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Abstract 

Latest advancements in the high-throughput single-cell genome (scDNA) and transcriptome (scRNA) sequencing technologies enabled cell- 
resolv ed in v estigation of tissue clones. Ho w e v er, it remains challenging to cluster and couple single cells f or heterogeneous scRNA and scDNA 

data generated from the same specimen. In this study, we present a computational frame w ork called CCNMF, which emplo y s a no v el Coupled- 
Clone Non-negative Matrix Factorization technique to jointly infer clonal str uct ure for matched scDNA and scRNA data. CCNMF couples multi- 
omics single cells by linking copy number and gene expression profiles through their general concordance. It successfully resolved the underlying 
coexisting clones with high correlations between the clonal genome and transcriptome from the same specimen. We validated that CCNMF can 
achie v e high accuracy and robustness using both simulated benchmarks and real-world applications, including an ovarian cancer cell lines mixture, 
a gastric cancer cell line, and a primary gastric cancer. In summary, CCNMF provides a powerful tool for integrating multi-omics single-cell data, 
enabling simultaneous resolution of genomic and transcriptomic clonal architecture. This computational framework facilitates the understanding 
of how cellular gene expression changes in conjunction with clonal genome alternations, shedding light on the cellular genomic difference of 
subclones that contributes to tumor e v olution. 
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nderstanding how genomic content changes impact gene
xpression in individual cells is essential to further under-
tand cell clone development in normal and diseased tissues.
n particular, characterizing the clone-wise gene dosage ef-
ect, i.e. the sensitivity of cellular gene expression to the copy
umber profile shared by the group of cells, is critical to elu-
idate the functional consequence of diseases-associated ge-
omic copy number variants (CNVs), a significant challenge
n current structural variant research ( 1–3 ). 

However, there is no technology available that can effi-
iently and accurately measure both DNA copy number and
ene expression profiles of individual cells simultaneously. Al-
hough several technologies ( 4–6 ), like scTrio-seq have made
n attempt to measure genomic and transcriptomic content
f up to a few cells per batch, it remains a low-throughput
echnique. High-throughput single-cell sequencing technolo-
ies that are currently available can only measure either the
ranscriptome ( 7–10 ) or the genome ( 11–13 ) content of indi-
idual cells, but not both simultaneously. 

For example, droplet-based single-cell RNA sequencing
scRNA) technology is routinely employed to measure cellular
xpression so as to assess the clonal development states of var-
ous tissues and cell systems ( 12 ,14 ). Recently, droplet-based
ingle-cell DNA sequencing (scDNA) technology enabled cell-
ise and genome-wide measurement of genomic alternations,
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such as copy number variants, in thousands of cells ( 12 ,15 ).
High-quality single-cell copy number variants combined with
single-cell gene expression profiles promise to further reveal
the clonal heterogeneity in complex tissues and cell systems
( 16–20 ). Realizing the potential, however, will require high-
fidelity co-clustering of heterogeneous single cells measured
by scRNA and scDNA sequencing technologies. 

Addressing this difficulty, we developed an efficient com-
putational method – C oupled- C lone N on-negative M atrix
F actorization, termed as CCNMF. It reasonably models the
shared underlying clonal structure and the general concor-
dance between cellular expression level and copy number
states ( 12 ,21 ). CCNMF then employs machine learning al-
gorithms to infer the most likely multi-modal integration
solution. CCNMF takes two matrices as inputs: single-cell
gene expression matrix obtained through scRNA-seq tech-
nology and single-cell copy number matrix obtained from
scDNA-seq technology, both derived from the same biological
specimen. 

CCNMF was established on a model-based approach
which couples single cells across scDNA and scRNA data
by maximizing their global concordance between gene ex-
pression and copy number. CCNMF optimizes an objec-
tive function that simultaneously maximizes intra-clone com-
pactness and inter-clone structure coherence, this coupled-
clone nonnegative matrix factorization framework followed
ry 22, 2024. Accepted: January 29, 2024 
enomics and Bioinformatics. 

ons Attribution-NonCommercial License 
al re-use, distribution, and reproduction in any medium, provided the 
rmissions@oup.com 

https://doi.org/10.1093/nargab/lqae017
https://orcid.org/0000-0002-9524-4942
https://orcid.org/0000-0003-0868-1923


2 NAR Genomics and Bioinformatics , 2024, Vol. 6, No. 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the co-clustering concept as introduced in ( 22 ). A coherent
underlying clonal structure, i.e. the identity-linked cell clus-
ters between scDNA and scRNA data, is thus inferred as the
weight matrix optimally assigning all cells to their most likely
cluster identity. Based on that, CCNMF accurately estimates
the dosage effect per gene and cell cluster. 

Before CCNMF, only a few methods were available for an-
alyzing the combined scDNA and scRNA data. These meth-
ods mostly operate in a map-to-reference mechanism, i.e., data
from one technology is mapped to the reference clonal struc-
ture derived from another technology ( 21 ,23–26 ). For ex-
amples, clonealign , an early attempt of integrative modeling
gene dosage effect of DNA copy number and gene expression,
statistically assigns scRNA gene expression states to a refer-
ence phylogenetic tree representing scDNA-derived clones, in
a Bayesian way ( 21 ); Seurat , which mainly integrates multiple
scRNA datasets, can also project other types of single cell data
to the scRNA-derived clusters using the mutual nearest neigh-
bor search ( 23 ); DENDRO infers single cell copy numbers
from scRNA data and validates the result using the scDNA
data ( 24 ). 

However, these map-to-reference inference methods risk
systematic bias because the choice of reference technology
was largely arbitrary, and different choices significantly in-
fluence downstream analysis. Alternatively, the iNMF method
( 27 ) utilized a reference-free integrative nonnegative matrix
factorization model to identify the shared cell types, as in-
put scRNA-seq datasets of different samples or species, or of
multi-modalities such as scA T AC-seq and DNA methylation
profiles. 

CCNMF takes a data-driven approach, unbiased toward
data and technology sources. CCNMF utilizes the coherence
of the underlying clonal structure shared within the biolog-
ical specimen to maximize the inference for true cell clonal
identity and gene expression effects. Using both simulated and
real cancer datasets, we validated that CCNMF can faith-
fully recover the underlying clonal structure, accurately iden-
tify clonal identity for all single cells, and statistically infer
gene-wise dosage and expression changes that differentiate
each clone. We applied CCNMF to characterize an ovarian
cancer cell mixture, a gastric cancer cell line and a primary
gastric cancer, and the results showed CCNMF is capable of
identifying clonal structure and dosage effect in real cell sys-
tems. Thus, scDNA- and scRNA-seq combined with CCNMF
analysis offers a new way to study the functional consequence
of clonal gene dosage change and how it contributes to clonal
development. 

Materials and methods 

Coupled factorization of scDNA and scRNA data 

We utilized the coupled-clone nonnegative matrix factoriza-
tion framework to identify the underlying clonal structure of
scDNA and scRNA data from the same biological specimen.
The input can be any matched scDNA and scRNA data gen-
erated by various technologies. Input matrix O ∈ R 

p×n 1 is the
copy numbers of p genes and n 1 cells from the scDNA; while
the input matrix E ∈ R 

p×n 2 is the gene expression of p genes
and n 2 cells from the scRNA (Figure 1 ). 

CCNMF was established on a powerful approach—
nonnegative matrix factorization (NMF), which uncovers the
latent low-dimensional representation for a given feature-by-
sample matrix ( 28 ,29 ). Briefly, NMF factorizes the given fea- 
ture by sample matrix into two non-negative matrices W and 

H , where W represents the latent structure of features (i.e.
genes and CNVs), while H describes the weight of those fea- 
tures among samples (i.e. cells). 

Besides NMF, the most important concept introduced in 

CCNMF is to couple the nonnegative factorization of ma- 
trices O and E . We additionally defined A ∈ R 

p × p to rep- 
resent the linked sensitivity of gene expression to copy num- 
ber. The matrix A serves as a bridge to enforce the link be- 
tween changes in copy number and gene expression level for 
correlated genes. A could be estimated by correlating tissue- 
specific RNA and DNA sequencing data ( 22 ) or by simply 
providing an identity matrix, as we used in CCNMF so far.
The diagonal elements of the identity matrix represent the di- 
rect links between copy number and gene expression on the 
same genes. Hence, we simultaneously co-factorize the single- 
cell datasets O and E by minimizing the following objective 
function: 

F (W, H) = min 

W 1 ,H 1 ,W 2 ,H 2 ≥0 

1 

2 

∥∥O − W 1 H 1 
∥∥2 

F 

+ 

λ1 

2 

‖ E − W 2 H 2 ‖ 2 F − λ2 tr (W 

T 
2 AW 1 ) 

subject to : ‖ W 1 ‖ 2 F = 1 , ‖ W 2 ‖ 2 F = 1 , W 1 , W 2 , H 1 , H 2 ≥ 0 . 

(1) 

where we denoted W 1 ∈ R 

p × k , W 2 ∈ R 

p × k and H 1 ∈ 

R 

k ×n 1 , H 2 ∈ R 

k ×n 2 by shorthands W and H , tr () represents the 
trace of a matrix. 

By minimizing the first two terms of the objective function 

in Equation ( 1 ), we ensured the respective NMF decomposi- 
tions of O and E as O = W 1 H 1 and E = W 2 H 2 . Notably,
W i ( i = 1, 2) represents the mean matrix of clusters for the n i 

cells, while H i is the weight matrices that softly assign n i single 
cells to the underlying identity linked cell clusters. Upon con- 
vergence, the weight matrix H i provides the inferred cluster 
identities for all single cells by the maximum weight. Addi- 
tionally, minimizing the cross term −tr (W 

T 
2 AW 1 ) ensured the 

coherence of the inferred clone structure between the scRNA 

and scDNA data. 

Optimization of the objective function 

For optimization, we applied the alternating direction meth- 
ods of multipliers (ADMM) ( 30 ,31 ) to the objective function 

Equation ( 1 ). Let μ1 and μ2 be the Lagrangian multipliers for 
W 1 and W 2 , respectively, thus the transformed objective func- 
tion was written as follows: 

L (W, H, μ1 , μ2 ) = F (W, H) + 

2 ∑ 

n =1 

μn tr (W 

T 
n W n ) (2) 

To solve the transformed objective function, we first ob- 
tained required gradients by setting its first order deriva- 
tives to zeros. Then, we used the gradient descent al- 
gorithm to iteratively update and optimize the objec- 
tive function until convergence by the following steps 
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Figure 1. The workflow of coupled-clone nonnegative matrix factorization (CCNMF). It took scDNA matrix O ∈ R 

p×n 1 and scRNA matrix E ∈ R 

p×n 2 as 
input for inferring shared clonal str uct ure between two modalities from the same bio-specimen. We applied a coupling matrix A ∈ R 

p × p to link matrices 
O ∈ R 

p×n 1 and E ∈ R 

p×n 2 , which represented the global concordance between DNA copy number and gene expression. 
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for proof see Supplementary Methods ): 
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i j ← h 
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i j 
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T 
1 O ) i j 

(W 

T 
1 W 1 H 1 ) i j 
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1 
i j ← w 
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i j 

(OH 

T 
1 + λ2 A 

T W 2 + W 1 m 11 ) i j 

(W 1 H 1 H 

T 
1 + W 1 m 12 ) i j 
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2 
i j ← h 

2 
i j 

(W 

T 
2 E) i j 

(W 

T 
2 W 2 H 2 ) i j 

, 

w 

2 
i j ← w 

2 
i j 

(EH 

T 
2 + 

λ2 
λ1 

AW 1 + W 2 m 21 ) i j 

(W 2 H 2 H 

T 
2 + W 2 m 22 ) i j 

, 

(3)

here 

m 11 ← tr ( W 

T 
1 ( W 1 H 1 H 

T 
1 )) , 

m 12 ← tr ( W 

T 
1 ( OH 

T 
1 + λ2 A 

T W 2 )) , 

m 21 ← tr ( W 

T 
2 ( W 2 H 2 H 

T 
2 )) , 

m 22 ← tr ( W 

T 
2 ( EH 

T 
2 + 

λ2 

λ1 
AW 1 )) . 

(4)

odel inputs 

he model had two hyper-parameters inputs as λ1 and λ2 ,
hich were used to initialize the iterative computation. Our

xperiences were that λ1 and λ2 are data-dependent. Nonethe-
ess, they can be empirically determined by the input data. In
ractice, we used an automatic balancing strategy to deter-
ine the parameters, which ensured the initial values of the

our terms of the objective function are within the same order.
The coupling matrix A is also expected as input, for which

n identify matrix was supplied. The non-zero diagonal ele-
ments represent the strengths of linked copy number and gene
expression on the same gene, while the zero non-diagonal el-
ements mean cross-over between copy number and gene ex-
pression among genes were ignored. To incorporate a real in-
formative prior for A , one may estimate it from known associ-
ations between copy number and gene expression using bulk
sequencing data of the same tissue source. 

Model selection 

When the number of cluster k is unknown, CCNMF runs
models with specified range of k . The optimal k was selected
as the one minimizing the objective function. 

Preprocessing matched scRNA & scDNA data 

We preprocessed the scRNA data with several steps, includ-
ing filtering out outlier genes and cells and normalization
for sequencing depth using log transformation. We also per-
formed a chromosome-level smoothing procedure for each cell
in which the expression of genes along each chromosome was
smoothed by average in a 101-gene window. 

It is noted that the scDNA features were segmented into
genome bins, while the scRNA features were already pre-
sented with genes. To ensure the consistency between scDNA
and scRNA features, we associated multiple neighbor genome
bins from scDNA with its corresponding gene using the fol-
lowing preprocessing steps. First, we aligned both scRNA and
scDNA onto the same human genome assembly (GRCh37 or
GRCh38). Then, we identified the one-to-multiple mapping
between each gene and genome bins using the IRanges R pack-
age ( 32 ). Finally, bin-level copy number values of the scDNA
matrix were merged into the gene level by taking the average
copy number on the mapped bins. 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae017#supplementary-data
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Based on the gene-level single-cell CNV matrix, we devel-
oped a novel statistical approach to perform feature selection.
The genes with the most highly variable CNVs across tumor
cells after excluding replicating cells. In particular, we utilized
an Expectation-Maximization (EM) algorithm to model the
variances of CNVs for all genes as a mixture of normal dis-
tribution, then iteratively selected genes with higher variances
as features. The selected genes were considered as potentially
informative for ground-truth subclone construction and were
used as common features basis for both modalities. Finally,
we extracted the properly formed scRNA and scDNA matri-
ces E ∈ R 

p×n 2 and O ∈ R 

p×n 1 as input to CCNMF (as in Fig-
ure 1 ), where p genes were the selected features from the above
process. 

Simulation procedures 

We generated the matched scRNA and scDNA data from the
same clonal structure by presetting the ground truth genetic
copy number ( GCN ) changes (as illustrated in Supplementary 
Figure S1 ). Notably, the ground truth GCN profile represented
a specific clonal structure. First, we specifically set the first
clone as normal cells with GCN vector V 1 = [2, ···, 2] ∈
R 

m , where m enumerates over all genome segmental bins. The
second tumor clone’s associated GCN vector as V 2 ∈ R 

m , in
which a fraction of V 1 was replaced by randomly sampling
from {0, 1, 3, 4} with varied probabilities. Similarly, V 3 of the
third clone was also simulated by the above procedure based
on either V 1 or V 2 . Finally, we obtained a ground truth GCN
profile V = [ V 1 , V 2 , V 3 ] as the genomic change profile for the
underlying clonal structure. 

It was well known that DNA copy number is highly pos-
itively correlated with the gene expression levels for most
( > 99% ) of expressed human genes ( 33 ). We calculated the
ratio of gene-wise mean expression to mean copy number
using the bulk RNA and DNA data generated by The Can-
cer Genome Atlas (TCGA) ( 〈 0:italic 〉 https://www.cancer.gov/
tcga 〈 /0:italic 〉 ). To simulate the scDNA data, we estimated
their specific parameters and noise from the bulk datasets
downloaded from cBioPortal ( 34 ,35 ). Specifically, (i) we es-
timated the probability transition matrix P ( C | G = g ) for ob-
served integer copy number when given genetic changes us-
ing bulk CNV data, where C is the observed CNV, G is the
genetic CNV, g (0, 1, 2, 3, ···) is the value of copy number
( Supplementary Figure S2 ); (ii) we simulated copy number
for per gene and per cell D ij ∼ multinomial ( P ( C | G )* P ( V ))
( Supplementary Figure S3 ) when given the clonal GCN
matrix V ; (iii) we then added outlier and dropout events
( Supplementary Methods ). 

We extended the associated genetic copy number (GCN)
profile V to gene × cell matrix in which GCN determines
the clone-wise genes expression and copies. We next used the
Splatter pipeline ( 36 ) to simulate library effects, dropout, out-
lier events in scRNA-seq data based on the above extended
clonal gene-wise matrix ( Supplementary Methods ). Splatter
parameters were estimated from the same tumor tissue with
RNA-seq and bulk CNV data downloaded from cBioPortal. 

Simulated and real datasets 

As the first benchmark, we simulated 46 scDNA- and scRNA-
seq datasets. They were referred as the Sim data. The lin-

ear and bifurcated clone structure scenarios with 3 clones 
were simulated in this study. We varied common experimen- 
tal parameters, such as the percentages of outliers, dropouts,
and genome impacted by copy number changes. For each 

simulated dataset, we randomly generated cell-wise scDNA 

and scRNA data according to the specified scenario and pa- 
rameters using the procedure as detailed previously (also see 
Supplementary Figure S1 ). Each of the obtained dataset in 

Sim , has 1000 cells and 2000 genes / CNV bins, and the three 
composing clones have 200, 400 and 400 cells each. The first 
clone was designed as normal cells, and the second and third 

clones represented by deletion and amplification events, re- 
spectively. We set the percentages of differentially acquired 

deletions and amplifications to affect 10–50% chromosome 
regions. We deposited the Sim data into GitHub. 

For the real data benchmark, we obtained a mixture of high 

grade serous carcinoma (HGSC) cell lines for matched scDNA 

and scRNA, referred to as the OV data. It was sequenced by 
DLP scDNA-seq and the 10X Genomics scRNA-seq technolo- 
gies and was downloaded from European Genome-Phenome 
archive with accession EGAD00001004553 ( 21 ). The mix- 
ture cells were made up from ascites (OV2295R) and solid 

tumors (TOV2295R). The scRNA subset included 1717 cells 
from ascites (OV2295R) and 4918 cells from solid tumors 
(TOV2295R), while the scDNA subset had 371 cells from 

OV2295R and 394 cells from TOV2295R. 
As another real data application, we also downloaded the 

matched scRNA and scDNA data for NCI − N 87 gastric can- 
cer cell line from Gene Expression Omnibus (GSE142750) 
and National Institute of Health’s SRA (PRJNA498809) ( 12 ).
We firstly processed the scDNA-seq data using Cellranger- 
DNA pipeline with reference genome GRCh38 according to 

described procedures in ( 12 ). The scDNA data includes 1005 

single cells, each contains 154 423 copy number bins across 
the whole genome. The scRNA-seq data has 3246 cells with 

135 13 genes per cell. 
Finally, we also collected a primary gastric adenocarcinoma 

patient data, called P5931 ( 37 ), which was sequenced using 
10 × Genomics technologies for both scRNA and scDNA. The 
scDNA consists of 796 cells with 154 423 copy number bins 
across the whole genome. The scRNA of P 5931 has in to- 
tal 11 217 cells with 19 129 genes per cell. The data was 
downloaded from dbGAP repositories with accession number 
phs001711 ( 37 ). 

Performance evaluations 

To evaluate the performance of CCNMF given the ground 

truth cell cluster labels, we used the Adjusted Rand Index 

(ARI) ( 38 ,39 ). The ARI measures the similarity between the 
labels assigned by any two clustering schemes as follows: 

ARI = 

∑ 

i j 

( 

n i j 

2 

) 

−
[ ∑ 

i 

( 

a i 
2 

) ∑ 

j 

( 

b j 
2 

) ] 
/ 

( 

n 

2 

) 

1 

2 

[ ∑ 

i 

( 

a i 
2 

) 

+ 

∑ 

j 

( 

b j 
2 

) ] 
−

[ ∑ 

i 

( 

a i 
2 

) ∑ 

j 

( 

b j 
2 

) ] 
/ 

( 

n 

2 

) 

(5) 

where n ij , a i , b j are values from the two-way contingency ta- 
ble describing the overlapping label counts between the two 

clustering schemes i and j . Here, n ij is the number of overlap- 
ping label counts between the cluster i of the first scheme and 

the cluster j of the second scheme. Note a i = 

∑ 

j n ij , and b j = ∑ 

i n ij . 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae017#supplementary-data
https://www.cancer.gov/tcga
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae017#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae017#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae017#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae017#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae017#supplementary-data
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esults 

he CCNMF toolkit 

he CCNMF analytical framework has been implemented as
n R package, with a workflow illustrated in Figure 1 . CC-
MF toolkit can accept scRNA and scDNA data in standard

ormats, including those generated by 10 × Genomics scRNA-
 scDNA-seq and DLP scDNA technologies. The toolkit exe-
utes the statistical framework and analytical steps as follows: 

(1) Aligns scRNA genes and scDNA genome bins to the
same genome reference. 

(2) One-to-multiple mapping of scDNA bins to genes using
location overlapping ( > 1 bp) to reduce the scDNA data
to the same gene coordinates as the scRNA data. 

(3) Initializes the coupled term between scRNA ( E ) and
scDNA data ( O ) using a coupling matrix ( A ), which is
either an identity matrix or a user provided matrix with
prior information. 

(4) Iteratively optimizes the objective function using a gra-
dient descent algorithm until convergence. 

(5) Identifies the most coherent clonal structure by finding
the maximum weights of the H matrices that represent
the most likely cell clonality membership. 

The outputs of CCNMF include: W matrices that represent
he expression or copy number profile centroids of scRNA or
cDNA clones; H matrices that represent the cell-wise mem-
ership weights toward clone for each of scRNA and scDNA
ells. The toolkit is platform-independent and works with gen-
ral R installation. It is made available as an open source soft-
are on Github with detailed readme, manual and examples.

CNMF recovers the underlying clonal structures in
imulation 

e firstly evaluated the performance of CCNMF using simu-
ated scDNA and scRNA datasets – Sim . The evaluation was
ased on Adjusted Rand Index (ARI), and the results were
resented in Supplementary Tables S1 - S3 . Sim included two
ifferent scenarios, each with three parameters. In each sce-
ario, ARI was assessed by varying the parameter of interest
ver its range while keeping the others as default. The default
arameters for copy number fraction, outlier percentage and
ropout percentage were 50%, 0 and 0, respectively. 
Supplementary Table S1 showed the simulation results for

he linear and bifurcate clonal structure scenarios, with vari-
us copy number fractions ranging from 10% to 50%, which
as defined as the percentage of genome undergoing copy
umber changes. As shown in the table, CCNMF was able to
ecover the exact underlying clonal structure with the highest
ccuracy (ARI = 1) for all cases under both scenarios, except
or one case with an ARI of 98%. With the decreasing of the
opy number fraction, the clonal copy number difference be-
omes smaller, making it harder for CCNMF to resolve the
lones accurately. The results demonstrated that such effect is
nly modest, as with only 10% of genome having copy num-
er difference between the clones, CCNMF was still able to
orrectly uncover the underlying structure. 

Supplementary Table S2 showed the simulation results with
arying dropout percentages from 10% to 90%. Dropout per-
entage was defined as the percentage of cells with zero val-
es for gene expression and copy number. The reason behind
ropout could be the limited sensitivity of a technology or the
ene was not present or expressed. Dropouts are very com-
mon in scRNA and scDNA data because of amplification bias
and other random effects. In Sim , a dropout percentage at
10% means that 10% of all simulated gene expression or copy
numbers were perturbed to be zeros. As shown in the table,
CCNMF achieved high accuracy in recovering the underlying
clonal structure for all cases under both scenarios. All resulted
ARIs were > 98% , except for one case with ARI of 81%. 

Supplementary Table S3 showed the simulation results for
outlier percentage ranging from 10% to 90%. Outlier percent-
age was defined as the percent of cells with non-realistic copy
numbers or expression values. In practice, these data points
are typically deemed technical errors and are excluded from
downstream analysis. In Sim , outlier percentage stands for the
percent of all simulated scDNA and scRNA cells were per-
turbed to be outliers. It was obvious from the table that CC-
NMF was robust to the presence of outliers. When the outlier
percentage was < 60% , CCNMF achieved high accuracy with
all ARIs greater than 92% for both scenarios. In summary,
our comprehensive simulation study demonstrated that CC-
NMF achieved good performance for resolving the coherent
underlying clonal structures in scDNA and scRNA data with
practical noise considerations. 

CCNMF detected cell origins for ovarian cancer 
mixture cell lines OV data 

We conducted CCNMF analysis on the OV benchmark
dataset consisting of a mixture of ovarian cancer cell lines.
It was composed of two cell lines, OV-2295(R) and TOV-
2295(R) from the same patient. OV-2295(R) was an ascites
site cell line that is abnormal adjacent tissue but not cancer-
ous, while TOV-2295(R) was a high-grade serous ovarian can-
cer cell line ( 40 ). The ground truth for individual cells were
obtained from the original publication ( 40 ). 

CCNMF successfully characterized two subclones in the
OV mixture cells lines. The scDNA cells were classified into
subclones C1 and C2, which comprised of 394 cells from
TOV-2295(R) and 371 cells from OV -2295(R), respectively .
Correspondingly, the scRNA cells were categorized into sub-
clones R1 and R2, consisting of 4918 cells from TOV-2295(R)
and 1717 cells from OV -2295(R), respectively . Notably , C1
and R1 were from the same cell line TOV-2295(R), while
C2 and R2 were from cell line OV-2295(R), indicating cor-
responding relationship with scDNA subclones with scRNA
subclones. The tSNE plots of Figure 2 A and B demonstrated
the clear separation of the two mixture cells lines by CCNMF.
We compared the identified clones with the ground truth, re-
sulting in an adjusted Rand index (ARI) of 1, indicating that
CCNMF accurately recovered the underlying clonal structure
of OV . 

In this high-grade ovarian cancer, the severe tumor het-
erogeneity led to a significant number of large CNVs across
almost all chromosomes, except for chromosome 13 (Fig-
ure 2 C). These features were indicators of general aneuploidy.
Despite those widespread aneuploidy events, we were still able
to identify geographical difference in some focal CNVs be-
tween two tumor biopsies / subclones, such as focal amplifica-
tion events in C1 on chromosomes 1, 2, 3, 5 and 7 (Figure 2 C).
To explore further consistency between scDNA and scRNA
clones, we applied the inferCNV package ( 41 ) ( 〈 0:italic 〉 https:
// github.com/ broadinstitute/ inferCNV 〈 /0:italic 〉 ) to infer the
large-scale CNVs in scRNA clones and visualized clonal pat-
tens with cell identities from CCNMF (Figure 2 D). It is

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae017#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae017#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae017#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae017#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae017#supplementary-data
https://github.com/broadinstitute/inferCNV
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Figure 2. The coherent clonal str uct ure between scDNA and scRNA of the mixture o v arian cancer cell lines OV . (A) tSNE plot of scDNA clones. (B) tSNE 
plot of scRNA clones. (C) Heatmap shows CNV changes across scDNA clones. (D) Heatmap shows inferred CNV changes estimated by gene 
e xpression le v el across scRNA clones. (E) Heatmap of P earson ’s Correlation between single cells in coherent clones from scDNA and scRNA. Cells 
composing the same clone were coded in the same color. Each row represents a single cell and each column represents a genomic region for (C) and 
(D). The color in each dot of the heatmap represents the CNV status for (C) and (D). In panel (E), each row represents a single cell of scDNA, while each 
column represents a single cell of scRNA, the color in the heatmap represents the P earson ’s Correlation of cells between scDNA and scRNA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

important to note that the inferred CNVs were estimated
based on the scRNA matrix and can only reflect relative gene
expression levels between different clones. As shown in Fig-
ure 2 D, the inferred CNVs in R1 were consistent with CNVs
changes in C1, exhibiting inferred focal amplification events
on chromosomes 1, 2, 3, 5 and 7. Despite the aneuploidy
across the whole genome, we still observed slightly high corre-
lations in the matched clones of the correlation heatmap (Fig-
ure 2 E) calculated using Pearson’s correlation between pair-
wise cells from scDNA and scRNA. Overall, CCNMF success-
fully captured the underlying cell line identities of the mixing
cells. 

CCNMF identified coherent clonal structure in 

gastric cancer cell line NCI − N87 data 

To further investigate the performance of CCNMF, we an-
alyzed the NCI − N87 gastric caner cell line to determine
whether the clone structure can be detected by CCNMF. The
large-scale scDNA data of NCI − N87 was composed of 1105
single cells. A substantial proportion of replicating cells ex-
isted in the scDNA which will cause analytical difficulty for
clone reconstruction ( 12 ). It is because the most copy num-
ber changes in replicating cells were driven by ongoing DNA
replication, which overwhelm the true clonal copy number
variants. 

To address this challenge, we filtered out replicating cells
before joint clustering analysis. We identified the replicat-
ing cells by calculating the variance of copy number for
each cell because the higher replication activity gives rise to
a higher variance of observed intra-cell segments. We uti- 
lized the Expectation-Maximization algorithm to fit a two- 
component mixture normal distribution on the obtained copy 
number variance across all cells ( Supplementary Figure S4 ).
The cells were identified as replicating cells if they were as- 
signed to a normal distribution with a larger mean, and were 
excluded from further analysis. Using this efficient filtering 
procedure, we successfully identified and removed the group 

of replicating cells with highly fluctuating copy numbers and 

retained 724 cells ( Supplementary Figure S5 ). 
To increase comparability between scRNA and scDNA, we 

also filtered out the replicating cells in scRNA by calculating 
cell cycle scores using the ‘CellCycleScoring’ function in Seu- 
rat. Ultimately, we selected 2168 scRNA cells in G0 / G1 phase 
out of a total of 3246 cells and coupled them with 724 scDNA 

cells in G0 / G1 phase. 
We utilized CCNMF to analyze single-cell copy num- 

ber and gene expression matrices with selected and shared 

genes / features. We successfully identified and characterized 

three subclones (C1, C2 and C3) in the NCI − N 87 cell line for 
matched scDNA and scRNA, as shown in the tSNE plots (see 
Figures 3 A and 3 B). Out of the initial 1005 cells of scDNA,
281 cells were identified as replicating cells and were discarded 

from downstream clonal reconstruction. The remaining 724 

cells were classified into three subclones, with 456, 91 and 177 

cells in C1, C2 and C3, respectively . Notably , cells in C1 ex- 
hibited a consistent large CNV amplification on the chromo- 
some 19, while cells in C3 shared a focal amplification event 
on the chromosome 3q arm. C3 involved a smaller proportion 

of cells without amplifications on chromosomes 3 and 19, and 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae017#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae017#supplementary-data
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Figure 3. The coherent clonal str uct ure between scDNA and scRNA of the gastric cancer cell line NCI-N87 . (A) tSNE plot of scDNA clones. (B) tSNE 
plot of scRNA clones. (C) Heatmap shows CNV changes across scDNA clones. (D) Heatmap shows inferred CNV changes estimated by gene 
e xpression le v el across scRNA clones. (E) Heatmap of P earson ’s Correlation between single cells in coherent clones from scDNA and scRNA. 

i  

1  

s  

s  

C  

s
 

s  

t  

t  

t  

t  

t  

s  

w  

o  

m  

s  

t  

c  

h  

t  

b  

c  

m  

d

C
p

B  

r  

T  

m  

a  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nstead, shared lesser amplification events on the chromosome
1 (see Figure 3 C). As an independent validation, our analysis
uccessfully resolved the two major subclones and one minor
ubclones reported by an independent study ( 12 ), with C1 and
3 corresponding to the two major subclones and C2 corre-

ponding the minor one. 
We identified three subclones (R1, R2 and R3) from 2168

cRNA cells, with 1337, 128 and 703 cells in each, respec-
ively. To estimate the clonal large-scale CNVs, we applied
he inferCNV package on gene expression with clone iden-
ities. We then visualized the inferred CNVs changes among
he clones of scRNA by heatmap (Figure 3 D). Notably, the
hree scRNA subclones (R1, R2 and R3) corresponded to the
cDNA clones (C1, C2 and C3). The inferred CNVs in R1
ere consistent with C1, which shared a amplification event
n chromosome 20. The focal amplification event on chro-
osome 3q arm was shared by R3 and C3. The cells of R2

hared lesser amplification events on chromosome 11, similar
o C2. It is worth noting that the amplification-like events on
hromosome 1 and 4 observed in R3 represented the relatively
igher gene expressions than R1 and R2, which were poten-
ially diploid cells in C2. We calculated Pearson’s Correlation
etween pair-wise cells from scDNA and scRNA. It depicted a
lear block pattern where cells in matched clones between two
odalities had high correlations than cells in different clones,
ue to the clone-wise gene dosage (Figure 3 E). 

CNMF characterized cohort clone structure for 
rimary gastric cancer P5931 

esides analyzing tumor cell lines, we performed CCNMF on
eal-world application for primary gastric adenocarcinoma.
he scRNA and scDNA datasets were derived from a pri-
ary gastric cancer patient P5931 ( 37 ). Primary tumors usu-

lly had higher degree of intracellular heterogeneity and more
complex tumor microenvironment than cancer cell lines. No-
tably, after excluding 119 replicating cells and 376 normal
cells ( Supplementary Figure S6 ), a total of 301 cells in G0 / G1
phase were retained of P5931 scDNA. Additionally, we iden-
tified a total of 2034 tumor epithelial cells in G0 / G1 phase
using the matched scRNA ( 37 ). Then we applied the CCNMF
to find the underlying relative clone structure between 301 tu-
mor G0 / G1 cells in scDNA and 2034 tumor epithelial G0 / G1
cells in scRNA for P5931 . 

Due to the heterogeneity in primary cancer specimen, there
was no ground truth available of cell clone identities. There-
fore, we interpreted the clonal structure based on the result
of CCNMF. As shown in Figures 4 A and B, two clones were
overlaid with cell identities on tSNE plots for scDNA and
scRNA. Subclones C1 and C2 contained 176 and 125 cells, re-
spectively, were clearly separated in scDNA. The CNV clonal
structure of P5931 was dominated by the significant copy
number alternations affecting chromosomes 7 and 21 (Fig-
ure 4 C). The somatic events shared by cells of C1 were chro-
mosome 8 and 21 amplifications. Clearly, the chromosome
7 amplification and chromosome 21 deletion were the major
defining somatic events that separated C2 from C1. 

Corresponding to the C1 and C2 subclones, CCNMF anal-
ysis detected two subclones R1 and R2 of the scRNA data.
Subclone R1 was composed of 1050 cells, while subclone R2
consisted of 984 cells. We visualized the underlying large-scale
CNV pattern of scRNA clones with cell identities from CC-
NMF (Figure 4 D). Here, we applied the inferCNV package
to infer the large-scale CNV on the clones of scRNA. The
inferred CNV were estimated based on the relative gene ex-
pression levels among different clusters. In Figure 4 D, the two
clones R1 and R2 of scRNA correspond with C1 and C2 of
scDNA, respectively. Here, the inferred CNVs in R1 were con-
sistent with C1, which shared chromosome 8 and 20 ampli-
fications. Also chromosome 7 amplification and chromosome

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae017#supplementary-data
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Figure 4. The coherent clonal str uct ure between scDNA and scRNA of the primary gastric cancer patient P5931 . (A) tSNE plot of scDNA clones. (B) 

tSNE plot of scRNA clones. (C) Heatmap shows CNV changes across scDNA clones. (D) Heatmap shows inferred CNV changes estimated by gene 
e xpression le v el across scRNA clones. (E) Heatmap of P earson ’s Correlation between single cells in coherent clones from scDNA and scRNA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21 deletion were shared by R2 and C2. The Pearson’s Corre-
lation was calculated between pair-wise cells between scDNA
and scRNA. The correlation heatmap demonstrated that the
cells in matched clones between the two modalities had high
correlations due to the clone-wise gene dosage effect associ-
ated with CNV (Figure 4 E). 

Convergence and stability of CCNMF integration 

We applied the ADMM to optimize the non-convex quadratic
objective function of CCNMF as shown in Equation ( 1 ). The
convergence of CCNMF was ensured by setting stringent cri-
teria on the residual error, stopping the iterations once the
residual error is smaller than 0.01. To demonstrate the con-
vergence of CCNMF, we conducted numerical experiments,
running CCNMF 10 times for each dataset. As shown in
Supplementary Figures S7 –S9 , the objective function across
10 runs converges to a consistent minimum. CCNMF showed
convergence in all three real datasets OV , NCI-N87 and
P5931 . 

Furthermore, we assessed the stability of CCNMF’s results
across the 10 runs for each dataset. The ARIs of scDNA clus-
ters generated by CCNMF demonstrated perfect consistency
with a value of 1 for the OV data, as well as the scRNA
clusters. For NCI-N87 and P5931 , the range of ARIs across
10 runs for both scDNA and scRNA was between 0.7 and
0.95 ( Supplementary Figure S10 ). The high ARIs of different
runs demonstrated the robustness and self-consistency of CC-
NMF’s outcomes. 

Additionally, we evaluated the resolved subclones of
scDNA using CCNMF by comparing them with the sub-
clones from individual scDNA via NMF. We assumed that
the subclones inferred from individual scDNA by NMF
as the ground truth. CCNMF consistently reproduced the 
ground truth subclonal structures, validating its efficacy 
when integrated with scRNA ( Supplementary Figure S11 ).
Across the real datasets, the ARI was 1 for OV , 0.93 

for NCI-N87 and 0.77 for P5931 . The high ARIs suggest 
that CCNMF successfully resolved the underlying subclones 
of scDNA, further affirming its integration capability with 

scRNA. 

CCNMF outperforms state-of-the-art methods in 

subclone integration 

We benchmarked CCNMF with existing state-of-the-art 
single-cell integration methods, including iNMF ( 27 ), Seu- 
rat ( 23 ) and Clonealign ( 21 ), utilizing all three real datasets.
iNMF and Seurat are widely used for single-cell multi-omics 
integration, such as scA T A T-seq and scRNA-seq data. Mean- 
while, Clonealign is an early method specifically designed 

to uncover the underlying clonal structure between scDNA- 
seq and scRNA-seq data. iNMF , operating within the NMF 

framework, is a reference-free integrative algorithm. Seurat 
and Clonealign are map-to-reference inference integration al- 
gorithms, where scRNA-seq cells are assigned to the con- 
structed scDNA-seq subclones. In our comparison, we utilized 

NMF on individual scDNA data to construct subclones, which 

served as the reference input for Seurat and Clonealign . The 
default parameter settings were applied for across all three 
methods. 

For the OV data, iNMF identified 7 scDNA clusters 
and 18 scRNA clusters, which over-clustered than ground 

truth of two cell lines. Both Seurat and Clonealign as- 
signed the cells of scRNA to the referenced scDNA-seq sub- 
clones, which are consistent with the results obtained from 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae017#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae017#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae017#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae017#supplementary-data
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CNMF ( Supplementary Figure S12 ). As the results of NCI-
87 data, while iNMF resolved the subclones of scDNA,

t could not link them to the scRNA clusters due to over-
lustering. Seurat was unable to separate C1 and C2 in scRNA,
nd Clonealign did not detect the minor subclone of scRNA
 Supplementary Figure S13 ). With the P5931 dataset, iNMF
ecovered scDNA subclones of P5931 , but it again could not
ink scRNA cells to the clonal structure. Seurat assigned all
cRNA cells into only one cluster, which obviously failed to
eparate two subclones distinguished by CNVs on chromo-
ome 7. Clonealign assigned half of the scRNA cells into two
ubclones only after filtering out approximately 1000 cells
 Supplementary Figure S14 ). Overall, these findings strongly
ndicate that CCNMF generally outperforms other competi-
ive methods in integrating matched scDNA and scRNA data
or clonal analysis. 

iscussion 

ingle-cell multi-omics technology enables the identification
f cellular and genomic characteristics of cancer cells. The
dvancements in scDNA-seq technology allow for charac-
erizing tumor subclone architectures by providing genomic
NA variation such as CNVs. Importantly, each subclone has
istinct genomic alternations and cellular properties. Under-
tanding the biological features and phenotypes of subclones
s essential for precision cancer treatment. However, scDNA-
eq data cannot be directly used to identify phenotypes. Single-
ell RNA-seq provides gene expression informations that elu-
idates the biology of individual cells, but it is noisy to define
pecific cancer subclones. Inferring CNVs from scRNA-seq re-
ains as a challenging area for obtaining biological insights
f subclones ( 20 , 41 , 42 ). The inferred CNVs are based on
hanges in read depth or gene expression across the genome,
nd only provide limited reliability of copy number informa-
ion of individual cells. Therefore, the matched scDNA-seq
ata is still needed as a ground truth of genome changes to
tudy clonal biology such as clonal dosage effect. 

It is important to note that currently, there is a lack of
echnologies that are capable of simultaneously measuring
opy number variants and gene expression of the same cell
ith high throughput. Although G&T-seq ( 4 ), DR-seq ( 5 ) and

cTrio-seq ( 6 ) can measure genome and transcriptome in up
o a few cells per batch, they are in low throughput man-
er. High throughput scRNA-seq can only measure transcrip-
ome, and scDNA-seq is only for genome content, but not for
oth modalities in a single cell. To overcome these limitations,
he integration of matched scDNA-seq and scRNA-seq of the
ame specimen is a promising approach. 

To facilitate the understanding of tumor clonal structure
nd the associated biological characteristics like clonal-wise
ene dosage effect, we proposed a joint-clustering approach
CNMF for the integration of matched scRNA- and scDNA-

eq data from the same specimen. CCNMF optimizes an
bjective function that simultaneously maximizes for intra-
echnology clonal compactness, inter-technology clonal co-
erence and expected dosage effect consistence. We demon-
trated the utility of CCNMF by achieving high accuracy
or resolving coherent clonal structure in simulation datasets
ith various noise levels. In real-world applications, CCNMF
as been validated by identifying the underlying clonal struc-
ure in mixtures of ovarian cancer cell lines, a gastric caner
cell line and a primary gastric cancer sample. The consis-
tent CNV change patterns revealed with corresponding sub-
clones between scDNA and scRNA were observed in results of
CCNMF. 

In summary, CCNMF uncoveres the coherent clonal archi-
tecture from the matched tumor single-cell genome and tran-
scriptome data. The integration analysis showcased heteroge-
neous and clonal genetic nature of pathological tissues, which
provides crucial dosage effect information for elucidating ge-
netic cause and etiology of diseases. Furthermore, CCNMF
can serve as a bioinformatics tool for performing single-cell
level clonal dosage effect analysis for the community. 

Data and code availability 

The mixture of high grade serous carcinoma cell lines, OV
data for DLP scDNA-seq and 10X Genomics scRNA-seq
was downloaded from European Genome-Phenome archive
with accession EGAD00001004553. The scRNA and scDNA
data for NCI − N 87 gastric cancer cell line were down-
loaded from Gene Expression Omnibus (GSE142750) and
National Institute of Health’s SRA (PRJNA498809). The pri-
mary gastric adenocarcinoma patient P5931 data with 10X
Genomics scRNA and scDNA was downloaded from dbGAP
repositories with accession numbers phs001711. The R pack-
age of CCNMF is available at https:// github.com/ labxscut/
CCNMF and https:// doi.org/ 10.5281/ zenodo.10570125 . 

Supplementary data 

Supplementary Data are available at NARGAB Online. 
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