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Abstract
Human mesenchymal stem cell (hMSC) derived extracellular vesicles (EVs) have
shown therapeutic potential in recent studies. However, the corresponding thera-
peutic components are largely unknown, and scale-up production of hMSC EVs
is a major challenge for translational applications. In the current study, hMSCs
were grown as 3D aggregates under wave motion to promote EV secretion. Results
demonstrate that 3D hMSC aggregates promote activation of the endosomal sorting
complexes required for transport (ESCRT)-dependent and -independent pathways.
mRNA sequencing revealed global transcriptome alterations for 3D hMSC aggre-
gates. Compared to 2D-hMSC-EVs, the quantity of 3D-hMSC-EVs was enhanced
significantly (by 2-fold), with smaller sizes, higher miR-21 and miR-22 expression,
and an altered protein cargo (e.g., upregulation of cytokines and anti-inflammatory
factors) uncovered by proteomics analysis, possibly due to altered EV biogene-
sis. Functionally, 3D-hMSC-EVs rejuvenated senescent stem cells and exhibited
enhanced immunomodulatory potentials. In summary, this study provides a promis-
ing strategy for scalable production of high-quality EVs from hMSCs with enhanced
therapeutic potential.
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 INTRODUCTION

Human mesenchymal stem/stromal cells (hMSCs) derived from various tissue sources are widely acknowledged as a promising
candidate for stem-cell therapy in stroke, Alzheimer’s disease multiple sclerosis, myocardiac disease, graft-versus-host disease,
infectious diseases and others (Yin et al., 2019). Despite their multilineage differentiation potential, hMSCs exert therapeutic
effects via their secretome and paracrine factors (Yin et al., 2019). Within the MSC secretome, extracellular vesicles (EVs) are of
great interest, as recent results have shown their therapeutic potential inmultiple disease models (Wiklander et al., 2019). EVs are
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defined as small (a size of 20–500 nm), membrane-enclosed particles released from cells that play an essential role in intercellu-
lar communication due to their capacity to transfer membrane constituents and cargoes of cytosolic proteins, lipids, metabolites
and genetic materials (e.g., microRNAs) (Deng et al., 2018; Jeppesen et al., 2019; Liu et al., 2018; van Niel et al., 2018; Zhang et al.,
2019). The internal payload and membrane composition of hMSC EVs may have therapeutic benefits in treating neurodegen-
eration. (Gyorgy et al., 2015; Jarmalavičiūtė & Pivoriūnas, 2016; Osorio-Querejeta et al., 2018; Riazifar et al., 2017; Wiklander
et al., 2019). hMSC EVs also have been reported to promote tissue regeneration in ischemic diseases and exert anti-aging effects
by reducing cellular oxidative stress (Baek et al., 2019; Branscome et al., 2019; Ha et al., 2016; Keshtkar et al., 2018; Riazifar et al.,
2017; Zhang et al., 2019). Preclinical studies have shown that EVs derived from hMSCs reduce oxidative stress, ameliorate inflam-
mation, and promote oligodendrocyte formation and re-myelination in an experimental autoimmune encephalomyelitis (EAE)
model of demyelination for multiple sclerosis (Laso-Garcia, 2018; Osorio-Querejeta et al., 2018). In preclinical ischemic stroke,
hMSC EVs promoted an anti-inflammatory and anti-apoptosis response as well as angiogenesis at the lesion site, showing a con-
siderably decreased infarct volume and improved motor functions (Kim et al., 2020; Xin et al., 2013; Zhang et al., 2019). In an
Alzheimer’s disease model, better cognitive behaviour and lower Aβ plaque load in the hippocampus were observed in hMSC
EV-treated mice (Cone et al., 2021; Elia et al., 2019). While these results demonstrated the potential for hMSC EVs in treat-
ing various neurological disorders, the correlations between parental cell transcriptome and hMSC EV cargo profiles of proteins,
microRNAs, or metabolites, and neurological regeneration capacity have not been elucidated fully with respect to in vitro culture
conditions.
It has been reported that the hMSC EV properties can be mediated by the microenvironment and in vitro conditions, such

as hypoxia or hydrodynamic culture in bioreactors (Patel et al., 2017; Patel et al., 2018). In particular, 3D aggregation, as a pre-
conditioning strategy, is expected to promote hMSC EV production with beneficial cargo profile compared to 2D culture. For
instance, HSP90 and EpCAM expression were highly promoted in the secreted EVs of 3D cancer organoids compared to 2D
generated EVs (Eguchi et al., 2018), and the 3D EVs better reflected the characteristics of in vivo exosomes, a subpopulation
of EVs with a size range of 30–200 nm (Villasante et al., 2016). The cargo profiles of EVs from 3D cortical spheroids derived
from human induced pluripotent stem cells (hiPSCs) have been reported to reflect lineage-specific developmental stages of stem
cell differentiation in previous studies (Marzano et al., 2019; Marzano et al., 2021). Moreover, recent studies provide strong evi-
dence that 3D aggregate culture induces drastic changes in hMSC homeostasis, characterized by enhanced glycolysis, activation
of autophagy, and anti-senescence property, retention of the primitive phenotype of hMSCs in vitro (Bijonowski et al., 2020;
Bijonowski et al., 2020; Liu et al., 2017; Sart et al., 2014; Yuan et al., 2019; Yuan et al., 2019). In particular, the secretome of 3D
hMSC aggregates exhibited enhanced expression of cytokines associated with immunosuppression and anti-apoptosis compared
to 2D culture (Bartosh et al., 2010; Sart et al., 2014). While 3D aggregation of hMSCs has attracted growing interest to enhance
therapeutic outcomes (Sart et al., 2014), the properties of EVs secreted by 3D hMSC aggregates have not been well investigated.
As EVs carry a majority of cellular characteristics of the parental cells, it is hypothesized that EVs from 3D hMSC aggregates may
exhibit characteristics for better therapeutic benefits.
In this study, characteristics of hMSC EVs derived from 3D aggregates (3D-hMSC-EVs) and 2D planer culture (2D-hMSC-

EVs) were investigated thoroughly. Bone marrow derived hMSCs were aggregated spontaneously in a miniaturized dynamic
wave-motion bioreactor, as reported in our previous study (Tsai et al., 2017). hMSC-EVswere isolated and characterized for yield,
size distribution, EV markers, protein cargo and miRNA cargo. Moreover, various in vitro functional assays were performed,
including the anti-aging effects of 3D EVs on adult stem cells with replicative senescence, the immunomodulatory effects of 3D
EVs on macrophage polarization, and the inhibition of T cell proliferation, as well as an in vitro wound healing model. To reveal
the possible relevant pathways, global transcriptome of 2D and 3D hMSCs was examined by mRNA sequencing along with the
proteomics analysis of the EV protein cargo. These analyses provide correlations between the parental cell transcriptome with
secreted EV protein cargo as well as the functional outcomes of the EV-recipient cells. Together, these results indicate that 3D
aggregation of hMSCs significantly enhances the secretion of EVs compared to 2D adherent culture. The secreted 3D-hMSC-
EVs may possess enhanced therapeutic potentials compared with 2D EVs, likely due to the cargo differences. The enhanced
EV properties with respect to immunomodulation and regulatory homeostasis are beneficial for treating neurological disorders
potentially by promoting the secretion of neuroprotective factors and suppressing inflammatory response, in a way similar to
brain pericytes (Crisan et al., 2008). The existence of similarities between hMSCs and brain pericytes alludes to the presence
of hMSCs in adult brain (Crisan et al., 2008; da Silva Meirelles et al., 2006). Moreover, the scalable bioreactor culture approach
enables scale-up processes for biomanufacturing of hMSC EVs for future clinical applications.

 RESULTS

. Global transcriptome analysis of D aggregated hMSCs

Figure 1 illustrates the miniaturized Wave Bioreactor and experimental procedures of 3D hMSC cultures for the generation of
3D-hMSC-EVs in comparison to 2D hMSC cultures (Figure 1a and b). Generally, 3D dynamic culture generated a large amount
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F IGURE  Culture conditions for 2D and 3D hMSCs to promote EV secretion. (a) Illustration of 3D dynamic culture of hMSCs to form cell aggregates
using a miniaturized wave bioreactor. (b) Schematic illustration of procedures from initial 2D expansion of hMSCs to the medium collection of 2D and 3D
cultures and isolation of 2D-hMSC-EVs and 3D-hMSC-EVs. (c) Representative images of 3D hMSC aggregates and 2D culture of hMSCs. Scale bar: 200 μm
(white), 50 μm (black). (d) Stem cell gene expression and (e) Colony forming unit-fibroblast (CFU-F) colony number from 2D or dynamic 3D culture of
hMSCs in EV-depleted complete culture medium (CCM). n = 3. *P < 0.05; **P < 0.01; ***P < 0.001

of hMSC aggregates with relatively narrow size distribution (Figure 1c). The dynamic culture of Wave Motion Bioreactor also
promoted the expression of stemness genes Oct, Sox and Nanog in hMSCs as well as increased their colony forming unit-
fibroblasts (CFU-F) activity, reflecting a more primitive phenotype compared to 2D culture (Figure 1d and e). Although cell-cell
and cell-matrix interactions exist in 3D aggregation culture, it is the stress response to cellular re-organization and metabolic
reconfiguration that maintain the primitive and quiescent phenotype of hMSCs based on our previous studies (Bijonowski et al.,
2020; Liu et al., 2017; Liu et al., 2019). In addition, the 3D aggregated hMSCs demonstrated lineage-specific differentiation ability
(Figure S1).
Transcriptome analysis of 2D and 3D bone marrow hMSCs with triplicate libraries (total 6; Figure 2, data file S1 and S2)

as well as umbilical cord (UC) hMSCs from different donors, that is, six libraries for 2D (Donor-2D) and six for 3D (Donor-
3D) (total 12; Figure S1), was performed using next-generation sequencing of mRNA. Principal component analysis (PCA)
shows a significant separation between 3D and 2D conditions, and the replicates generally exhibit a tight cluster for each group
(Figure 2a). Differences between 3D and 2D conditions were not affected by different donors of hMSCs as shown in a sep-
arate PCA plot (Figure S2). Compared to 2D conditions, 3D culture induces significant transcriptome alterations for hMSCs
from different tissue source and donors. The heatmap of differentially expressed genes (DEGs) also shows significant differences
between 3D and 2D hMSCs (Figure 2b). Volcano plots show a total of 3109 DEGs (P value < 0.05, Log2 fold change > 1.0)
between 3D and 2D conditions (Figure 2c). The upregulated DEGs and the downregulated DEGs were comparable (i.e., DEG
distribution and the expression levels) for 3D- versus 2D-hMSCs. The top 20 genes that are upregulated or downregulated
DEGs are listed in Table S1. Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis shows DEG-enriched
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F IGURE  mRNA sequencing of 2D vs. 3D hMSCs and EV biogenesis marker expression. (a) Principal component analysis (PCA) plots of different
culture conditions (2D and 3D) in triplicate. (b) Heatmap of differentially expressed genes (DEGs) from mRNA sequencing. (c) Volcano plots illustrate the
number of significant DEGs (3D/2D). Red colour symbols indicate the upregulated DEGs and blue symbols indicate the downregulated DEGs. (d) Genes
involved in EV biogenesis and secretion pathways in hMSCs determined by qRT-PCR. n = 3. *P < 0.05; **P < 0.01; ***P < 0.001

pathways by comparing 3D to 2D hMSCs (Table 1). KEGG analysis identified the mitogen-activated protein kinase (MAPK),
Ras, Wnt signalling, cell cycle, and apoptosis pathways, implying that 3D dynamic culture systematically alters the hMSC
transcriptome.
To understand the global transcriptional change under 3D culture, certainDEGs are identified in the categories of cytoskeleton,

extracellular matrix (ECM), cytokine and EV biogenesis (Table 2). Cytoskeleton and cadherin proteins are all downregulated,
potentially due to changes in cell morphology, reduced cell-matrix adhesion and reorganized cytoskeletons (Bijonowski et al.,
2019; Tsai et al., 2015). Differential expressions of claudins and other gap junction proteins also are associated with cellular re-
organization under dynamic 3D culture. On the other hand, upregulated matrix metalloproteinases imply extensive remodelling
of ECM proteins. The higher levels of FGF, TGFB, VEGFA and IL- chemokines indicate that 3D-cultured hMSCsmay promote
the cytokine and chemokine secretion compared to standard 2D cultures. For instance, IL-10 is a potent anti-inflammatory and
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TABLE  The top 20 enriched KEGG pathways from DEGs between 3D and 2D hMSCs based on RNA-seq

Pathway Hits P value FDR

Pathways in cancer 114 3.32E-06 0.00105

Focal adhesion 51 1.86E-05 0.00198

Hippo signalling pathway 42 2.06E-05 0.00198

Proteoglycans in cancer 51 2.49E-05 0.00198

MAPK signalling pathway 68 3.71E-05 0.00208

Pathogenic Escherichia coli infection 20 4.27E-05 0.00208

Cell cycle 35 4.58E-05 0.00208

Axon guidance 46 5.90E-05 0.00218

Cytokine-cytokine receptor interaction 67 6.16E-05 0.00218

Basal cell carcinoma 21 0.00012 0.00381

Apoptosis 36 0.000153 0.00444

Breast cancer 38 0.000174 0.00444

Leukocyte transendothelial migration 31 0.000182 0.00444

Ferroptosis 15 0.000259 0.00589

Rap1 signalling pathway 48 0.00039 0.00797

Wnt signalling pathway 39 0.000401 0.00797

Mineral absorption 17 0.000522 0.00977

cGMP-PKG signalling pathway 40 0.000574 0.0101

Ras signalling pathway 52 0.000611 0.0102

Protein digestion and absorption 25 0.000701 0.0111

Abbreviations: KEGG, Kyoto Encyclopedia of Genes and Genomes; DEG, differentially expressed gene; FDR, permutation-based false-discovery rate.
An FDR value is a P-value adjusted for multiple tests (by the Benjamini-Hochberg procedure).

immunosuppression cytokine, which has 3.9-fold increase in 3D hMSCs. In addition, CXCLs (i.e., CXCL1, 2, 3, 5, 6, 8, 12 and 16)
were upregulated in 3D hMSCs (Table S2).
Understanding hMSC secretome and EV biogenesis mechanisms are of significant interest due to the great potential of

hMSC EVs as therapeutic delivery systems. Several key components in endosomal sorting complexes required for transport
(ESCRT)-dependent, ESCRT-independent and ceramide pathways are upregulated in 3D hMSCs (Table 2). EV biogenesis genes
differentially expressed as determined by RNA-Seq were verified by qRT-PCR for the 3D and 2D hMSCs (Figure 2d). CD,
CD and CD are upregulated significantly in 3D hMSCs (3-4 fold), contributing to enhanced ESCRT-independent pathway
cargo sorting and EV biogenesis. Alix, TSG, HRS, Syntenin and RabB also are upregulated significantly (2.5-7 fold), facilitat-
ing ESCRT-dependent pathways. For example, Rab27B is a small GTPase family member that facilitates multi-vesicular body
(MVB) fusion with the plasma membrane and exosomal release. Overexpression of Rab increases EV secretion, and knock-
down of Rab reduces EV yield (Ostrowski et al., 2010). Another study has shown that 3D EVs of cancer cells have different
miRNA and protein cargo from 2D EVs, but did not analyze the EV biogenesis markers (Rocha et al., 2019). Therefore, dynamic
3D aggregate culture alters the EV biogenesis in hMSCs by potentially activating both ESCRT-dependent and -independent
pathways.
The intracellular miRNA profiles were validated by qRT-PCR on the hMSCs from 2D and 3D cultures (Figure S3). Upregula-

tion was observed formiR-18a-5p, miR-23a-3p, miR-29b-3p, miR-100-5p, miR-125b-5p, miR-146a-5p, miR-155-5p, miR-199a-3p,
miR-630 and miR-4454. Down-regulation was found for miR-17-3p, miR-19a-3p, miR-19b-3p and miR-328-3p. These miRNAs
regulate various cellular behaviours and signalling pathways (e.g., miR-155 in activation ofWnt pathway, miR-29b and miR-199a
in regulating matrix metalloproteinase, and miR-19a in inhibiting Cyclin D1) (Jeske et al., 2020; Song et al., 2015). Therefore,
3D dynamic aggregate culture altered the intracellular miRNA profile of hMSCs and potentially may impact exosomal cargo
packaging. Taken together, the distinct transcriptome characteristics of hMSCs under 3D dynamic culture may influence the EV
biogenesis and properties.

. D dynamic culture promotes EV generation from hMSCs

The secreted 2D- and 3D-hMSC-EVswere characterized by nanoparticle tracking analysis (NTA),Western blot and transmission
electronic microscopy (TEM; Figure 3). From NTA, the 3D dynamic aggregation culture results in two-fold higher numbers of
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TABLE  The selected DEGs between 3D and 2D hMSCs from RNA-seq

Category Symbols Name Log FC P value

Cytoskeleton TUBA1B tubulin alpha 1b −3.24 4.60E-43

TUBB2A tubulin beta 2A class IIa −2.76 2.77E-29

ACTA2 actin alpha 2, smooth muscle −4.47 4.88E-27

ACTC1 actin alpha cardiac muscle 1 −5.93 1.49E-17

ACTB actin beta −2.41 3.00E-31

ACTG1 actin gamma 1 −2.06 2.53E-16

ECM CDH1 cadherin 1 −1.33 3.77E-02

CDH2 cadherin 2 −1.36 4.98E-04

CLDN1 claudin 1 −1.91 7.51E-03

CLDN10 claudin 10 3.15 2.36E-04

MMP1 matrix metallopeptidase 1 5.62 6.65E-18

MMP13 matrix metallopeptidase 13 6.72 2.77E-33

MMP3 matrix metallopeptidase 3 5.46 6.02E-08

MMP9 matrix metallopeptidase 9 5.92 5.91E-08

Cytokine FGF1 fibroblast growth factor 1 1.21 1.36E-03

FGF13 fibroblast growth factor 13 2.54 2.78E-02

IL10 interleukin 10 3.92 2.38E-03

TGFB1 transforming growth factor beta 1 1.64 1.18E-05

TGFB2 transforming growth factor beta 2 1.13 8.57E-04

VEGFA vascular endothelial growth factor A 2.51 8.89E-14

EV biogenesis RAB27B RAB27B, member RAS oncogene family 3.37 2.08E-20

CD9 CD9 molecule 1.41 6.58E-03

SDCBP syndecan binding protein 0.90 1.62E-02

VPS37B VPS37B subunit of ESCRT-I 0.75 6.88E-03

CHMP4A charged multivesicular body protein 4A −0.44 4.28E-02

CHMP7 charged multivesicular body protein 7 0.68 6.51E-05

CERK ceramide kinase 1.36 3.14E-09

Note: The numbers are the Log2 values of 3D to 2D hMSCs. Negative values (Green) indicate that the genes are present in higher amounts in the 2D group, while positive values (Red)
indicate that the genes are present in higher amounts in the 3D group. DEG: differentially expressed gene.

EVs per cell-base than the 2D monolayer culture at a 2-day interval (Figure 3a). While average mean size of EVs are comparable
(∼180 nm) for 2D- and 3D-hMSC-EVs, the average mode size of 3D-hMSC-EVs is significantly lower than the 2D-hMSC-EVs
(100 nm vs. 155 nm) (Figure 3b). The mode size is considered as a more accurate representation because vesicle aggregates may
affect the value of the mean size. Exosomal markers were evaluated via Western Blot (Figure 3c), showing the expression of
positive EV markers Alix, Flotillin-2, CD81 (higher in 3D-hMSC-EVs) and Syntenin (higher in 2D-hMSC-EVs), as well as the
absence of Calnexin (a negative EVmarker). HSC70 expression is weak for both 2D- and 3D-hMSC-EVs (Figure S4), which also
was observed in previously isolated EVs by the ExtraPEGmethod (Hurwitz et al., 2018; Rider et al., 2016). In particular, the CD63
(a tetraspanin commonly found on the surface of exosomes) expression is much higher in 3D-hMSC-EVs than 2D-hMSC-EVs
(Figure S4). The TEM images verified the presence of exosome-sized, cup-shaped vesicles (Figure 3d). Analysis of TEM images
confirmed that the 3D-hMSC-EVs are significantly smaller compared to 2D-hMSC-EVs (55 nm vs. 75 nm, on average) (Figure 3e
and f). These results indicate that dynamic 3D aggregation enhances hMSC EV production and enriches the fractions of small
EVs (i.e., exosomes), which have been proposed as the major contributor of the therapeutic potential of hMSC EVs (Murphy
et al., 2019).
To confirm the enhanced EV production in dynamic 3D aggregate culture, bone marrow hMSCs from a different donor, at

different passages, as well as human adipose-derived stem cells (ASCs) and UC-hMSCs were evaluated for 3D EV production
(Figures S5 and S6). Consistently for each cell source and tissue origin, significantly higher EV yield (EVs/Cell/2 days) was
observed for dynamic 3D aggregate culture compared to the corresponding 2D monolayer culture. The mode size of EVs was
also relatively smaller for 3D-hMSC-EVs compared to 2D-hMSC-EVs.
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F IGURE  Characterization of hMSC EVs derived from 2D monolayer culture and 3D dynamic culture. (a) EV production from 2D and 3D culture at
2-day interval determined by nanoparticle tracking analysis (NTA), normalized to cell number at day 2 (n = 6). (b) The mean and mode size of EVs (n = 6). (c)
Positive and negative markers of 2D EVs and 3D EVs as well as corresponding cell lysate determined by Western Blot. (d) Transmission electron microscopy
(TEM) images of 2D EVs and 3D EVs. Scale bars are indicated in the images. (e) EV size (n = 150) and (f) distribution determined based on TEM images.
*P < 0.05; ***P < 0.001. ns: not significant

. D dynamic aggregates promote therapeutically relevant miRNA and protein cargo in EVs

Density gradient isolationwas performed via ultracentrifugation, and eleven fractionswere collected (Figure 4a and b). Fraction 2
and 3 are usually considered as exosome-enriched fractions based on the density (Hurwitz &Meckes, 2017). In these results, more
EVs in fraction 2 and 3 of 3D-hMSC-EVs clearly are observed (Figure 4a). The slightly higher density of fraction 2 EV band in 3D
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F IGURE  Protein and miRNA contents in EVs are altered by 3D dynamic culture. (a) Density gradient ultracentrifugation demonstrated enrichment of
different sub-populations between 2D- and 3D-hMSC-EVs. (b) Western blot analysis of EVmarkers in fractions from (a). (c) Total protein quantification in 2D-
and 3D-hMSC-EVs (n= 3). (d) Expression of selected miRNAs in 2D- and 3D-hMSC-EVs determined by qRT-PCR (n= 3). *P < 0.05; **P < 0.01; ***P < 0.001

versus 2D conditions implies lighter density and lower amount of protein cargo packing. The EVmarkers of different fractions of
3D and 2D conditions were confirmed by Western blot (Figure 4b). Caveolin-1, CD9, CD63 and HSC70 are significantly higher
in fractions 2 and 3 of 3D-hMSC-EVs than other fractions, which is also higher than the corresponding 2D EVs. The absence
of Calnexin in the EVs was confirmed. The total protein amount per 108 EVs is also different between 2D and 3D-hMSC-EVs
(∼0.12 vs. ∼0.05 μg; Figure 4c), which may be due to the smaller EV size in the 3D group (Figure 3e). miRNA cargo in the
isolated 2D and 3D-hMSC-EVs was determined by qRT-PCR (Figure 4d). The expression of miR-21-5p, miR-1246 and miR-22-
3p increases by 26-fold, 5.2-fold and 2.5-fold, respectively, in 3D-hMSC-EVs compared to 2D-hMSC-EVs. Downregulation of
miR-124-3p, miR-133b, miR-181c-5p and miR-328-3p in 3D-hMSC-EVs is observed. Therefore, dynamic 3D aggregation culture
significantly alters the expression of miRNAs with therapeutic relevance.
To determine the specific protein cargo in the isolated EVs, proteomics by liquid chromatography with tandem mass spec-

troscopy (LC-MS/MS) was performed for 2D- and 3D-hMSC-EVs (Figure 5). A Venn diagram plot shows a total of 1,254 shared
proteins, 102 distinct proteins (7.5% in total proteins identified) for 3D-hMSC-EVs, and six distinct proteins for 2D-hMSC-EVs
(Figure 5a and data file S3). Among the differential expressed proteins (DEPs), 122 (9.7%) are upregulated in 2D-hMSC-EVs, and
618 (49.3%) are upregulated in 3D-hMSC-EVs. A volcano plot of the proteomics data shows the DEP distribution in the expres-
sion levels for 3D- versus 2D-hMSC-EVs, and more DEPs were upregulated in the 3D-hMSC-EV group (Figure 5b). The top
DEPs upregulated in 3D-hMSC-EVs are shown in data file S4. The top 20 enriched KEGG pathways from all DEPs are shown in
Table 3, including focal adhesion, ECM-receptor interactions, regulation of actin cytoskeleton and the PI3K-Akt signalling path-
way, which are correlated to the 3D aggregate culture system and RNA-seq data from 3D hMSCs (Table 1). Gene Ontology (GO)
annotation also reveals proteins from the extracellular space and matrix (Figure 5c, data files S5 and S6). In addition, pathways
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F IGURE  Proteomics analysis for 2D- and 3D-hMSC-EVs. (a) Venn diagram plot for 2D- and 3D-hMSC-EV along with differentially expressed proteins
(DEPs). (b) Volcano plot of the DEPs, showing more DEPs were upregulated in 3D-hMSC-EVs. (c) Gene Ontology (GO) and Kyoto Encyclopaedia of Genes
and Genomes (KEGG) analysis on the DEPs by g:Profiler. (d) The analysis to correlate DEGs in parent hMSC transcriptome with DEPs in the secreted
hMSC-EV protein cargo in order to explain the functional outcome of the hMSC-EV recipient cells. Venn diagram of 4560 differentially expressed genes
(DEGs) from hMSC mRNA-sequencing with 740 DEPs from hMSC EV proteomics data identified 257 overlapped DEGs/DEPs. (e) Plot of fold-change from
257 overlapped DEGs and DEPs as in (d)
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TABLE  The top 20 enriched KEGG pathways from DEPs between the proteomes of 3D-hMSC-EVs and 2D-hMSC-EVs

Pathway ID P value

Ribosome KEGG:03010 4.26E-21

Coronavirus disease - COVID-19 KEGG:05171 9.48E-20

Proteasome KEGG:03050 2.03E-16

Focal adhesion KEGG:04510 9.23E-15

ECM-receptor interaction KEGG:04512 9.51E-14

Protein processing in endoplasmic reticulum KEGG:04141 1.29E-08

Prion disease KEGG:05020 3.45E-08

Proteoglycans in cancer KEGG:05205 6.18E-08

Spinocerebellar ataxia KEGG:05017 5.10E-07

Salmonella infection KEGG:05132 6.06E-07

Phagosome KEGG:04145 1.20E-06

Parkinson disease KEGG:05012 1.91E-06

Regulation of actin cytoskeleton KEGG:04810 3.38E-06

Amoebiasis KEGG:05146 7.78E-06

Bacterial invasion of epithelial cells KEGG:05100 2.86E-05

Huntington disease KEGG:05016 3.39E-05

Protein digestion and absorption KEGG:04974 4.98E-05

Amyotrophic lateral sclerosis KEGG:05014 4.99E-05

PI3K-Akt signalling pathway KEGG:04151 5.29E-05

Pathogenic Escherichia coli infection KEGG:05130 9.14E-05

Abbreviations: KEGG, Kyoto Encyclopaedia of Genes and Genomes; DEP, differentially expressed protein.

related to neurological disorders (e.g., Parkinson disease, Huntington disease, amyotrophic lateral sclerosis and spinocerebellar
ataxia) are identified in GO analysis, which indicated potential therapeutic effects of hMSC-EVs on neurodegenerative diseases
To understand the correlation between the transcriptome of parental hMSCs and the protein cargo profile of EVs revealed by

proteomics data, the mRNA-seq dataset (4560 DEGs) of hMSCs and the proteomics dataset (740 DEPs) of corresponding EVs
were analysed together. There are 257 proteins/genes identified by both mRNA-seq and proteomics analysis (Figure 5d). The
mRNA (in hMSCs) and protein (in EVs) correlations did not show a linear relationship (Figure 5e and data file S7), indicating
that the upregulated/downregulated expression of genes in the parental hMSCs do not necessarily lead to the high/low expression
of proteins in the corresponding secreted EVs. This result further supports the hypothesis that specific mechanisms exist for EV
cargo loading that are not simply a factor of intracellular protein expression levels.

. Immunomodulatory potentials of D EVs and functional analysis in various in vitro models

Our previous study has established theM1/M2macrophage polarizationmodel for determining the immunomodulation proper-
ties of hMSCs (Jeske et al., 2021). In this study, theM0 phenotype andM1/M2 induction of themacrophagemodel were confirmed
(Figure S7). The mRNA levels of pro- and anti-inflammatory cytokines of macrophages were determined for the cells after
lipopolysaccharide (LPS)-stimulation (i.e., M1 pro-inflammatory activation) together with 2D- and 3D-hMSC-EV treatment
(Figure 6a). Both 2D- and 3D-hMSC-EVs reduced the mRNA level of pro-inflammatory cytokines, TNF-α, IL-, and IL-β,
when compared to an untreated control (Figure 6a). In contrast, no effect was observed for themRNA levels of anti-inflammatory
cytokinesCD, IL- and TGF-β. However, for the EV-treatedM0macrophages, no obviousM1 orM2 induction was observed
(Figure S7). These results suggest that hMSC EVs potentially inhibit M1 (or favour M2) macrophage polarization and suppress
pro-inflammatory activity. No difference in macrophage polarization effect was observed between 2D- and 3D-hMSC-EVs.
To evaluate the immunomodulation ability of the isolated 3D-hMSC-EVs, indoleamine 2,3-dioxygenase (IDO) activity was

tested in hMSCs under interferon (IFN)-γ stimulation. The change of IDO expression in hMSCs after 24-h IFN-γ licensing
is 5.9-fold in an untreated control compared to an 8.5-fold increase by adding 3D-hMSC-EVs and 14.3-fold for 2D-hMSC-
EVs (Figure 6b). After IFN-γ treatment, hMSCs were “licensed” to exert the immunomodulatory effect through the activation
of IDO enzyme. Therefore, the fold-change of IDO activity in hMSCs represents the potentials of the EVs to modulate local
inflammatory environments. T cell proliferation assay was performed to evaluate immunosuppressive potentials of hMSC EVs.
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F IGURE  2D- and 3D-hMSC-EVs exhibit immunomodulatory properties. (a) M1 and M2 marker gene expression levels of macrophage upon
stimulation with lipopolysaccharide (LPS), when treated with 2D- or 3D-hMSC-EVs (n = 3). (b) Indoleamine 2,3-dioxygenase (IDO) activity from basal level
and Interferon (IFN)-γ priming of hMSCs (at P5) treated with EVs (n = 3). OD: optical density. (c) Representative flow cytometry histogram plot of CD8+ T
cell proliferation profile from triplicate samples. (d) T cell proliferation peaks were measured in the bar graph for control, 2D-hMSC-EV, and 3D-hMSC-EV
conditions (n = 3). *and #P < 0.05; **P < 0.01

Compared to control, 2D-hMSC-EVs slightly inhibit CD8+ cytotoxic T cell proliferation, which can be observed by a major
peak shift from P4 to P3/4 (Figure 6c and d). In contrast, 3D-hMSC-EVs (equal EV protein loading) result in significant reduc-
tion of total proliferating CD8+ T cells than the control sample. Since 3D-hMSC-EVs were smaller, equal protein loading may
require higher EV number compared to 2D-hMSC-EV group, thus the EV dose effect was tested (Figure S8). The two different
EV doses show similar effects, indicating that the dose range used in this study is appropriate. For CD4+ T helper cells, sim-
ilar trend was observed compared to CD8+ cell inhibition (Figure S8). Together, these results indicated that hMSC EVs exert
immunomodulatory potentials, and 2D- and 3D-hMSC-EVsmay have different regulatory roles in various inflammationmodels.
As the population and internal cargo were significantly altered by 3D aggregation culture (Figures 3–5), the therapeutic poten-

tials of 3D-hMSC-EVs were evaluated in several in vitro culture models. Both 2D- and 3D-hMSC-EVs were added as a culture
supplement during hMSC and human fibroblast (hFB) expansion. Cell proliferation was promoted in both cell types compared
to phosphate-buffered saline (PBS) control.While 3D-hMSC-EVs tend to better enhance cell growth, no significance is observed
compared to 2D-hMSC-EVs (Figure 7a and b). Similarly, in an in vitro wound healingmodel (scratch assay), 3D-hMSC-EVs pro-
mote faster wound closure compared to 2D-hMSC-EVs (Figure 7c). When hMSCs were expanded to higher passage (P10–P12),
cells exhibit replicative senescence as shown previously (Yuan, 2020). In this in vitro cellular aging model, by adding 3D-hMSC-
EVs as a culture supplement, cellular senescence is significantly reduced indicated by lowerβ-Gal activity in P12 hMSCs compared
to a 2D-hMSC-EV-treated group (Figure 7d). Moreover, both 2D- and 3D-hMSC-EVs significantly increase self-renewal poten-
tials of P10-senescent hMSCs, demonstrated by increased CFU-F number (Figure 7e). The total reactive oxygen species (ROS)
levels in senescent hMSCs (P10) also are reduced more significantly by 3D-hMSC-EVs compared to 2D-hMSC-EVs (Figure 7f).
In addition, 3D-hMSC-EVs helped tomaintainmitochondrial fitness in senescent hMSCs (P10), indicated by the increasedmem-
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F IGURE  2D- and 3D-hMSC-EVs exhibit different functional outcome in stimulation of hFB expansion and rejuvenation of aged hMSCs with
replicative senescence. (a) Cell number kinetics for hMSCs treated with 2D- or 3D-hMSC-EVs (n = 3). (b) Cell number kinetics for human fibroblast (hFB)
treated with 2D- or 3D-hMSC-EVs (n = 3). (c) Wound closure percentage of hFBs treated with 2D- or 3D-hMSC-EVs (n = 3). (d) β-Gal activity of senescent
hMSCs (P12) with EVs (n = 3). (e) Colony-forming unit-fibroblast (CFU-F) numbers of senescent hMSCs (P10) (n = 3). (f) Total reactive oxygen species
(ROS), (g) Mitochondrial mass (Mito-Mass) and (h) Mitochondria membrane potential (MMP) levels were determined by flow cytometry for senescent
hMSCs (P10) treated by EVs (n = 3). *P < 0.05; **P < 0.01; ***P < 0.001. NS: not significant

brane potential (MMP) level after EV treatment (Figure 7g and h). These results reveal a potential anti-aging/anti-senescence
effect of hMSC-EVs especially for the EVs generated by 3D dynamic aggregation culture.
To further interpret the functional results (Figures 6 and 7), potential candidates were proposed from the integrated analy-

sis of multi-omics data (parental hMSC mRNA-seq and EV proteomics). Several DEGs and DEPs were classified into different
categories and matched results from the functional assays (Table 4). First, it was noticed that there is less correlation between
transcriptome andproteomedata, whichmay imply a distinct EVprotein cargo sortingmechanism in 3DhMSCs. For EVproduc-
tion, proteinmarkers (e.g., VIM, CD81 and CD63) were only identified in proteomics data (verified byWestern blot in Figure 3c),
but the EV secretion component Rab27B was only found in cellular transcriptome (confirmed by qRT-PCR in Figure 2d). The
increased levels of miRNA-21 may explain the anti-inflammation effects on macrophage polarization (Figures 4d and 6a), but it
could also be attributed to overexpressed low density lipoproteins (LDL), for example, APOE andHDLBP, that reduce the effect of
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TABLE  The identified DEGs (mRNA-seq) and DEPs (proteomics) between 3D and 2D conditions for hMSCs and EVs, respectively, related to
functional assays

Function Gene symbol Dataset P value Fold changea

Reduce LPS induction of M1 HDLBP Transcriptome 1.3E-02 0.8

Proteome 1.1E-03 2.7

APOE Transcriptome 9.5E-40 37.8

Proteome 1.6E-03 1.4

Inhibit T cell proliferation CD274 Transcriptome 8.0E-09 0.2

CHI3L1 Transcriptome 2.8E-07 20.3

CD82 Transcriptome 3.9E-10 7.9

Proteome < 0.00010 2.9

NPTN Transcriptome 1.4E-02 0.7

Proteome < 0.00010 3.5

EZR Transcriptome 2.1E-110 0.1

Proteome 6.2E-04 2.5

MSN Transcriptome 5.3E-09 0.5

Proteome 6.1E-04 1.9

CD248 Transcriptome 3.2E-06 0.2

Proteome 4.3E-02 1.3

HMGB1 Transcriptome 1.0E-02 0.6

Proteome 1.9E-02 1.5

EV marker, Inhibit T cell proliferation CD81 Proteome 1.3E-03 1.8

Exosome secretion RAB27B Transcriptome 1.1E-22 10.1

EV marker VIM Transcriptome 1.5E-12 0.2

Proteome < 0.00010 3.7

CD63 Proteome < 0.00010 2.1

Wound healing and angiogenesis FAP Transcriptome 1.8E-06 3.1

Proteome 1.4E-04 5.2

PDGFC Transcriptome 3.5E-03 0.6

Proteome NS*

NCL Transcriptome 1.2E-04 0.6

Proteome 3.7E-04 6.2

MYH9 Transcriptome 1.5E-20 0.3

Proteome NS 1.1

ROCK2 Transcriptome 4.1E-03 0.4

Proteome 1.8E-03 1.7

YWHAZ Transcriptome 3.8E-05 0.5

Proteome 3.6E-03 1.7

CTNNB1 Transcriptome 2.5E-04 1.7

Proteome 9.7E-03 3.1

TGFB1 Transcriptome 1.7E-04 3.0

Proteome 2.9E-03 0.4

TGFB2 Transcriptome 1.7E-03 2.2

Proteome 1.4E-03 0.5

ANGPT1 Transcriptome 3.3E-04 0.4

Proteome < 0.00010 0.5

PLAU Transcriptome 6.9E-06 2.7

(Continues)



 of  YUAN et al.

TABLE  (Continued)

Function Gene symbol Dataset P value Fold changea

Proteome NS

SERPINE1 Transcriptome 1.0E-15 0.2

Proteome 5.6E-04 0.3

VEGFA Transcriptome 2.4E-09 5.4

Mitochondria function and ROS scavenging GPX3 Transcriptome 5.1E-03 2.8

Proteome 2.8E-02 1.4

GPX7 Proteome NS

PRDX1 Proteome < 0.00010 3.0

PRDX2 Transcriptome 1.5E-02 1.9

Proteome 1.6E-02 1.6

PRDX6 Transcriptome 2.9E-02 0.8

Proteome 2.3E-02 1.5

IDH1 Proteome 5.5E-04 2.5

SOD2 Transcriptome 1.5E-13 12.1

NRROS Transcriptome 2.0E-12 14.2

*NS: not significant.
aUpregulated shown in red and downregulated shown in green.

LPS (Table 4). There are several candidates correlated with T cell suppression, but the more compelling evidence comes from the
mRNA expression levels in 3D hMSCs. How these EV proteins affect T cell phenotype andmolecular biology needs to be further
investigated. This list also may be incomplete due to complex indirect effects such as activation of myeloid-derived suppressor
cells (MDSCs) in peripheral blood mononuclear cells (PBMCs). Several cytokines and other secreted soluble factors (e.g., FAP,
TGFB, VEGFA, PLAU and SERPINE1) were identified that are related to wound healing and cell proliferation (Figure 7a-c). The
individual effect and/or contribution of each cytokine requires further investigations. ROS scavenging proteins were all upreg-
ulated in either the cells (by mRNA-seq) or EVs (by proteomics), which could be a potential mechanism for the observations
in Figure 7f-h. Collectively, hMSC EVs possess therapeutic cargo contents for various functions and the culture strategy of 3D
aggregation of hMSCs significantly impacts EV secretion and cargo profile.

 DISCUSSION

Previous studies have demonstrated the beneficial effects of 3D aggregation culture of hMSCs in retaining the primitive stem
cell phenotype, reducing the cellular senescence and therapeutic benefits in animal models of ischemic stroke (Bijonowski et al.,
2020; Bijonowski et al., 2019; Sart et al., 2014; Tsai et al., 2017; Tsai et al., 2015; Yuan et al., 2019).While the effects of 3D aggregation
of hMSCs on the secretome composition (i.e., the secreted growth factors or cytokines) has been investigated (Bartosh et al., 2010;
Liu et al., 2017), the potential influence on the hMSC EV biogenesis and functional outcomes of the hMSC aggregate secreted
EVs have not been well studied.
In this study, enhanced EV production, reduced EV size (indicating the enriched exosome population) and increased expres-

sion of exosomal markers CD63 were observed for EVs secreted by hMSCs under dynamic 3D aggregation culture. While the
per EV-based protein content was lower for the 3D group than the 2D group, given the higher EV yield of 3D culture, the total
EV protein content was comparable for 3D-hMSC-EVs and 2D-hMSC-EVs. Some of the endosomal proteins in hMSCs (e.g.,
Rab27B, determined by qRT-PCR and among the DEGs identified by mRNA-Seq) may be responsible for the increased exo-
some secretion and functional outcomes of the 3D EVs in recipient cells. Both ESCRT-dependent and ESCRT-independent EV
biogenesis markers were upregulated in 3D hMSC aggregates, which may have contributed to enhanced EV production and
cargo sorting (Colombo et al., 2014; Stuffers et al., 2009). The smaller EV size may explain partially the high CD63 expression
in 3D-hMSC-EVs as CD63 is present on the small EV subpopulation (Kowal et al., 2016). 3D culture has been reported to be
more efficient in generating EVs than 2D culture for gastric cancer cells (Haraszti et al., 2018; Rocha et al., 2019), probably due
to cytoskeleton reorganization as well as the global upregulation of miRNAs (Liu & Su, 2019; Rocha et al., 2019). Consistently in
the current mRNA-seq results, a majority of downregulated cytoskeleton genes in 3D hMSC aggregates is evident, which may
explain the enhanced EV production. In addition, cytoskeletal blocking using a sulfhydryl-blocking agent, hindering cytoskeletal
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function using mercapto blockers, and using actin/myosin inhibitors have been reported to promote EV production (Liu & Su,
2019; Zaborowski et al., 2015).
mRNA sequencing of the transcriptome of 3D hMSC aggregates in this study showed the upregulation ofWnt, TNF,Hippo and

MAPK signalling pathways and the downregulation of cell cycle, DNA replication and cellular senescence associated pathways.
3D culture has been found to promote cell-cell interactions (e.g., Notch pathway), ECM secretion and enrichment for various
cell types (Bejoy et al., 2019; Song et al., 2019; Wrzesinski & Fey, 2018). hMSCs in 3D aggregates do not proliferate well as they are
in cell cycle arrest, confirmed by the downregulation of cell cycle-related genes. However, cellular senescence is reduced in 3D
hMSC aggregates due to better preservation of quiescent stem cells as demonstrated previously (Bijonowski et al., 2020). There
is no necrotic or hypoxic centre in 3D hMSC aggregates (< 500 μm diameter), which can occur in other 3D structures due to
diffusion limitations (Bijonowski et al., 2019). Moreover, previous work has shown that hMSCs shift their metabolic pathway
towards glycolysis, which adapts them to the 3D microenvironment and supports a reduced requirement for oxygen uptake;
thus, oxygen in hMSC aggregates under a certain diameter is not diffusion-limited (Bijonowski et al., 2019; Liu et al., 2017;
Liu et al., 2019). The metabolic reconfiguration and stress-response in 3D hMSC aggregates likely induce the activation of a
broad signalling pathways, including apoptosis characterized by increased caspase 3/7 activity, which also may contribute to the
increased EVproduction (Bijonowski et al., 2020; Liu et al., 2017; Tsai et al., 2015; Yuan et al., 2019).Moreover, apoptotic bodies can
be removed by the ExtraPEG purification, and thus unlikely to be the therapeutic population of 3D-hMSC-EVs. Therefore, the
effects of 3D aggregation on hMSC EV biogenesis likely result more from enhanced cell-cell interactions and ECM enrichment,
as well as associated intracellular signalling pathways.
This study reveals the significantly increased expression of neuroprotective and anti-apoptotic miRNAs in the 3D-hMSC-EVs

compared to the 2D condition. These miRNAs play various beneficial roles in immunomodulation and neural protection (Rocha
et al., 2019). For example, downregulated miR-133b contributes to the inhibition of macrophage activation (Zheng et al., 2019);
upregulatedmiR-1246 is associatedwithmacrophage reprograming, stress response and possible angiogenesis (Cooks et al., 2018;
Irizar et al., 2015). miR-21-5p was found to be upregulated in remission periods of multiple sclerosis (Baulina et al., 2018); miR-22
was reported to regulate immune response via p38 and MAPK pathway (Krementsov et al., 2013). In addition, miR-21 shows
potent neuroprotective effects after spinal cord injury, alleviates blood-brain barrier disruption in ischemic stroke, and promotes
neurite outgrowth by regulating programmed cell death protein 4 (PDCD4) (Jiang et al., 2017; Li et al., 2012; Yao et al., 2018;
Zhang et al., 2019). For Alzheimer’s disease, miR-21 attenuates neural inflammation, and miR-124 regulates beta-site amyloid
precursor protein (APP) cleaving enzyme 1 (BACE1) (Amakiri et al., 2019; Jeske et al., 2020; Reddy et al., 2017). miR-328 and
miR-181 were downregulated in Alzheimer’s pathology (Amakiri et al., 2019). miR-22 attenuates neuronal cell apoptosis, and
controls neuronal migration and neurogenesis (Berenguer et al., 2013; Ma et al., 2016; Volvert et al., 2014). The beneficial miRNA
alterations (e.g.,miR-21)may contribute to the functional improvements in preclinicalmodels, and require further investigations.
Indeed, current reports with preclinical applications of 3D-hMSC-EVs are very limited. Our previous study showed that 5XFAD
(5 familial Alzheimer’s disease mutations) mice that received 3D-hMSC-EVs behaved significantly better in cognitive tests than
saline control (Cone et al., 2021). In addition, lower Aβ plaque load was observed in the hippocampus of the EV-treated mice,
and less co-localization of GFAP and Aβ plaques was found in the brains of EV-treated mice compared to saline (Cone et al.,
2021).
Proteomics have been used to identify the novel protein markers for sub-population of hMSC EVs, such as the discovery of

adhesion protein enrichment in small EVs, as well as the proteins associated with anti-inflammatory ability (Jimenez et al., 2019;
Kowal et al., 2016; Upadhya et al., 2020). The current proteomics results reveal the upregulation of 618 (49.3%) DEPs and 102
(7.5%) proteins uniquely expressed in 3D-hMSC-EVs compared to the 2D condition, which are related to focal adhesion, ECM-
receptor interactions, regulation of actin cytoskeleton, and PI3K-Akt signalling pathway. The 3D-hMSC-EV protein cargo also
may be responsible for promoting cell viability, migration, T cell inhibition, macrophage polarization/function and axon/neuron
development. Compared to the mRNA-seq results, the upregulated/downregulated gene expression in the parental hMSCs does
not necessarily lead to high/low protein expression in the secreted EVs, indicating that there may be specific sorting mecha-
nisms of EV cargo. The overlaps of DEGs and DEPs were found to be related to anti-inflammatory/immunomodulatory abilities,
including neutrophil and other myeloid leukocyte mediated immunity and immune response, T cell receptor signalling pathway,
and neurotrophic action. The effects of the protein cargo in 3D-hMSC-EVs were verified by various functional analyses in this
study.
To evaluate the immunomodulatory effect, macrophages treated with 2D- and 3D-hMSC-EVs during polarization were found

to inhibit the M1 differentiation at the molecular level. Notably, mRNA-seq analysis showed the upregulation of IL10 and TGFB1
for 3D hMSCs. However, their protein levels in cell conditioned media were not detectable. In addition, during the EV isolation
(ExtraPEG), PBS wash was performed in the last ultracentrifugation step, which may remove soluble cytokines. In the pro-
teomic results, only TGFB1 and TGFB2 were detected (no IL-10), which were lower in 3D-hMSC-EVs (0.5 fold). Therefore, the
effects of EVs on macrophage polarization may not be due to IL10 and TGFB1. Nonetheless, the cytokine secretion by polarized
macrophages may need to be investigated in future. The immunosuppressive properties of hMSC-derived exosomes have been
reported previously (Cosenza et al., 2018). Both 2D- and 3D-hMSC-EVs were found to enhance the immunomodulation poten-
tials of recipient hMSCs characterized by IDO activity, which is a major signalling cascade for hMSC immunomodulation under
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inflammation (Liu et al., 2019; Ren et al., 2009). These results provide the possibility for using hMSC-EVs as supportive agents
to improve therapeutic outcomes after cell transplantation. In addition, both 2D- and 3D-hMSC-EVs have shown significant
inhibition of cytotoxic T cell proliferation, and the EV effects on helper T cells are similar to cytotoxic T cells. The expression
of chitinase 3 like 1 protein (encoded by CHI3L1, increase by 4.34-fold based on mRNA-seq results) likely contributes to the
immunomodulation of hMSC EVs on the T cells (Table 4) (Liu et al., 2021).

Moreover, 3D-hMSC-EVs exerted anti-senescence ability to maintain cellular homeostasis andmitochondrial fitness in recip-
ient senescent hMSCs due to in vitro replication. The total ROS levels in senescent hMSCs were reduced significantly by adding
3D-hMSC-EVs in culture media as supplement. Consistently, hMSC-derived EVs have been reported to reduce oxidative stress
and increase ATP levels (Arslan et al., 2013). Therefore, hMSC EVs could be added as culture supplement to rejuvenate adult
stem cells or to reconfigure central energy metabolism of hMSCs in biomanufacturing (Yuan, 2020). 3D-hMSC-EVs also pro-
mote fibroblast growth and wound healing in vitro, probably due to the upregulated VEGFA and FAP expression (Table 4). These
features motivate the use of 3D-hMSC-EVs with targeted miRNA and protein payloads for multiple sclerosis, ischemic stroke
and Alzheimer’s disease therapies, as well as retaining endogenous tissue homeostasis. Moreover, considering that 3D aggre-
gation culture of hMSCs promoted the yield of the secreted EVs with comparable or better functional outcomes than the 2D
condition, the scalable 3D aggregation in bioreactors greatly expands the production potential of therapeutic EVs from hMSCs
for translational research and biomanufacturing.
There are some limitations in current study: for instance, macrophage polarization is solely based on the mRNA expression of

specific markers rather than the cytokine secretion. The actual large-scale production (e.g., in a full scale of wave bioreactor or
vertical wheel bioreactor) of 3D-hMSC-EVs for preclinical studies has not been fully demonstrated. The translational potential
is highly dependent on the large-scale culture system for 3D hMSC aggregates and the secreted EVs in the bioreactors need to be
thoroughly characterized. The consistency of the protein andmiRNA cargo of 3D-hMSC-EVs for each bioreactor run also needs
to be demonstrated for quality control. The follow-up study should identify the key contributing cargo (e.g., the specific protein
or miRNA) in the 3D-hMSC-EVs and further engineer 3D-hMSC-EVs to maximize in vivo functional/therapeutic outcomes.

 MATERIALS ANDMETHODS

. hMSC standard D culture

Frozen hMSCs from passage 0 to 2 were acquired from Tulane Centre for Gene Therapy. The hMSCs were isolated from the
bonemarrow of multiple healthy donors with age 19–49 years old (Table S3) based on plastic adherence, negative for CD3, CD14,
CD31, CD45 and CD117 (all less than 2%) and positive for CD73, CD90, CD105 and CD147 markers (all greater than 95%), and
possess tri-lineage differentiation potential upon in vitro induction. hMSCs (1× 106 cells/ml/vial) were cryopreserved in freezing
media containing α-MEM, 2mML-glutamine, 30% foetal bovine serum (FBS) and 5% dimethyl sulfoxide (DMSO). hMSCs were
thawed, expanded, and maintained in complete culture media (CCM) containing α-MEM with 10% FBS (Atlanta Biologicals,
Lawrenceville, GA) and 1% Penicillin/Streptomycin (Life Technologies, Carlsbad, CA) in a standard incubator at 37◦C with 5%
CO2 and 20% O2. Culture medium was changed every 3 days. Cells were grown to 70%-80% confluence and then harvested
by incubation with 0.25% trypsin/ethylenediaminetetraacetic acid (EDTA) (Invitrogen, Grand Island, NY, USA) at 37◦C for 4–
7 min. Harvested cells were re-plated at a density of 1,500 cells/cm2 and sub-cultured up to passage 4–6. For senescent hMSCs,
the cells at passage 10–12 were used in the experiments.

. D dynamic culture of hMSCs as aggregates

hMSC 3D dynamic culture as aggregates was performed as reported in our previous studies (Bijonowski et al., 2020; Tsai et al.,
2017; Yuan et al., 2019). Briefly, hMSCs at passage 4 to 7 were suspended in CCM and 1.0 × 105 hMSCs in 2 mL CCM were
seeded in each well of ultra-low attachment (ULA) six-well plates (Corning). The ULA plates were placed on a rocking base of a
WAVE Bioreactor (Xuri Cell Expansion SystemW5, GE Healthcare) in a standard humidified incubator (37◦C, 5% CO2) under
controlled rocking angles (i.e., 8◦) and rocking speeds (i.e., 20 rockings/min, or rpm) for 18 to 72 h. The rocking conditions
generate wave motion of media under defined shear stress that supports spontaneous aggregation of hMSCs (100-300 μm in
diameter) (Sart et al., 2014). For 3D-hMSC-EV collection, the CCM was replaced by the media that contain EV-depleted FBS
(i.e., FBS was ultracentrifuged at 100,000 g for 18 h to remove particle and EVs) and cultured for 2 days before media collection.
The parallel 2D hMSC culture was used as a control condition, and the conditioned media were collected after 2-day culture for
2D-hMSC-EV isolation.
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. β-Gal activity, cell number, and CFU-F measurements

Cellular senescence was evaluated by a SA-β-Gal activity assay kit (Sigma, St. Louis, MO, USA) as described in manufacturer’s
instructions. Cell number was determined by Quant-iT PicoGreen kit (Invitrogen). Briefly, cells were harvested, lysed overnight
using proteinase K (VWR, Radnor, PA, USA), and stained with PicoGreen to allow quantitation of cellular DNA. Fluorescence
signals were measured using a BioTek fluorescence plate reader (Agilent, Santa Clara, CA, USA). For CFU-F assay, hMSCs were
harvested and re-plated at the density of 15 cells/cm2 on 60 cm2 culture dishes and grew for another 14 days in CCM. Cells were
stained with 20% crystal violet solution in methanol for 15 min at room temperature and gently washed with phosphate-buffered
saline (PBS) three times. The number of individual colonies were counted manually.

. Extracellular vesicle isolation and density gradient ultracentrifugation

Extracellular vesicles were isolated from the conditioned media by polyethylene glycol (PEG) precipitation and ultracentrifuga-
tion according to previous publications (Hurwitz et al., 2018; Rider et al., 2016). Briefly, cells were cultured in CCM with 10%
EV-depleted FBS, and the conditioned media were collected every 48 h. The conditioned media were differential centrifuged
(500 g for 5 min; 2,000 g for 10 min; 10,000 g for 30min) to remove larger debris, apoptotic body andmicrovesicles. Supernatants
then were mixed with PEG solution (16% wt./vol. PEG-6000, 1.0 M NaCl) at a 1:1 volume and incubated at 4◦C overnight. The
next day, themixed solutionswere centrifuged at 3,214 g for 1 h to obtain crude EVs. The pellets were resuspended in PBS and then
ultracentrifuged at 100,000 g for 70 min using the SW-28 swing-bucket rotor in an Optima XL-100K ultracentrifuge (k factor-
15, Beckman Coulter Inc.). The concentrated vesicle suspension was centrifuged again in 1 mL polypropylene tubes (Beckman
Coulter Inc., #347287) in an Optima MAX-E tabletop ultracentrifuge using a TLA120.2 rotor (Beckman Coulter Inc.) to purify
the vesicles and facilitate re-suspension of the pellet in a small volume of particle-free PBS in 100 μL. Purified EVs were stored
in −80◦C for further use.
For sub-population profiling by density gradient ultracentrifugation, EVs were resuspended in 1.5 mL of 0.25M sucrose buffer

(10-mM Tris, pH 7.4). Gradients (10-30%) were constructed as previously described in other studies (Hurwitz et al., 2019; Hur-
witz & Meckes, 2017; Hurwitz et al., 2018; Kowal et al., 2016). Following fractionation, densities of gradient separated fractions
were estimated by measuring refractive indices of fractions with a refractometer (Refracto 30PX, Refracto Technologies Corp.,
Bohemia, New York). Samples were then washed in 10 mL PBS and pelleted again by ultracentrifugation at 100,000 g for 2 h at
4◦C. Pellets were resuspended in particle-free PBS or lysis buffer for immunoblot analysis.

. Nanoparticle tracking analysis (NTA)

NTA was performed on the isolated EV samples in triplicate to determine size distribution and particle concentration. NTA was
performed on aNanoSight LM10-HS instrument (Malvern Instruments,Malvern, UK) configuredwith a blue (488 nm) laser and
CMOS camera (Rider et al., 2016). For each replicate, three videos of 60 s were acquired with camera shutter speed fixed at 30ms.
To ensure accurate and consistent detection of small particles, camera level was set to 13, and detection threshold was maintained
at 5. The laser chamber was cleaned thoroughly with particle-free water between each sample reading. The collected videos were
analysed using NTA3.4 software to obtain the mode and mean size distribution, as well as the concentration of particles per mL
of solution. The EV production was reported as the number of EVs normalized to the cell number at day 2, when the media were
collected for EV isolation.

. Transmission electron microscopy (TEM)

Electron microscopy imaging was performed to confirm the morphology and size distribution of EVs as shown previously
(Marzano et al., 2019; Marzano et al., 2021). Briefly, first, intact EVs (5 μL) were dropped onto Parafilm. A carbon coated 400
HexMesh Copper grid (ElectronMicroscopy Sciences (EMS), Hatfield, PA, USA) was positioned using forceps with coating side
down on top of each drop for 1 h. Grids were washed with sterile filtered PBS three times, and then the EV samples were fixed for
10 min in 2% PFA (EMS, EM Grade). After washing, the grids were transferred on top of a 20-μL drop of 2.5% glutaraldehyde
(EMS, EM Grade) and incubated for 10 min at room temperature. Grid samples were stained for 10 min with 2% uranyl acetate
(EMS, EMS grade). Then the samples were embedded for 10min with 0.13%methyl cellulose and 0.4% uranyl acetate. The coated
side of the grids were left to dry before imaging on the CM120 Biotwin electron microscope (Field Electron and Ion Company,
FEI, Hillsboro, OR, USA) (Lasser et al., 2012). Image analysis was performed in ImageJ to determine the average EV size and size
distribution.
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. Western blot for EVmarkers

EV pellets following ultracentrifugation were lysed in 2× Laemmli sample buffer (4% SDS, 100 mM Tris-HCl [pH 6.8],
0.4-mg/ml bromophenol blue, 20% glycerol) for immunoblot analysis. The supernatant was collected, and a Bradford assay was
carried out to determine the protein concentration. Protein lysate concentration was normalized, and 20 μg of each sample was
denatured at 95◦C in Laemmli sample buffer with 2-mercaptoethanol. Proteins were separated by 15% Bis-Tris SDS-PAGE gel
and transferred onto a nitrocellulose membrane (Bio-Rad, Hercules, CA, USA). The membranes were blocked for 30 min in 5%
skim milk power (w/v) in Tris-buffered saline (10 mM Tris-HCl [pH 7.5], and 150 mM NaCl) with 0.1% Tween 20 (v/v) (TBS-
T), or in 5% bovine serum albumin in TBS-T. Membranes were incubated overnight in the presence of the primary antibodies
(Table S4) diluted in the corresponding blocking buffer at 4◦C (Dilution was shown in Table S3). Afterward, themembranes were
washed four times for 10 min each with TBS-T and then incubated with horseradish peroxidase (HRP)-conjugated secondary
antibodies: rabbit anti-mouse IgG (Genetex, Irvine, CA, USA; 26728) or goat anti-rabbit IgG (Fab fragment) (Genetex; 27171)
for 1 h at room temperature. After wash with TBS-T, the blots were incubated with SuperSignal West Pico Chemiluminescent
Substrate (ThermoFisher Scientific, Waltham, MA, USA; 34080) and imaged using an ImageQuant LAS 4000 (GE Healthcare
Bio-Sciences Corp. Piscatoway, NJ, USA) and processed with ImageQuant TL v8.1.0.0 software.

. Real-time quantitative reverse transcription – polymerase chain reactions (qRT-PCR)

For miRNA quantification, total RNA was isolated from different EV and cell samples using the miRNeasy Micro Kit (Qiagen,
Valencia, CA, USA) according to the manufacturer’s protocol. Reverse transcription was carried out using a commercial qScript
miR cDNA synthesis kit (Quantabio, Beverly, MA, USA). The qPCR primer (along with a universal reverse primer) for each
miRNA has been designed and validated to work specifically with miRNA cDNA reverse transcribed using the kit. The levels
of miRNAs were determined, and SNORD44 was used as a housekeeping gene for normalization (Primer sequences are shown
in Table S5). qPCR reactions were performed on a QuantStudio 7 Flex Real-time PCR System (Applied Biosystems, Foster City,
CA) using SYBR Green PCR Master Mix. The amplification protocol was performed as follows: 10 min at 95◦C, and 40 cycles
of 95◦C for 15 sec and 60◦C for 30 sec, and 70◦C for 30 sec. Fold variation in gene expression was quantified by means of the
comparative Ct method: 2−(ΔCt treatment−ΔCt control), which is based on the comparison of expression of the target gene (normalized
to the endogenous control SNORD44) between the compared samples.
For mRNA quantification, total RNAwas isolated using the RNeasy Plus kit (Qiagen) following vendor’s instructions. Reverse

transcription was carried out using 2.0 μg of total RNA, anchored oligo-dT primers (Operon) and Superscript III (Invitrogen).
Primers for specific target genes were designed using the software Oligo Explorer 1.2 (Genelink; Table S6). qPCR reactions were
performed on an ABI7500 instrument (Applied Biosystems) using SYBR Green PCR Master Mix. The amplification reactions
were performed, and the quality and primer specificitywere verified. Fold variations in gene expressionswere quantified using the
comparative Ct method: 2−(ΔCt treatment−ΔCt control), which is based on the comparison of the target gene (normalised to endogenous
gene) among different conditions.

. Cellular mRNA next generation sequencing and data analysis

Total RNA was extracted from various samples using Trizol (ThermoFisher Scientific, 15596026). mRNA was isolated from the
total RNA using an NEBNext Poly(A) mRNA Magnetic Isolation Module (New England Biolabs (NEB), Ipswich, MA, USA,
E7490). cDNA libraries were generated from the isolated mRNA using an NEBNext Ultra RNA library prep kit for Illumina
(NEB, E7530), and a unique six nucleotide index primer was incorporated into each sample. The library construction was done
according to the NEB manuals. The multiplexed sample was quantified with KAPA qPCR (Kapa Biosystems, Potters Bar, UK,
KR0405) specific for Illumina sequencing primers and the average fragment size was determined with a Bioanalyzer high sen-
sitivity DNA chip (Agilent Technologies, Santa Clara, CA, USA, 5067-4626). Pooled sample was sequenced with single end, 100
base reads on a NovaSeq 6000 system (Illumina, Inc., San Diego, CA, USA) located in the Translational Science Laboratory at
the College of Medicine, Florida State University. The pooled data were demultiplexed into individual sample data, and adapter
primer sequences were removed (Song et al., 2019).
Total gene counts data was analysed by NetworkAnalyst 3.0. Genes with counts less than 10, variance less than 10% and unan-

notated were filtered, and the remaining were normalized by Log2-counts permillion. Differential expressed gene were identified
by DEseq2. Heatmap of globe differential expressed genes and gene enriched pathways were also visualized by the same online
tool. The genes that were upregulated and downregulated between 2D versus 3D groups were further assessed for GO, KEGG
pathway and phenotype pathway analysis by g:Profiler (version e104_eg51_p15_3922dba).
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. Proteomics analysis of hMSC EVs

The hMSC 2D and 3D EVs were isolated using ExtraPEG and then extracted for proteins. Based on protein quantification result,
up to 100-μg proteins were isolated on an S-trapmicro column (Protifi, Farmingdale, NY,USA, K02-micro). The isolated proteins
(triplicate for each group) were alkylated and digested on column based on manufacturer’s instructions. All the eluted peptides
were fractionated by Pierce high pH reverse phase peptide fractionation kit (ThermoFisher Scientific, 84868) into five fractions
for each sample. Then all the samples were vacuumed dried and submitted to the FSU Translational Science Laboratory. The
samples were analysed on the Q Exactive HF Orbitrap LC-MS/MS System (ThermoFisher Scietific) as previously described
(Hurwitz & Meckes, 2017; Hurwitz et al., 2018). Briefly, resulting raw files were searched with Proteome Discoverer 2.4 using
SequestHT, Mascot and Amanda as search engines. Scaffold (version 5.0) was used to validate the protein and peptide identity.
Peptide identity was accepted if Scaffold Local FDR algorithm demonstrated a probability greater that 99.0%. Likewise, protein
identity was accepted if the probability level was greater than 99.0% and contained a minimum of two recognized peptides. GO
annotation was carried out by g:Profiler.

. Mitochondrial mass (mito-mass), mitochondria membrane potential (MMP), and total ROS
measurements

For mitochondrial mass and MMP measurement, trypsinized hMSCs (hMSCs:EVs = 1:1000 (cell number vs. EV number) were
washed in warm Hank’s Balanced Salt Solution (HBSS). Cell suspension was incubated with MitoTracker green FM or tetram-
ethylrhodamine methyl ester (Molecular Probe, Eugene, OR, USA) at 37◦C for mito-mass and MMP, respectively. Cells were
washed with HBSS, and analysed by flow cytometry (BD Biosciences, San Jose, CA, USA). For ROS measurement, cell suspen-
sion was incubated with 25 μM carboxy-H2DCFDA (Molecular Probe) at 37◦C for 30 min, and total ROS was determined using
flow cytometry.

. Human fibroblast (hFB) growth and in vitro wound healing model

Primary human dermal fibroblasts (CS-201-012) were purchased from American Type Culture Collection (ATCC, Manassas,
VA, USA) and subcultured in DMEM plus 10% FBS up to passage 15. In vitro wound healing assay was performed to evaluate
the effects of hMSC EVs on cell proliferation and migration. Briefly, hFBs were seeded (0.2 × 106 cell/well) onto tissue culture
treated 24-well plate and grown overnight. An artificial wound was introduced with a 200 μL pipette tip and. After creating
the scratch and PBS washing, complete culture medium (α-MEM and 1% Penicillin/Streptomycin) with 1% FBS were added for
further culture. EVs then were added at the concentration 1 × 108 EVs/ml medium for next 24 h. Images were captured with an
Olympus IX70 inverted microscope for 0–24 h. Cell growth was then recorded and analysed by ImageJ to calculate the wound
closure rate, which may be attributed to the combination of cell proliferation and migration.

. Measurement of indoleamine ,-dioxygenase (IDO) activity

For IDO enzymatic activity, both IDO1 and IDO2 (both convert Tryptophan to Kynurenine) were assessed bymeasuring Kynure-
nine level in cell culture supernatant. A 400 μL supernatant from hMSCs culture (either stimulated by IFN-γ at 40 ng/ml or left
unstimulated for 24 h until sample collection) was clarified by mixing with trichloroacetic acid (200 μL, 30% wt/vol; Sigma
Aldrich, St. Louis, MO, USA) by vortex, followed by centrifugation at 8,000 g for 5 min. An equal volume of Ehrlich reagent (2%
p-dimethylaminobenzaldehyde in glacial acetic acid) was added to the clarified supernatant, and optical density at 490 nm was
measured.

. Macrophage polarization assay

THP-1 cells were obtained from ATCC and cultured in ATCC-formulated RPMI-1640 until confluency. THP-1 cells were pas-
saged into 6-well plates at a concentration of 1.0× 106 cells/well. THP-1 cells were differentiated intomacrophages (M0) by a 48-h
treatment of phorbol 12-myristate 13-acetate (PMA, 20 nM, Sigma). M0macrophages were polarized into theM1 phenotype with
another 24 h-treatment of lipopolysaccharide (LPS) (100 ng/mL, Sigma) and IFN-γ (50 ng/mL, PeproTech, Cranbury, NJ, USA),
or M2 phenotype by IL4 (50 ng/ml, PeproTech). hMSC EVs were added to the culture at the concentration of 1 × 108 EVs/ml
medium at the beginning of M1 polarization or M0 cells. M1 or M2 polarization markers were tested by qRT-PCR.
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. T cell proliferation assay

Human peripheral blood mononuclear cells (hPBMCs) were obtained from STEMCELL Technologies Inc. (Vancouver, Canada)
which followed an IRB-approved protocol. Cells are free of HIV, CMV and hepatitis B/C. hPBMCs were cultured in RPMI-
1640 supplemented with 10% FBS (Seradigm, Radnor, PA, USA; 1400–500), 2-mM L-glutamine (Corning; 25-005-Cl), 100 IU
penicillin-streptomycin (Corning; 30-002-CI) in a standard CO2 incubator (37◦C and 5% CO2). After thaw and cultured for
24 h, cells were labeled with carboxyfluorescein succinimidyl ester (CFSE, BioLegend, San Diego, CA, USA, 423801) at 1.0 μM
for 20 min at a cell concentration of 107 cells/mL, protected from light and washed twice with culture medium. Then, hPBMCs
were seeded at 1 × 106 cells/mL and stimulated with anti-CD3/CD28 antibodies (2.0 μg/ml, BioLegend, 317325/302933). After
24 h, 2D- and 3D-hMSC-EVs (5 μg and 15 μg total protein or 0.6, 1.8, 3.0 and 7.5 × 1010 EVs/mL) were added in triplicates and
incubated for another 3 days. hPBMCs were spun down and stained with 7-AAD and BV421 anti-CD8 antibody (BioLegend,
344748) for cytotoxic T cell proliferation assay, as well as anti-CD4 antibody (BioLegend, 317418) for helper T cell proliferation
assay. Samples were run on FACSCanto flow cytometer (BD Bioscences) in the Translational Laboratory of the FSU College of
Medicine. The data were analysed by FACSDiva software (BD Biosciences).

. Statistical analysis

Unless otherwise noted, all experiments were performed at least three times in triplicate (n = 3), and the representative data are
reported. Experimental results are expressed as means ± standard deviation (SD) of the samples. Statistical comparisons were
performed by one-way ANOVA and Tukey’s post hoc test for multiple comparisons, and significance was accepted at P < 0.05.
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