI = 15, as resulting from Eq 4 written as PI ¼ 1 � ð1 � If Þ
1=tI . Under the PI� 1

approximation of Eq 2 we obtain PI = 0.01/15 = 6.666687 × 10−4. Although Eq 2 is clearly a

good approximation to the value given by Eq 4 for the small values of PI expected, we use

throughout exact values from Eq 4.

As can be seen from the figure, the probability of being infected grows from zero on the day

of the negative test, gradually with n, and converges to a value of 1 as n tends to infinity. The

horizontal line shows the value of If = 0.01, the average probability of being infected for the

general population. Clearly, P(n) overtakes If precisely at n = τI = 15 days. At the start of 2021,

the 15 most affected countries reported close to 1/1000 COVID-19 deaths per capita [14],

which assuming a 0.5% infection fatality rate yields 20% as the fraction of the population

which has been infected in these countries, on average. Assuming further a 10-month duration

for the worst of the pandemic and a 15-day infection period, yields an average infected fraction

of 1% for these countries. We hence take 1% for this variable, as a broad average reference

value. Although approximately constant values of If over time have been observed for the cur-

rent pandemic on a variety of places and times, e.g. the slowly rising bursts seen in some coun-

tries, or the extended troughs between waves often seen in others [14], in general, If will be a

function of time. While to the accuracy presently available τI appears to be close to a constant,

a situation where If = If(t) will be more common, leading also to PI = PI(t). Interestingly, in

such a case, the factors (1 − PI)x in Eqs 4 and 5 will both be replaced by the same function of

time, namely:

ð1 � PIÞ
x
!
Yi¼x

i¼i0

ð1 � PIðiÞÞ ð7Þ

where i0 is a relevant initial time index. Clearly, again, the optimal testing strategy remains

unchanged, with nex = τI This conclusion applies whenever PI is a slowly varying function of

time, in comparison to τI. Any sudden spikes, e.g. the influx of a considerable fraction of

infected persons added to the total population, will clearly invalidate the argument above. It is

of course possible that a member testing negative on a particular day becomes infected on the

following one. If such case happens to be one of the asymptomatic ones, he will be allowed to

attend while infected for the 15-day period over which he is infected, and presumably infec-

tious. This however is less likely than that an average member who has not been tested might

be infected, as can be seen from Fig 1. With a limited number of tests per day, one can at best
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minimise the number of infected persons attending, but driving this number to zero is unfor-

tunately impossible, unless the daily testing of everyone might become an option.

Finally, we consider the effects of having a finite total sample. It is clear that as time goes

on, for certain fractions of the total population being tested, it could well happen that on a cer-

tain day there are not enough members who have not been tested within the previous 15 days

to complete the NT tests available that day. Given the positive definitive character of the proba-

bility function shown in Fig 1, for any value of its parameters, it follows that the optimal

Fig 1. Probability of being infected n days after a negative test. The figure shows the base 10 logarithm of the probability for an individual which

tested negative on day zero of being infected on subsequent days, log10 P(n) where P(n) = 1 − (1 − PI)n, for PI = 6.69798 × 10−4, corresponding to a

steady infection fraction of If 0.01 and τI = 15. This probability remains below that for the average population, 0.01, for all days before n = 15, after

which, it remains above this number indefinitely.

https://doi.org/10.1371/journal.pone.0264060.g001
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sampling strategy becomes to exclude from the daily testing pool any members who have been

tested within the previous 15 days, while if that rule cannot be met without reducing NT, the

sample should be augmented by adding all members who have gone 14 days without testing. If

this again does not allow to complete the NT tests available, all those who have gone 13 days

without testing are considered, and so on.

Notice that once finite population effects begin to appear and the available tests have to be

made up by including members not having been tested over periods smaller than τI, the testing

sample becomes drawn from a mixed population, including members who have not been

tested over a range of recent days. Hence, taking nex values in this range will result in a soften-

ing of the resulting IPD(nex) curves, the expected infinite population minimum at nex = τI can

become broad, with a complex dependence on the details. The specifics of this will depend on

the fraction of tests available and the epidemiological details, as those will determine the aver-

age rate at which infected persons are found and sent home, which in turn affects the numbers

remaining, from which the daily sample is to be drawn. We end this section with a small refer-

ence table summarising all of the parameters of the probabilistic model and simulations used,

Table 1.

Results

We now describe and show the results of a number of numerical simulations following sample

populations under a variety of assumptions, where we can assess the generality of the scheme

presented. We model a population of 1,000 members evolving under the following rules: Ini-

tially all members are assigned a healthy or infected status with a probability (1 − If) or If,
respectively, with If = 0.01. Of those assigned as infected, a random sample of 25% are assigned

as displaying symptoms and the rest as not displaying any symptoms, these last are a mix of

the pre-symptomatic and the asymptomatic ones. During every following day, the epidemio-

logical evolution considers a probability of becoming infected of PI = 6.69798 × 10−4 for each

healthy member. Again, 25% of those newly infected are assigned as displaying symptoms at

the onset. Also, all those infected and not displaying symptoms are assigned, only on their 5th

infected day, a 60% probability of passing from infected and not displaying symptoms to

infected and displaying symptoms. This fixes a final asymptomatic fraction of 0.4 × 0.75 = 0.3,

in accordance with recent estimates [2]. Further, any infected members having spent more

than 14 days in this state are returned to a healthy status. This ensures a steady If = 0.01 value,

on average.

Then the intervention is imposed, any members displaying symptoms are sent home for a

14-day period, under the assumption of an efficient SC. Then, a testing sample as described

in the previous section is constructed, which will have a variable number of NS members

from which a fixed NT members are selected for testing at random every day. Fig 2 shows

Table 1. Reference table.

Parameter Definition

If Infection fraction in the general population

PI Daily average probability of infection in the general population

τI Duration of the infection period

NT Number of tests performed every day

nex Number of days after a negative test over which an individual is ideally excluded from testing sample

IPD Number of Infected-Person-Days recorded over a 100 day period

Definition of parameters of the probabilistic model and numerical simulations.

https://doi.org/10.1371/journal.pone.0264060.t001
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results for NT = 50 and NT = 100, left and right panels respectively. This is done for a fixed

nex value, and the simulation is run for 200 days. Every day the number of infected persons

attending is recorded to determine the IPD resulting. Given the stochastic nature of the

problem, the whole 200-day simulation is repeated 10,000 times to gauge the intrinsic

Fig 2. Resulting IPD comparisons as a function of nex, constant If. The figure shows IPD values over a 100-day period, solid curves, obtained for a

population of 1000 members attending a facility where 50 (panel A) and 100 (panel B) PCR tests are performed every day on a random sample of

members, from which persons which test negative on a particular day are excluded for the subsequent nex days, as a function of nex. Members testing

positive are sent home for a 14 day period. The epidemiological model corresponds to a value of If = 0.01 which remains constant over time. The dotted

curves show the stochastic variance inherent to the problem, giving 1σ intervals over 10,000 realisations, this last corresponding to the dotted lines. An

efficient SC is also assumed.

https://doi.org/10.1371/journal.pone.0264060.g002
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variance present. This is then repeated for various values of nex in the range shown in Fig 2.

The solid lines give the average over the 10,000 realisations of the IPD values obtained over

the second 100-day period. The first 100-day period is run to allow for a steady state to

develop. The dotted lines give the 1σ intervals for the IPD values shown, over the 10,000 real-

isations, which for the parameters modelled are sufficient to reach convergence, further

increase in the number of realisations considered yields only marginal differences from the

results reported.

In absence of any intervention, one expects an average value of IPD = 1,000 × If × 100 = 1,

000 indeed, we get 1000±118 for this quantity over the 10,000 realisations. The introduction of

the SC alone reduces these values to 484±73, a reduction of a little more than a factor of two. If

one then also includes a random sampling of 50 tests from which none of the members attend-

ing are excluded, we obtain an IPD = 458±68, as shown by the nex = 0 point in the left panel of

Fig 2. We see that the pure random sample achieves only a small further reduction in IPD

numbers, as persons recently tested (and hence having a very small probability of being

infected) have an equal chance of being selected for testing as persons not having been tested

over a longer period. As the number of days after test which result in exclusion from testing is

increased, a clear drop in IPD appears. Then, optimising further by the careful construction of

the testing sample described, reduces the IPD values still further, down to 322±54 in the broad

minimum around nex = 15. Hence, a very significant reduction of 30% in IPD numbers, at con-

stant number of daily tests performed, is achieved merely by excluding recently tested persons

from the daily samples.

In the right panel of Fig 2 we see that as the testing sample grows to NT = 100, the optimisa-

tion through the exclusion of recently tested members yields much more important results,

with the drop from nex = 0 to nex = 15 now being of a very sizeable 52% of the IPD numbers

found at nex = 0, showing the power of the sampling strategy presented. In this case however,

we see clearly the finite sample effects appearing in the convergence at nex = 9. Beyond this

point (for the 10% of the total population being tested daily) it becomes impossible to find a

daily sample not including persons having not been tested over a n> 9 day period, and the

method saturates. Notice that for NT = 50 and nex> 10 the total IPD numbers become even

smaller than what is obtained for the double number of daily tests but nex = 0.

Finally, Fig 3 is equivalent to Fig 2, but gives results for simulations where the underlying

epidemiological model is one where PI rises over time with a constant doubling timescale of 50

days, being equal to that of the case summarised in Fig 2 at 100 days. In this case, in the

absence of any intervention we obtain IPD = 2077±154. The introduction of an efficient SC

reduces these numbers to IPD = 1329±115. Again, the reduction achieved by the optimisation

of the testing sample is important in both cases, when NT = 50, of 28.4% of the nex = 0 values.

Yet, in going to NT = 100, shown in the right panel of Fig 3, the corresponding reduction is

now of a much more significant 51%, achieved without increasing the number of tests per-

formed, merely through an optimised testing strategy. Again, saturation through finite sample

effects becoming apparent at nex = 9. As in the previous case, the convergence of the NT = 50

simulation for large nex values actually occurs at IPD values smaller than what is obtained in

the NT = 100 one at nex = 0. Also illustrative of the strength of the method presented is that the

fractional reduction in total IPD numbers shown, is in all cases stronger in going from nex = 0

to optimal values, than what results from going from the pure SC case to the NT = 50 and NT =

100 ones at nex = 0.

All simulation input parameters, and resulting IPD numbers are summarised in Table 2.

IPD0 gives the infected-person-days in the absence of any SC or testing strategy, IPDSC gives

the corresponding value in the presence of the SC alone, IPDRa values when the SC is present,

and NT tests are performed at random from the entire population, and finally, IPDOp, the
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results when the SC is present, and NT tests are performed at random after removing from the

testable population individuals which tested negative within a previous 15 day interval, or the

largest number of days available below 15 if the previous condition can not be met. Lastly, Sk

and Ku give the third and fourth moments of the IPD distributions at convergence, calculated

Fig 3. Resulting IPD comparisons as a function of nex, raising PI. The figure shows IPD values over a 100-day period, solid curves, obtained for a

population of 1000 members attending a facility where 50 (panel A) and 100 (panel B) PCR tests are performed every day on a random sample of

members, from which persons which test negative on a particular day are excluded for the subsequent nex days, as a function of nex. Members testing

positive are sent home for a 14-day period. The epidemiological model corresponds to a value of PI(t) which grows linearly having a doubling timescale

of 50 days and starting at PI = 6.69798 × 10−4. The dotted curves show the stochastic variance inherent to the problem, giving 1σ intervals over 10,000

realisations, this last shown by dotted lines. An efficient SC is also assumed.

https://doi.org/10.1371/journal.pone.0264060.g003
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through:

Sk ¼
E½ðx � mÞ3�
ðE½ðx � mÞ2�Þ3=2

;Ku ¼
E½ðx � mÞ4�
ðE½ðx � mÞ2�Þ2

; ð8Þ

where μ gives the mean of a distribution of variable x and E[f(x)] the expectation value of any

function f(x).

A fairly general feature is that the reduction in IPD numbers obtained becomes fractionally

smaller as nex increases, this is a direct consequence of the second derivative of the probability

function of Eq 5 being negative, as shown in Fig 1. The convergence of this probability func-

tion as nex grows means that the largest drops in IPD numbers will come from the initial

increases in nex away from zero, although the broad minimum remains at nex = 15, this last,

provided no finite sample convergence appears.

The examples shown above are arbitrary and clearly extremely over simplified, not intended

to represent any particular real situation. They do however serve to illustrate the usefulness of

the scheme presented, as well as its generality and robustness to changes in the underlying epi-

demiological model. Notice from Table 2 the small effect which a 5% or 10% rate of daily test-

ing has, if the testing sample is simply a fully random subset of the total population. IPDRa

values gain very little on IPDSC ones, it is in going from IPDRa to IPDOp that the test performed

yield an important effect. The actual reduction in IPD numbers will be sensitive to the details

of the particular problem, but under a wide range of parameters, the conclusion of a daily ran-

dom sample from which persons that have tested negative within the previous τI days were

removed, as representing the optimal solution, will remain.

Assessing whether or not the effects of the optimal strategy presented are meaningfully

beyond statistical variance, requires an appraisal of the shape of the resulting IPD distribu-

tions. We have also calculated the third and fourth moments of the IPD distributions through-

out. The Skewness parameter is consistently very low, ranging from between 0.05 to 0.22 for

all the evolution of all the simulations presented, i.e., far from the standard value of 1 which

characterises important deviations from symmetry. The Kurtosis parameter was consistently

within 0.1 of 3, hence, excess Kurtosis values within 0.1 of Gaussian. Hence, for example in the

case of Fig 2A, we can be confident that a 2 sigma difference in IPD numbers implies that 98

out of 100 times the application of the optimal strategy will result in a reduction of total IPD

numbers when using the optimal strategy in comparison with a pure random sampling. In the

other cases the result is typically more significant, with differences of up to 5 sigma appearing

between pure random and optimal testing. Final convergence (nex = 15) values for Skewness

and Kurtosis for the four simulations described are given in Table 2.

Table 2. Simulation input parameters and results.

Case PI NT IPD0 IPDSC IPDRa IPDOp Sk Ku

Fig 2A Fixed 50 1000 ± 118 484 ± 73 458 ± 68 322 ± 54 0.19 3.08

Fig 2B Fixed 100 1000 ± 118 484 ± 73 437 ± 69 209 ± 32 0.15 3.02

Fig 3A Rising 50 2077 ± 154 1329 ± 115 1261 ± 112 903 ± 83 0.12 3.07

Fig 3B Rising 100 2077 ± 154 1329 ± 115 1196 ± 109 581 ± 51 0.09 2.98

Simulation input parameters and resulting IPD numbers. IPD0 gives the infected-person-days in the absence of any SC or testing strategy, IPDSC gives the

corresponding value in the presence of the SC alone, IPDRa values when the SC is present, and NT tests are performed at random from the entire population, and finally,

IPDOp the results when the SC is present, and NT tests are performed at random after removing from the testable population individuals which tested negative within a

previous 15 day interval, or the largest number of days available below 15 if the previous condition can not be met.

https://doi.org/10.1371/journal.pone.0264060.t002
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Further, we have included the assumption of 100% sensitivity in the PCR tests, while in

reality this appears to grow rapidly from zero with time since infection to reach a maximum at

around 8 days followed by an initially slow drop with time e.g. see the appendix in [8] and ref-

erences therein. Therefore, the conclusion presented will not be modified, as re-testing within

the first few days will not only be unlikely to detect an infected person (their chances of being

infected being still small) but also, as these tests will be largely “wasted” through their sensitiv-

ity being low. The effect of the steeper decline in test sensitivity after about 13 days will be neg-

ligible in cases where the daily test percentage of the population is larger than 10%, where the

saturation mentioned above appears before this period. We have taken an asymptomatic frac-

tion towards the lower range of inferred values [2], with the intention of showing clearly the

potential of the method presented, under less than optimal conditions for it; clearly, the effect

of the method will tend to zero as the asymptomatic fraction goes to zero, and increase sub-

stantially as this fraction increases.

The scalings resulting from changes in the total population, as expected from basic probabi-

listic considerations, are for average resulting IPD values which remain constant as a fraction

of the total population considered, with the corresponding 1σ intervals scaling with the square

root of the total population considered, all other parameters being equal.

Fatalities are not explicitly included in the model, but will not have any significant effects

provided the total fatality rate is low and/or any fatalities are promptly replaced from the gen-

eral population. Finally, we note that the method presented can obviously be used in conjunc-

tion with pooling strategies, which, whenever sample taking logistics and infection prevalence

allow (see for example [15, 16]), permit increases in the total number of daily tests.

Discussion

We have presented a local epidemiological model where the average infection rate is assumed

as determined by the overall infection rate of a global population of which the local model rep-

resents a fair sample. The intervention proposed does not aim at altering the course of the epi-

demic, but only to use a limited number of daily tests to maximal advantage towards

minimising the number of infected individuals attending a local essential facility. This hinges

principally upon the realisation that after a negative test, the probability of being infected for a

particular individual, P(n) in Fig 1, raises gradually from zero, and only after a certain period

of time, τI, overtakes that same probability for the average global population. Thus, a limited

number of practicable tests per day are best used by removing from the testing sample individ-

uals having been already tested within the preceding τI day period. To use a physical analogy,

standard epidemiological models, e.g. of the S-I-R type, aim at tracking the evolution of the

infection rate (which becomes analogous to the temperature of a physical system) over an

entire population, with derived proposed interventions aimed at reducing the overall spread

and duration of the epidemic, see for example [17] for a treatment of an optimal sampling and

testing strategy for the general population. Hence, such models can be compared to working

within the microcanonical ensamble, where the evolution of the temperature of the system can

be modeled. The approach we have presented is analogous to working within the canonical

ensamble, where the temperature is fixed through contact to an external thermal bath which is

assumed as a restriction on the smaller system whose dynamics are to be explored, under the

restriction of a temperature (in our analogy the infection rate) which is determined and

imposed by external agencies.

The probabilistic model presented and the numerical simulations shown support the valid-

ity and generality of the approach developed, whenever the assumptions upon which the

model was constructed are valid. Whenever reality might deviate substantially from such
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assumptions, the results presented would be invalidated. Chiefly, we have assumed a constant

and well known duration of the infection for all individuals, τI = 15 days. The probabilistic

approach is robust towards a distribution of infection periods present in the population, pro-

vided this distribution is not skewed, and the sampling exclusion period for individuals is

adjusted to the mean τI present in the overall population, which must be known. The monoto-

nously decreasing slope of P(n) in Fig 1 results in the broad minimums in IPD seen in Figs 2

and 3, where the IPD numbers drop rapidly at first with increasing nex values, and then con-

verge to the optimal values with little further change. This point is important as it implies that

taking nex values smaller than the mean of τI will result in much larger excess IPD values than

taking nex thresholds larger than mean τI.
In the absence of PRC tests one might have to rely upon less secure antigen testing, where a

certain false negative rate might be expected. This same situation will arise if (when?) muta-

tions reduce the reliability of the original PCR tests, developed with the original viral variant in

mind. The adjustment to the approach presented in this case is fairly straight forward, as the

objective is to identify pre-symptomatic and asymptomatic individuals. If a 50% false negative

rate is present in the testing procedure available, twice as many test are required to identify the

sought after individuals, i.e. nex should be reduced by a factor of 2. In general nex = τI/(1 − FN),

where FN is the false negative rate of the available test. Any false positive rate present in the

testing used will clearly reduce the number of assisting personnel, but will not modify the opti-

mal strategy presented.

Asides form the points already mentioned, a further caveat lies in the assumption of the

small target population being a fair sample of the overall one, where critical parameters such as

If and τI are generally measured. It is clear that the exact optimal testing strategy will depend

upon the many details of exactly how the grounding assumptions of the model fail in a real sit-

uation, in ways which lie beyond the scope of this first presentation of the problem.

Conclusions

We here develop an optimal testing strategy designed for minimising the number of infected

asymptomatic persons present during a pandemic in an essential workspace setting, under the

constraint of a fixed number of tests per day. We stress the potential of the method in that

overall IPD values can drop by a factor of 2 or more, compared to a simple fully random strat-

egy at 10% daily test fractions, simply by choosing carefully the daily testing sample, at fixed

daily test numbers.

The infected population substitution timescale, which corresponds to the infected period

for the simple case where all infected individuals remain infected/infectious for exactly the

same constant period of time, τI, is identified as the critical parameter of such an optimisation.

This raises two important points i) The optimal use of a finite number of high-quality tests is

to perform a random sampling of the present population from which members having been

tested during the preceding τI days are excluded, and which is augmented if needed, by includ-

ing those members not having been tested during the preceding τI − 1 days, and so on, until

the fixed number of tests per day can be randomly chosen, i.e. until the testing sample is larger

than the number of daily tests. ii) It is crucial to have a more accurate and population weighted

estimate of τI, which surely is only a universal constant to a very first approximation.
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