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Varian introduced (in 2010) the option of removing the flattening filter (FF) in 
their C-Arm linacs for intensity-modulated treatments. This mode, called flatten-
ing filter-free (FFF), offers the advantage of a greater dose rate. Varian’s “Portal 
Dosimetry” is an electronic portal imager device (EPID)-based tool for IMRT 
verification. This tool lacks the capability of verifying flattening filter-free (FFF) 
modes due to saturation and lack of an image prediction algorithm. (Note: the latest 
versions of this software and EPID correct these issues.) The objective of the pres-
ent study is to research the feasibility of said verifications (with the older versions 
of the software and EPID). By placing the EPID at a greater distance, the images 
can be acquired without saturation, yielding a linearity similar to the flattened 
mode. For the image prediction, a method was optimized based on the clinically 
used algorithm (analytical anisotropic algorithm (AAA)) over a homogeneous 
phantom. The depth inside the phantom and its electronic density were tailored. 
An application was developed to allow the conversion of a dose plane (in DICOM 
format) to Varian’s custom format for Portal Dosimetry. The proposed method 
was used for the verification of test and clinical fields for the three qualities used 
in our institution for IMRT: 6X, 6FFF and 10FFF. The method developed yielded 
a positive verification (more than 95% of the points pass a 2%/2 mm gamma) for 
both the clinical and test fields. This method was also capable of “predicting” static 
and wedged fields. A workflow for the verification of FFF fields was developed. 
This method relies on the clinical algorithm used for dose calculation and is able 
to verify the FFF modes, as well as being useful for machine quality assurance. 
The procedure described does not require new hardware. This method could be 
used as a verification of Varian’s Portal Dose Image Prediction.

PACS number(s): 87.53.Kn, 87.55.T-, 87.56.bd, 87.59.-e
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I. INTRODUCTION

A.  Intensity-modulation verification
It is a well-known fact that, in recent years, the use of intensity-modulated radiotherapy (IMRT) 
and its rotational counterpart, volumetric modulated arc therapy (VMAT), has become wide-
spread. Intensity-modulated techniques, either static or rotational, optimize dose distributions 
by creating different radiation intensity levels at different points inside a field. This is achieved 
through multileaf collimator (MLC) movement during irradiation (sliding windows) (with or 
without gantry rotation) or administering several small fields (step and shoot) (both small in 
size and monitor units).
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Every RT treatment plan should undergo some kind of verification prior to treatment. For 
3D treatments, usually a standard machine QA plus an alternative calculation is considered 
sufficient. Standard monthly machine QA might not guarantee that an IMRT plan is correctly 
delivered and that is why per-patient measurements are usually done. Not only absolute point 
dose but also relative dose distribution should be verified.(1-4)

The verification of IMRT fields needs the measurement of dose distributions verifying the 
treatment planning system (TPS) calculation and the capacity of the system to administer it. 
Two main approaches are found: measurement of the field in a plane perpendicular to its axis 
(fluence measurement), and measurement of a dose plane on a phantom (where all the ports 
have their real gantry angles). These dose distributions are later compared with the prediction 
from the TPS (on the same conditions).

The most commonly used dose distribution measurement devices currently available are 
film(5,6) (radiochromic), arrays(7-8) (both ion chamber and diodes), and EPIDs. Film has a high 
resolution, but its use is very time-consuming; it needs time before scanning, the scanning 
itself, and a calibration process. Ionization chamber arrays usually lack the needed resolution, 
both in measurement volume and chamber distance. Diode arrays have almost point-like size 
but interspace is usually in the cm scale (for most commercial models available). These resolu-
tions might be too low for the verification of plans designed for MLCs with 2.5 mm wide leafs.

Portal vision can be used for IMRT verification combining the strong points of both meth-
ods described earlier: speed and resolution. The images from the EPID are available (almost) 
immediately (don’t need additional postprocessing) and offer an effective resolution below 
0.5 mm. Portal vision also adds an extremely easy and fast setup. As a weak point, EPID does 
not have the capability of measuring a dose plane in a phantom and is limited to measuring 
the dose (fluence) on a plane perpendicular to the field’s axis. Most modern portal systems are 
diode-based (amorphous silicon). That means (even with the compensator Cu layer) that low 
energy photons are over-detected.(9-14)

B.  Portal dosimetry
Varian’s “Portal Dosimetry” (Varian Medical Systems VMS, Palo Alto, CA) is an application 
integrated on the ARIA suite that allows IMRT (and VMAT) field verification. It is composed of 
three steps: fluence prediction (inside the TPS, Eclipse, using the Portal Dose Image Prediction 
(PDIP) algorithm), fluence acquisition (using dosimetry mode on the linac), and fluence com-
parison (on the Portal Dosimetry module itself). It allows only the verification of dose modu-
lated fields; it does not allow the verification of static or unflattened fields. (Note: the latest 
version of the software, version 13, used with the latest EPID, as1200 with DMI detector, can 
overcome these limitations.) Portal Dosimetry adds an extremely fast and easy workflow for 
the verification of intensity-modulated fields.

C.  FFF modes
Conventional linacs produce X-rays by bremsstrahlung, stopping high-energy electrons with 
a high-Z target. The photon distribution created is peaked; it has higher intensity on the center 
than on the borders. Most linacs use a flattening filter that creates a flattened distribution (and 
is responsible for the horns at certain depths). The flattening filter reduces the beam intensity 
between two and fourfold. Tomotherapy(15-16) and GammaKnife(17) (Accuray Inc., Sunnyvale, 
CA) machines have been operating without a flattening filter for a long time, but only recently 
classical design machines have been researched on a FFF mode.(18)

In March 2010, the True Beam LINAC (VMS) introduced clinically the flattening filter-free 
modes (FFF), later introduced on the Trilogy (also VMS) platform. The removal of the flattening 
filter has been talked about for a few years.(18) This mode provides lower mean energy (increased 
skin dose) and greater dose rate (between two and fourfold, up to 2400 Mu/min on 10 FFF). 
These modes are suitable for high-dose treatments (such as stereotactic body  radiotherapy 
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(SBRT) and stereotactic radiosurgery (SRS)). On gated treatments, the high dose rate can also 
be an advantage. Varian’s flagship is called True Beam to honor the FFF modes.(19-22) 

The lack of field flatness is not a problem for intensity-modulated fields because intensity is 
not flat anyway, and the beam profile can be accounted for during inverse optimization.

There is no Portal Dosimetry available for the FFF modes (as noted before prior to version 
13 and without the new AS1200 EPID). The EPID application does not allow calibration for 
those modes and the high-dose rates produce EPID saturation*. 

Some research has been done to allow the verification of such fields like the work of Min et 
al.(23) that converts the plan to a lower dose rate to allow the verification.

An algorithm, called GLAaS(24), has been used as an alternative to Varian’s PDIP to verify 
dose distributions with EPID. GLAaS models the direct and transmitted (through MLC) radiation 
separately, to account for the different spectra and the overresponse of the EPID to low-energy 
photons transforming the acquired image into a dose plane in water. Nicolini et al.(24,25) verified 
the GLAaS algorithm for FFF beams. (A comparison between the GLAaS algorithm and the 
proposed method can be seen in the Discussion section.)

In this work, we analyze the feasibility of using Portal Dosimetry for unflattened modes 
and we present a method for fluence prediction that actually uses the clinical dose algorithm 
(AAA). The whole method keeps the Portal Dosimetry as the comparison tool and only adds 
a few minutes (per field) to the verification. As a bonus, the method presented can be used for 
machine QA.

 
II. MATERIALS AND METHODS

For all the measurements a Varian TB STX 1.6 (VMS) was used. The EPID is an AS1000 
model. This amorphous silicon-based EPID has a resolution of 1024 × 768 and a physical size of  
30 × 22 cm (yielding a 0.384 mm pixel size). The images are automatically projected to source 
detector distance SDD = 100 by the system, so this resolution is effectively increased if the 
EPID is set at a distance greater than 100.

A.  Dosimetry mode calibration
The EPID can work on a special mode called dosimetry mode. This mode acquires frames dur-
ing irradiation. There is no synchronization of the linac and EPID† so the irradiation happens 
undisturbed. This lack of synchronization causes horizontal lines when the number of monitor 
units is small due to the EPID being read while it is receiving a radiation pulse. If the amount 
of radiation between two frames is high enough (around 4–5 MU), there will be saturation and 
information will be lost.

The mode calibration is composed of four parts: dark field, flood field, pixel defect map, and 
absolute dose calibration. Dark field is an acquisition without radiation (obviously its SSD is 
irrelevant). Flood field is an acquisition of a field that covers the whole detector; on the True 
Beam platform this acquisition is done at SDD 100. Since the linac’s profile is not completely 
flat (it has horns), the beam profile is introduced to correct for the different dose delivered to 
different portions of the EPID.

Using the information of the previous images (dark and flood fields), the system computes 
pixel defect map and corrects it by averaging the neighboring pixels. The last step is absolute 
dose calibration. This is the acquisition of a 10 × 10 field with a known number of monitor 
units (usually 100 MU), which are assigned a value in what is called Calibration Units (CU) 
(usually 100 MU will be assigned 100 CU).

* Truebeam 2.0 allows the calibration of FFF in dosimetry mode, but without the AS1200 EPID, the rest of the 
procedure is needed.

† Actually, there is synchronization during flood field calibration to avoid the horizontal lines during flood field.
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The system does not allow these steps to be performed for the unflattened modes, but allows 
the acquisition of images with the corrections of the flattened field of the same energy (as noted 
previously, TrueBeam 2.0 overcomes this limitation).

Since absolute dose cannot be calibrated, the resulting CUs will have an arbitrary value for 
FFF mode; there will not be a user-calibrated relation, but the value will be constant over time 
(for TrueBeam 2.0, this step can actually be carried leaving the rest of the procedure unchanged).

B.  Feasibility of FFF verification
The reason for the lack of FFF Portal Dosimetry was that the EPID would saturate. To test 
this we delivered several fields with several monitor units and dose rates to check the linearity 
of the system for both of the unflattened modes (6FFF and 10FFF) and the conventional 6X 
mode. EPID’s signal was measured as the average of pixel value in the center of the field; this 
was done using a tool from portal dosimetry: “output factor tool”.

Also different SDDs were explored. A greater SDD means a worse signal-to-noise ratio (SNR) 
and greater effective resolution. Both factors are quite irrelevant, because resolution is already 
very good (well on the submillimeter scale) and FFF plans are likely to have a great number of 
monitor units (to take advantage of the high dose rate) that guarantee a good SNR. An increased 
SSD also places a limit on the maximum field size; this should not be a great restriction for FFF 
fields that are usually small (SBRT and SRS), so field size will most likely not pose a limitation.

After checking the feasibility of the image acquisition, the fluence prediction was developed.

C.  Fluence prediction
To generate the predicted image of the EPID, the dose plane calculated on a homogeneous 
phantom was used. This dose plane was calculated using Eclipse’s clinical AAA(26) algorithm. 
The image is exported in DICOM‡ format (and converted to Varian’s custom format ”.dxf”. 
The “.dxf” format is a text format with a header of demographics and a description of the file’s 
content. The only manipulation done to the data is rescaling from pixel value to CU. The .dxf 
file can be imported on the Portal Dosimetry workspace as a predicted image.

The homogeneous phantom used was tailored to match EPID’s image. Only two param-
eters were empirically chosen: depth and CT number. The latter was chosen at a high value to 
mimic the EPID’s material (and its overdetection of low-energy photons). The chosen value 
is 3000 HU. As for the depth, it was chosen to match the beam profile of the 6X beam (the 
unflattened beam profile does not change as much with depth). The chosen depth is 3 cm. This 
yields an effective depth of 6.7 cm (roughly agreeing with the value of 7 cm used by Khan et 
al.(9) for its initial model).

D.  Data format conversion
One of Portal Dosimetry’s main advantages is that it is fast and easy to use. To make this method 
also fast and easy to use, the framework of the Portal Dosimetry application had to be retained. 
For this purpose, an in-house application was developed§.

The developed application (Fig. 1) monitors certain folders for DICOM files and automati-
cally performs the file conversion as the DICOM files are exported from the TPS (once the file 
is converted, the software changes its extension to signal that the conversion has already been 
done). This application is composed of two parts. The first is a Visual Basic (Microsoft Inc., 
Redmont, WA) program that “listens” for DICOM files and, when it finds them, calls a second 
part. The second part is a Java (Oracle, Redwood Shores, CA) class that leverages ImageJ’s 
(public domain software) capability to extract the pixel value from the DICOM file (the dose 
plane) and write it (pixel by pixel) into a complete .dxf file (including the header with mock 

‡ Digital Imaging and Communication in Medicine. See for example: http://dicom.nema.org/ or http://
en.wikipedia.org/wiki/DICOM

§ Freely available upon request to the corresponding author.

http://en.wikipedia.org/wiki/DICOM
http://en.wikipedia.org/wiki/DICOM
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data). There is no data manipulation beyond reescalation of pixel value to match the value of 
CUs in the acquired image. This rescaling factor allows for the absolute value of CU to be 
precisely adjusted to account for the linac’s output or the correction for output factor of the 
precise field size (see the Results section).

The application (once set in place) acts without interaction with the user.

E.  Field verification workflow
After plan creation the “verification plan” must be created. Instead of choosing portal dose 
(that is not available for FFF plans), calculation over a phantom must be chosen. The plan 
is calculated (field by field) on the homogeneous phantom (with a grid resolution of 1 mm, 
the minimum available). The dose plane is exported in DICOM format to a specific folder. 
A placeholder plan must be created and assigned integrated (dosimetry) images (SDD of 160 
should be checked also).

From the Portal Dosimetry workspace, the .dxf file (automatically generated by the previously 
described application) can be imported into the placeholder plan. The rest of the verification 
should go like it does for the regular Portal Dosimetry verifications: acquisition on the linac 
and comparison on the Portal Dosimetry workspace. The whole process only adds a few (3–5) 
minutes per field and can be carried out by a trained radiographer. The whole process, compared 
with the original Varian procedure, is shown in Fig. 2.

Fig. 1. The application developed for the conversion of DICOM dose planes to .dxf format. Waiting for DICOM dose 
planes (left) and configuration tab (right).

Fig. 2. Workflow of Portal Dosimetry verification. Solid line, Varian (PDIP); dashed line, proposed method.
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F.  Test cases
This method was tested (for the three qualities used in our hospital for IMRT (or VMAT) 6X, 
6FFF and 10FFF) with: square fields, test fields (ziggurat and checkered), and clinical cases.

The square fields were tested in absolute dose mode to check the ability of the system to 
predict the different field sizes (output factors) in absolute dose (after calibration) and profile. 
The square fields were collimated with the MLC (with the jaws retracted 1 cm, except for the 
1 × 1 and 2 × 2 cm, which were retracted 5 mm).

The test fields consist of two fields: ziggurat and checkered field (see Figs. 3 and 4).These 
constitute a quite extreme case of intensity-modulation. These fields underwent the exact 
verification that is done in our institution for clinical fields before treatment (Table 1), that 

Fig. 3. Test case: checkered field 10FFF.

Fig. 4. Example of a VMAT 10FFF field.
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is, Portal Dosimetry evaluation in relative mode (although absolute is also checked)**, global  
gamma(27-28) 2%/2 mm with a threshold of 5% of maximum dose. A field is clinically acceptable 
if at least 95% of its points get a score gamma under 1 (pass the gamma test). Other parameters 
are checked to detect problems on the field, but are not used as a pass-fail test (parameters such 
as gamma map, average gamma, maximum gamma, area gamma > 0.8 and area gamma > 1.2).

The clinical cases are some randomly chosen cases representative of clinical treatments 
actually delivered at our hospital. For the 6X fields the verification with Varian’s PDIP is also 
included. Most of the fields are 10FFF and VMAT because this is the beam quality most used 
for SBRT and SRS in our institution.

All of the clinical fields have also undergone absolute dose verification with an ionization 
chamber on a RW3 phantom (PTW, Freiburg, Germany) (results not included).

 
III. RESULTS 

A.  Feasibility

A.1 Signal vs. distance
The signal from the EPID decreases with distance squared. Figure 5 shows the signal vs. dis-
tance (normalized).

Figure 5 shows that there is no EPID saturation (even for the highest available dose rate, 
10FFF 2400 MU/min) beyond an SDD of 140 cm. For the clinical verifications an SDD of 
160 cm was chosen to be far from the limit. 

Table 1. Clinical fields verified.

 Energy Mode Number of Fields

 6X VMAT 4
 6X IMRT 9
 6FFF VMAT 6
 10FFF VMAT 65
 10FFF IMRT 9

** For clinical treatments absolute dose is also verified with an ionization chamber inside a phantom.

Fig. 5. EPID signal vs. distance for three different dose rates. Saturation is seen on the higher dose rate, 2400 MU/min.
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B.  Linearity
The linearity of EPID’s response was also checked for the FFF modes and compared with 6X 
mode. Figure 6 shows a comparison between linearity for the highest dose rate mode (10FFF 
2400 MU/min and the reference mode 6X). This figure shows that linearity is better than 1% 
above 20 MU. There is no difference between linearity on 6X and 10FFF or 6FFF (figure not 
shown). After proving that there is not significant saturation and that linearity is like the one 
found on 6X the verification of FFF modes was deemed feasible. The analysis of a square field 
10FFF is shown in Fig. 7.

Fig. 6. Comparison of linearity of 6X and 10FFF (both at their respective maximum dose rates: 600 MU/min and  
2400 MU/min). Linearity (lack of) is below 1% above 20 MU.

Fig. 7. The Portal Dosimetry workspace during the analysis of a static square 10FFF field.
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C.  Test cases

C.1 Output factors
The phantom’s depth was chosen to produce a beam profile that matched the acquired one; 
therefore, square fields were not a good test because they had been tailored that way. The 
output factors have been proved to be different between EPID and water.(9) In our case, the 
output factors showed a good enough agreement (around 1%) for fields between a 2 × 2 cm 
and 10 × 10 (see Figs. 8, 9 and Table 2); this covers most clinical fields that are foreseeable for 
FFF. The normalization point was chosen at a field size of 5 × 5 cm (FFF fields are expected 
to be smaller because its main use will be SBRT and SRS).

Fig. 8. Comparison of the output factors (OF) as predicted by the TPS, Eclipse, and measured with the EPID for 10FFF. 
For fields between 2 and 10 cm, the output factors agree within 1%.

Fig. 9. Comparison of the output factors (OF) as predicted by the TPS, Eclipse, and measured with the EPID for 6X. For 
fields between 2 and 10 cm, the output factors agree within 1.5%.

Table 2. Output factors comparison between EPID and proposed method. 

 Field Size
 Energy 1 2 5 10 15

 6X 4.12% 1.23% 0.00% 0.99% 2.90%
 6FFF 3.50% 1.70% 0.00% -0.91% 0.12%
 10FFF 3,60% -0.30% 0.00% 0.36% 1.76%



141  Pardo et al.: On FFF Portal Dosimetry 141

Journal of Applied Clinical Medical Physics, Vol. 17, No. 4, 2016

If a field should be verified and the difference in output factors is known to be bigger than 
desirable (e.g., for the verification of a 2 × 2 field with a gamma 1%/1 mm), the conversion 
factor from dose (on the DICOM image) to CU should be adjusted.

C.2  Nonclinical fields
The nonclinical fields are the ziggurat and the checkered fields (Fig. 3). Both fields test resolu-
tion and linearity. The six fields pass the verification (see Table 3). In the case of the 6X, the 
verification scores achieved by the proposed method are higher than the ones achieved by the 
PDIP. Clinical cases: 6X the scores were significantly better than the ones achieved with PDIP.

In Fig. 4, a verification of a 10FFF VMAT field can be seen.
For the results of the clinical verification for 6FFF (6 VMAT fields), see Table 4. For the 

results for 6X (9 IMRT fields and 4 VMAT fields) and 10FFF (65 VMAT fields and 9 IMRT 
fields), see Tables 5 and 6, respectively.

 

Table 3. Results of the verification of the test fields: ziggurat and checkered.

    % Points Pass
   Average Gamma
 Field Energy Gamma 2%/2 mma

 Ziggurat 6X 0.22 100
 Checkered 6X 0.38 97.5
 Ziggurat 6FFF 0.34 98.0
 Checkered 6FFF 0.46 95.3
 Ziggurat 10FFF 0.38 96.6
 Checkered 10FFF 0.29 99.5

a Gamma 2%/2 mm is the standard for dose distribution comparison on our hospital.

Table 4. Results of the clinical verification for 6FFF.

  MU % Gamma Pass Average Gamma

 mean 948 99.92 0.13
 max 1082 100 0.18
 min 834 99.5 0.1
 median 954.5 100 0.12

Table 5. Results of the clinical verification for 6X.

 Proposed Method PDIP
	 	 MU	 Gamma	Pass	 Av.	Gamma	 Gamma	pass	 Av.	Gamma

 mean 314.31 97.58 0.26 93.29 0.39
 max 810 100 0.5 100.00 0.66
 min 44 86.7 0.14 76.50 0.18
 median 200 99.2 0.25 95.90 0.43

Table 6. Results of the clinical verification for 10FFF.

  MU % Gamma Pass Average Gamma

 mean 1118.88 99.81 0.17
 max 3341 100.00 0.35
 min 284 98.00 0.09
 median 969 100.00 0.15
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IV. DISCUSSION

The presented method is capable of creating predicted images for Portal Dosimetry taking advan-
tage of Aria’s framework, although comparison through a third-party application is also possible.

The method shows good promise for the comparison of predicted and measured images 
using absolute gamma; this will be the topic for future discussion. The presented method adds 
the advantage of using the clinical dose calculation algorithm being useful in the verification 
of the plan as a whole (without heterogeneity corrections). Moreover the setup time is almost 
zero (the algorithm is already configured). 

PDIP uses a custom algorithm (pencil-beam-based) that needs modeling. Although the data 
needed for modeling are easy to acquire, it does add to the setup process. The fact that the 
calculation is based on different data than the clinical algorithm makes the method less useful 
for the verification of the plan, although it verifies the ability of the machine to deliver the 
planned fields.

The method presented allows for the verification of any field that can be calculated with the 
AAA algorithm, making it able to do machine QA such as wedge verification (see Fig. 10).

The GLAaS method is similar to the one presented here, with the main difference being that 
the GLAaS algorithm makes the comparison on a water-equivalent plane while the other (the 
one presented) makes the comparison on the EPID plane. None use kernel convolution to model 
EPID response; the calculation at a certain depth and the dose grid used for the calculation act 
as a convolution kernel that takes into account the detector response. The presented method 
uses a high #CT (3000 HU) instead of separating the direct and transmitted components. The 
method presented has the additional advantage of retaining the Portal Dosimetry framework.

EPID’s support arm (called e-arm) causes backscatter that makes beam profiles slightly 
slanted on the in-plane direction.(29) This backscatter is not the same for different field sizes. 
The proposed method could be used to slant the predicted image with a lineal function by a 
different amount for different field sizes. This will be the focus of future study.

Fig. 10. Proof of concept of the verification of a wedged field.
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All the calculations done are “open source”, this lets the user understand all the steps taken, 
troubleshoot problems, and add corrections, like the previously cited arm backscatter.

Table 7 shows a comparison of some key features of the method proposed and Varian’s PDIP.
PDIP dosimetry system calculates a predicted image on the EPID, instead of a dose plane. 

The presented method assumes that the EPID image is comparable to a dose plane on a homo-
geneous phantom. The PDIP algorithm convolves the fluence with a set of 10 Gaussians of dif-
ferent sizes (although Van Esch and colleagues(11) suggested only 3). According to the Van Esch 
study, the major contribution (95%) is due to the “narrow component”: less than one mm; 4% 
is due to the “few mm” component, and only 1% due to the long-range scatter (“several cm”). 
The proposed method is calculated with a 1 mm dose grid that effectively takes into account 
the “narrow component” (under 1 mm) that makes up for the 95%. The other two components 
are taken into account by the scatter calculation done by the AAA on the high electron density 
phantom, 3000 HU.

 
V. CONCLUSIONS

A method for FFF Portal Dosimetry verification was presented. This procedure focuses on FFF 
modes, but is also applicable to flattened modes too. The method relies on the Portal Dosimetry 
software, it takes no more than 3 extra min per field (5 for arc), and the rest of the process keeps 
the standard Portal Dosimetry workflow. The process is simple (once it has been setup) and the 
verification can be carried out by a radiographer.

The method presented relies on AAA algorithm, so it requires no extra hardware and no 
additional data for its modeling. The setup of this method is also straightforward. Only a small 
piece of software is needed (freely available under request, as long as authorship is credited). The 
fact that the method relies on the clinically used algorithm makes it suitable for the verification 
of Varian’s PDIP algorithm. Also the use of this algorithm makes the verification “more clinical” 
because the dose calculation is verified (although heterogeneity or uneven contours are not). 

Absolute dose verification (the comparison of CU in predicted and measured images) will 
be the focus of future development.

This method is also useful on machine QA because it is capable of generating a predicted 
image of a static field (e.g., wedge fields).

Table 7. Comparison of the features of PDIP and the presented method. 

 Feature Portal Dosimetry AAA Portal Dose Prediction

 FFF modes No. Yes.

 Time needed for the verification
 Approx. 5 min (plus machine Approx. 10 min (plus machine 

  time, depending on number time, depending on number 
  of fields and MU). of fields and MU).

 Sensibility Both methods are expected to have similar sensitivity as the 
  acquired image is essentially the same.

 Dose calculation Most dose calculation errors Leaf modeling and output 
  will go unnoticed. factors are taken into account.

 Leaf movement Both methods are expected to have similar sensitivity to  
  leaf movement errors. 

 Static or wedged fields No.   Yes. 
  Machine QA was not built-in. Machine QA capable.

 Initial setup Requires measurements, modeling 
  and verification. Requires only verification.
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The method presented was capable of verifying all the clinical fields treated in our institution 
with FFF modes and several (randomly chosen) 6X fields.
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