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Abstract In oscillatory systems, neuronal activity phase is often independent of network

frequency. Such phase maintenance requires adjustment of synaptic input with network frequency,

a relationship that we explored using the crab, Cancer borealis, pyloric network. The burst phase of

pyloric neurons is relatively constant despite a > two fold variation in network frequency. We used

noise input to characterize how input shape influences burst delay of a pyloric neuron, and then

used dynamic clamp to examine how burst phase depends on the period, amplitude, duration, and

shape of rhythmic synaptic input. Phase constancy across a range of periods required a

proportional increase of synaptic duration with period. However, phase maintenance was also

promoted by an increase of amplitude and peak phase of synaptic input with period. Mathematical

analysis shows how short-term synaptic plasticity can coordinately change amplitude and peak

phase to maximize the range of periods over which phase constancy is achieved.

DOI: https://doi.org/10.7554/eLife.46911.001

Introduction
Oscillatory neural activity is often organized into different phases across groups of neurons, both in

brain rhythms associated with cognitive tasks or behavioral states (Hasselmo et al., 2002;

Buzsáki and Wang, 2012; Buzsáki and Tingley, 2018), and in central pattern generating (CPG) cir-

cuits that drive rhythmic motor behaviors (Marder and Bucher, 2001; Marder et al., 2005; Grill-

ner, 2006; Bucher et al., 2015; Katz, 2016; Stein, 2018). The functional significance of different

phases in the latter is readily apparent, as they for example provide alternating flexion and extension

of limb joints, and coordination of movements between joints, limbs, and segments (Krantz and

Parks, 2012; Grillner and El Manira, 2015; Kiehn, 2016; Le Gal et al., 2017; Bidaye et al., 2018).

A hallmark of many such patterns is that the relative timing of firing between neurons is well main-

tained over a range of rhythm frequencies (Dicaprio et al., 1997; Hooper, 1997b; Hooper, 1997a;

Wenning et al., 2004; Marder et al., 2005; Grillner, 2006; Mullins et al., 2011; Le Gal et al.,

2017). If the latency of firing across different groups of neurons changes proportionally to the

rhythm period, phase (latency over period) is invariant, in some cases providing optimal limb coordi-

nation at all speeds (Zhang et al., 2014).

The ability of the system to coordinate phases with changes in period arises from central coordi-

nating mechanisms between circuit elements, as it is present in isolated nervous system prepara-

tions, but the underlying cellular and circuit mechanisms are not well understood. For instance,

constant phase lags between neighboring segments in the control of swimming in lamprey fish and

crayfish can be explained mathematically on the basis of asymmetrically weakly coupled oscillators,

but the role of intrinsic and synaptic dynamics within each segment is unknown (Cohen et al., 1992;
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Skinner and Mulloney, 1998; Grillner, 2006; Mullins et al., 2011; Zhang et al., 2014; Le Gal

et al., 2017).

The pyloric circuit of the crustacean stomatogastric ganglion (STG) has inspired a series of experi-

mental and theoretical studies of cellular and synaptic mechanisms underlying phase maintenance.

The pyloric circuit generates a triphasic motor pattern with stable phase relationships over a wide

range of periods (Eisen and Marder, 1984; Hooper, 1997b; Hooper, 1997a; Bucher et al., 2005;

Goaillard et al., 2009; Tang et al., 2012; Soofi et al., 2014). Synapses in the pyloric circuit use

graded as well as spike-mediated transmission (Graubard et al., 1980; Harris-Warrick and Johnson,

2010; Zhao et al., 2011; Rosenbaum and Marder, 2018). Follower neurons burst in rebound from

inhibition from pacemaker neurons (Marder and Bucher, 2007; Daur et al., 2016), and post-inhibi-

tory rebound delay scales with the period of hyperpolarizing currents (Hooper, 1998). Voltage-

gated conductances slow enough for cumulative activation across cycles could promote such phase

maintenance (Hooper et al., 2009). Similarly, short-term depression of graded inhibitory synapses is

slow enough to accumulate over several pyloric cycles, meaning that effective synaptic strength

increases with increasing cycle period (Manor et al., 1997; Nadim and Manor, 2000).

Theoretical studies have shown that short-term synaptic depression, by increasing inhibition

strength with cycle period, should promote phase maintenance (Manor et al., 2003; Mouser et al.,

2008), particularly in conjunction with inactivating (A-type) potassium currents (Bose et al., 2004;

Greenberg and Manor, 2005), which control the rebound delay (Harris-Warrick et al., 1995b; Har-

ris-Warrick et al., 1995a; Kloppenburg et al., 1999). These predictions remain experimentally

untested.

Additionally, postsynaptic responses also depend on the actual trajectory of synaptic conductan-

ces, which are shaped by presynaptic voltage trajectories and short-term synaptic plasticity

(Manor et al., 1997; Mamiya et al., 2003; Zhao et al., 2011; Tseng et al., 2014). If amplitude,

duration, and trajectory of synaptic conductance determine rebound delay, phase maintenance

necessitates all three of these parameters to change with cycle period in coordination. We used the

dynamic clamp technique to exhaustively explore the range of these parameters and understand

how the coordinated changes in synaptic dynamics determines the phase of follower neurons in an

oscillatory circuit. Our findings are consistent with a mathematical framework that accounts for the

dependence of amplitude and peak phase of the synaptic conductance on cycle period.

Results

Phase maintenance and latency maintenance
The firing of neurons in oscillatory networks is shaped by a periodic synaptic input. The relative firing

latency of such neurons is often measured relative to a defined reference time in each cycle of oscil-

lation, and is used to determine the activity phase of the neuron (see, for example Belluscio et al.,

2012). For example, in a simple network consisting of a bursting oscillatory neuron driving a follower

neuron (Figure 1A1), at a descriptive level, the latency (Dt) of the follower neuron activity relative to

the onset of the oscillator’s burst onset may depend on the oscillation cycle period (P). In response

to a change in period (say, to P2), the follower neuron may keep constant latency (Dt 2 = Dt), or con-

stant phase, that is modify its latency proportionally to the change in period (Dt2 / P2 = Dt/P;

Figure 1A2). However, in many oscillatory systems, for example the pyloric circuit (Hooper, 1997b;

Hooper, 1997a), the relationship between L and P falls between these two extremes.

We demonstrated this point in the pyloric follower LP neuron using the following protocol. We

voltage clamped one of the pacemaker PD neurons and drove this neuron with its own pre-recorded

waveform, but applied at five different cycle periods (also denoted P). This protocol entrained the

pacemaker group at this period, which forced the follower LP neuron to obey the same period

(Figure 1B). We then measured the latency (Dt) of the LP burst onset with respect to onset of the PD

neuron burst. A plot of the LP latency Dt or phase (Dt/P) for different cycle periods demonstrates the

above-mentioned finding that the LP neuron activity falls between the two limits of constant phase

and constant latency (Figure 1C).
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The burst onset time of the LP neuron depends on the temporal
dynamics of its input
The LP neuron does not have intrinsic oscillatory properties, but oscillates due to the synaptic input

it receives from the pacemaker anterior burster (AB) and pyloric dilator (PD) neurons, and the fol-

lower pyloric constrictor (PY) neurons (Figure 2A). The burst onset phase of the LP neuron (’LP = Dt/

P; Figure 2A) is shaped by the interaction between synaptic inputs and the neuron’s intrinsic dynam-

ics that influence post-inhibitory rebound. We measured an overall burst onset phase of the LP neu-

ron to be ’LP=0.34 ± 0.03 (N = 9).

As a first-order quantification, we measured how inputs to the LP neuron interact with its intrinsic

properties to determine the timing between its bursts, in the absence of network oscillations. To this

end, we blocked the synaptic input from the pacemaker AB and follower PY neurons to the LP neu-

ron (Figure 2B) and drove the LP neuron with a noise current input (see Materials and methods). In

response to the noise input, the LP neuron produced an irregular pattern of spike times, which

included a variety of bursting patterns with different spike numbers (Figure 2C). We were interested

in the characteristics of inputs producing different burst onset latencies. However, unlike a periodic

input, noise input does not provide a well-defined reference point to measure the burst onset

latency. We categorized bursts with respect to the preceding inter-burst intervals (IBIs; see

Materials and methods), during which no other action potentials occurred. We classified these IBIs in

bins (300, 500, 700 and 900 ms) and tagged bursts based on the IBI values (Figure 2C). We charac-

terized the driving input leading to bursts with specific IBIs by burst-triggered averaging the input

current (IBTA; an example shown in Figure 2D). Our analysis produced a single IBTA for each of the

four IBIs in each preparation (N = 23). IBTA’s of each preparation were first normalized in amplitude

by the (negative) peak value of the IBTA at IBI = 300 ms (Figure 2E; average shown in Figure 2F) to

examine how peak amplitude (Ipeak) varied with IBI. These data were then normalized in time
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Figure 1. Latency constancy and phase constancy as a function of period. (A1) Schematic diagram showing that a

follower neuron (F) strongly inhibited by a bursting oscillatory neuron (O) with period P can produce rebound

bursts with the same period at a latency Dt. (A2) If the period of O changes to a new value (P2), the new F burst

latency (Dt2) typically falls between two extremes: it could stay constant (top trace) or change proportionally to P2,

so that the burst phase (Dt/P) remains constant (middle trace). (B) Example traces of the pyloric pacemaker PD

neuron and the follower LP neuron represent the O and F relationship in panel A. Here, the PD neuron is voltage

clamped and a pre-recorded waveform of the same neuron is used to drive this neuron to follow different cycle

periods. The LP neuron follows the same period because of the synaptic input it receives. (C) A measurement of

the LP neuron burst onset time (Dt) with respect to the onset of the PD neuron burst shows that Dt falls between

the two limits of constant latency and constant phase. Dotted curves represent constant latency matched to the

latencies at the two extreme P values.

DOI: https://doi.org/10.7554/eLife.46911.002
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Figure 2. Inputs to the LP neuron influence burst time, spike number and interval. (A) Simultaneous intracellular recording of the LP neuron and

extracellular recording of the lateral ventricular nerve (lvn), containing the axons of the LP, PD and PY neurons (arrows). Period (P) and the burst onset

time (Dt) of the LP neuron are defined in reference to the pacemaker group (PD) burst. (B) Blocking the AB and PY synaptic inputs (10 mM picrotoxin) to

the LP neuron disrupts its bursting oscillations. (C) The LP neuron, in picrotoxin, was driven with a noise current input (Inoise) for 60 min. In response, the

Figure 2 continued on next page

Martinez et al. eLife 2019;8:e46911. DOI: https://doi.org/10.7554/eLife.46911 4 of 26

Research article Neuroscience

https://doi.org/10.7554/eLife.46911


(Figure 2G) to examine the effect of IBI on peak phase (Dpeak) and the rise (slopeup) and fall (slope-

down) slopes of the input current across preparations. We found that IBI had a significant effect on

Ipeak, Dpeak, slopeup and slopedown (all one-way RM-ANOVA on ranks; data included in Figure 2—

source data 1). In particular, larger IBIs corresponded to larger Ipeak values (Figure 2F–2H; p<0.001,

c2 = 65.87) with smaller (more advanced) Dpeak (Figure 2I; p<0.001, c2 = 41.35). The change in Dpeak

was due to a decrease in slopeup (p<0.001, c2 = 65.25), whereas slopedown did not vary as much

(Figure 2J–2K; p=0.002, c2 = 14.77).

The burst onset phase of the LP neuron oscillation depends on its
synaptic input
Injection of noise current revealed that the timing of the LP response is exquisitely sensitive to the

duration and amplitude of inputs. In the intact system, the primary determinant of input duration

and amplitude is the network period, as increasing period increases both presynaptic pacemaker

burst duration (Hooper, 1997b; Hooper, 1997a) and synaptic strength (Manor et al., 1997;

Nadim and Manor, 2000). To explore the effect of the duration and strength of the synaptic input,

we used dynamic clamp to drive the LP neuron with a realistic synaptic conductance waveform.

We constructed this realistic waveform by measuring the synaptic current input to the LP neuron

during ongoing pyloric oscillations (Figure 3A). These measurements showed the two components

of inhibitory synaptic input: those from the pacemaker AB and PD neurons (left arrow) and those

from the follower PY neurons (right arrow). In each cycle, the synaptic current always had a single

peak, but the amplitude and phase of this peak showed variability across preparations (Figure 3B,

average in blue).

The realistic conductance input was injected periodically with strength gmax (Figure 3C). For any

fixed gmax, ’LP decreased as a function of P (Figure 3D), that is the relative onset of the LP burst

was advanced in slower rhythms. In contrast to the effect of P, for any given P, ’LP increased subli-

nearly as a function of gmax (Figure 3E). Figure 3F combines the simultaneous influence of both

parameters on ’LP. The results shown in Figure 3D indicate that the LP neuron intrinsic properties

alone do not produce phase constancy. However, level sets of ’LP (highlighted for three values in

Figure 3F), indicate that phase could be maintained over a range of P values, if gmax increases as a

function of P. This finding was predicted by our previous modeling work, in which we suggested that

short-term synaptic depression promotes phase constancy by increasing synaptic strength as a func-

tion of P (Manor et al., 2003; Bose et al., 2004). We will further discuss the role of synaptic depres-

sion below.

To clarify the results of Figure 3, it is worth examining the extent of phase maintenance for fixed

gmax. An example of this is shown in Figure 4A (turquoise plots). A comparison of these data with

the theoretical cases in which either delay or phase is constant suggests that the LP neuron produces

relatively good phase maintenance, at least much better in comparison with constant delay. How-

ever, this conclusion is misleading because, in these experiments, the duty cycle of the synaptic input

was kept constant. Therefore, most of the phase maintenance is due the fact that the synaptic input

keeps perfect phase. In fact, if the reference point measures phase relative to the end –rather than

onset– of the PD burst (Figure 4B), phase maintenance of the LP neuron is barely better than in the

constant delay case (Figure 4A, purple plots). It is therefore clear that phase maintenance by the LP

Figure 2 continued

LP neuron produced an irregular pattern of bursting. Specific inter-burst intervals (IBIs) were tagged and used for burst-triggered averaging. (D)

Example of burst-trigger-averaged input current (IBTA, green). Individual traces are shown in gray. (E) For each IBI (300, 500, 700, 900 ms), IBTA was

calculated and normalized to the (negative) peak value of IBTA for IBI = 300 ms. Different traces in each panel show the IBTA of different preparations. (F)

The mean (across preparations) of the normalized IBTAs shown in panel E. (G) Traces in panel F normalized by IBI. (H–K) Four parameters define the

shape of the IBTA: peak amplitude Iamp (H), peak phase Dpeak (I), slopeup (J) and slopedown (K) across preparations. IBI had a significant effect on

amplitude Iamp (p<0.001), peak phase Dpeak (p<0.001), slopeup (p<0.001) and slopedown (p=0.002).

DOI: https://doi.org/10.7554/eLife.46911.003

The following source data is available for figure 2:

Source data 1. This Excel file contains four sheets, including all measured attributes of the burst-triggered average current (IBTA) for different IBIs

(N = 23) as shown in Figure 2H–2K.

DOI: https://doi.org/10.7554/eLife.46911.004
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neuron would require the properties of the synaptic input to change as a function of P, a hallmark of

short-term synaptic plasticity (Fortune and Rose, 2001; Grande and Spain, 2005). As mentioned

above, short-term plasticity such as depression could produce changes in gmax as a function of P.

Independently of gmax, the peak time of the synaptic current is another parameter that could change

with P and influence the timing of the postsynaptic burst. We therefore proceeded to systematically

explore the influence of P, gmax and the synaptic peak time on ’LP.
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Figure 3. Cycle period and synaptic strength affect the phase of LP burst onset in opposite directions. (A) The

synaptic input to the LP neuron was measured by voltage clamping it at a holding potential of �50 mV during

ongoing oscillations. The onset of the pacemaker (AB/PD) activity is seen as a kink in the synaptic current (ILP,

blue). Dashed line: 0 nA. (B) Synaptic input averaged across (last 5 of 30) cycles from nine different LP neurons.

Traces are aligned to the onset of the PD neuron burst (dotted vertical red line; see panel A), normalized by the

cycle period and terminated at the end of the downslope (coincident with the first LP action potential when

present). The blue trace shows the average. (C) An example of the LP neuron driven by the realistic synaptic

waveform in dynamic clamp. The burst onset time (Dt) was measured relative to the AB/PD onset and used to

measure the LP phase (’LP). gmax denotes the conductance amplitude. (D) Mean ’LP (N = 9 preparations) shown as

a function of P and fit with the function given by Equation (8) (fit values ts=26.0 ms, g*=0.021 mS and

Dpeak�DC = 0.43). (E) Mean ’LP plotted against gmax also shown with the fit to Equation (8) . (F) Heat map,

obtained from fitting Equation (8) to the data in panels D and E, shows ’LP as a function of both gmax and P.

Black curves show the level sets of phase constancy for three values of ’LP (0.47, 0.49, and 0.52).
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A systematic exploration of synaptic input parameters on the phase of
the LP neuron
For a detailed exploration of the influence of the synaptic input on ’LP, we approximated the trajec-

tory of the (unitary) synaptic conductance in one cycle by a simple triangle (Figure 5A), which could

be defined by three parameters: duration (Tact), peak time (tpeak) and amplitude (gmax) (Figure 5B).

This simplified triangular synaptic conductance waveform could then be repeated with any period (P)

to mimic the realistic synaptic input to the LP neuron. For a given synaptic duration Tact, the peak

phase of the synapse can be defined as Dpeak=tpeak/ Tact). The parameter Dpeak is known to vary as a

function of P (Tseng et al., 2014) and, in a previous study, we found that Dpeak may influence the
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change in ’LP values with P are compared with the constant phase (solid curve) and constant latency (dashed

curve) extremes. Lime traces show the usual values of ’LP, calculated from the LP burst onset latency with respect

to the onset of the PD burst. Lavender traces show ’LP calculated from the LP burst onset latency with respect to

the end of the PD burst. Data shown are the same as in Figure 3D for gmax = 0.4 mS. (B) Schematic diagram shows

the latency of LP burst onset measured with respect to the (estimated) onset and end of the PD burst in the

dynamic clamp experiments (see Materials and methods). Bottom panel shows the synaptic current waveform

measured in the voltage-clamped LP neuron during ongoing pyloric activity. Top panel shows the dynamic clamp

injection of the synaptic conductance waveform into the LP neuron. The current waveform of the bottom panel is

aligned to the conductance waveform of the top panel for the comparison used in determining the PD burst onset

and end in the top panel.
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activity of the postsynaptic neuron, independent of P and gmax (Mamiya and Nadim, 2004). We

therefore systematically explored the influence of three parameters of the synaptic input (P, gmax

and Dpeak) on ’LP.

As with the realistic synaptic waveforms (Figure 3), we used the dynamic clamp technique to

apply the triangular conductance waveform periodically to the LP neuron in the presence of the syn-

aptic blocker picrotoxin. Across different runs within the same experiment, the parameters P, gmax

and Dpeak were changed on a grid (see Materials and methods). In addition, all combinations of these

three parameter values were run in two conditions in the same experiment, 1: with constant dura-

tion, that is constant Tact across different P values (C-Dur of 300 ms), and 2: with constant duty cycle,

that is Tact changing proportionally to P (C-DC of 0.3; Figure 5C). Using these protocols, we mea-

sured the effects of synaptic parameters on ’LP (Figure 5D).

The LP neuron produced burst responses that followed the synaptic input in a 1:1 manner across

all values of P that were used (Figure 6A1). When gmax and Dpeak were kept constant, ’LP decreased

as a function of P (Figure 6A2). This decrease was always larger for the C-Dur case than the C-DC

case. For both C-DC and C-Dur, this trend was seen across all values of Dpeak and gmax (Figure 6A3).

The effect of P on ’LP was highly significant for both C-DC (three-way ANOVA, p<0.001,

F = 100.677) and C-Dur (three-way ANOVA, p<0.001, F = 466.424), indicating that the period and

duration of the inhibitory input to the LP neuron had a significant effect on its phase.

Changing gmax produced a large effect on the level of hyperpolarization in the LP neuron, but

this usually translated to only a small or modest effect on the time to the first spike following inhibi-

tion (Figure 6B1). Overall, increasing gmax at constant values of P and Dpeak produced a significant

but only small to moderate increase in ’LP (three-way ANOVA, p<0.001, F = 10.798). Although

increasing gmax produced the same qualitative effect for both the C-DC and C-Dur (e.g.,

Figure 6B2), ’LP in the C-DC case was restricted to a smaller range (Figure 6B3 top vs. bottom pan-

els). Overall, this increase was robust for most values of P and Dpeak (Figure 6B3).
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synapse duration Tact was kept constant at 300 ms (C-Dur) or maintained at a constant duty cycle (Tact/P) of 0.3 (C–

DC) across all values of P. (D) Intracellular voltage recording of the LP neuron during a dynamic clamp stimulation

run using the triangle conductance (in picrotoxin). The burst onset time (Dt, calculated in reference to the synaptic

conductance onset) was used to calculate the activity phase (’LP = Dt/P).
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Figure 6. The LP burst onset phase decreases as a function of P, but increases as a function of gmax and Dpeak. Periodic injection of an inhibitory

triangular waveform conductance into the LP neuron (in picrotoxin) produced bursting activity from which ’LP was calculated. The parameters gmax,

Dpeak and P were varied across runs for both C-Dur and C-DC cases. (A) ’LP decreases as a function of P. (A1) Intracellular recording of an LP neuron

showing a C-DC conductance input across five periods. (A2) ’LP for the example shown in A1 plotted as a function of P (for gmax = 0.4 mS, Dpeak=0.5) for

both C-Dur and C-DC cases. ’LP decreases rapidly with P and the drop is larger for the C-Dur case. (A3) ’LP decreased with P in both the C-DC case

(three-way RM ANOVA, p<0.001, F = 100.7) and the C-Dur case (three-way RM ANOVA, p<0.001, F = 466.4) for all values of Dpeak. The range of ’LP

drop was greater for the C-Dur case compared to the C-DC case. (B) ’LP increases as a function of gmax. (B1) Intracellular recording of an LP neuron

showing the conductance input across three values of gmax. (B2) ’LP for the example shown in B1 plotted as a function of P (for p=500 ms, Dpeak=0.25)

shows a small increase for both C-Dur and C-DC cases. (B3) ’LP increased with gmax in almost all trials for both C-DC and C-Dur cases and all values of

Figure 6 continued on next page
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Increasing Dpeak for a constant value of P and gmax (Figure 6C1), produced a small but significant

increase in ’LP (three-way ANOVA, p<0.001, F = 17.172). This effect was robust for most values of P

and gmax, for both C-DC and C-Dur (Figure 6C2 and C3).

These results showed that all three parameters that define the shape of the IPSC influence ’LP.

Clearly, the strongest effect is the decrease in ’LP as a function of P. However, ’LP modestly

increases as a function of the other two parameters, gmax and Dpeak. This raised the question how

gmax and Dpeak would have to change in coordination as a function of P to counteract the effect of P

on ’LP and achieve phase constancy.

Coordinated changes of gmax and Dpeak produce the largest effect on
phase
To explore how gmax and Dpeak might interact to influence ’LP, we examined the sensitivity of ’LP to

these two parameters, individually and in combination, for all values of P in our data (see

Materials and methods). Sensitivity of ’LP to these two parameters varied across P values, with larger

sensitivity at lower values of P (two-way RM-ANOVA, p<0.001, F = 16.054; data included in Fig-

ure 7—source data 1). For simplicity, we averaged the sensitivity values across different P values to

obtain an overall measure of the influence of gmax and Dpeak. These results showed that, for the

C-DC case, ’LP had a positive sensitivity to gmax and a smaller positive sensitivity to Dpeak

(Figure 7A). The sensitivity was largest if the two parameters were varied together (gmax + Dpeak)

and smallest if they were varied in opposite directions (gmax - Dpeak; two-way RM-ANOVA, p<0.001,

F = 3.330). Similarly, these sensitivity values were also significantly different for the C-Dur case

(Figure 7B; two-way RM-ANOVA, p<0.001, F = 2.892), with largest sensitivity for gmax + Dpeak and

smallest for gmax - Dpeak.

Level sets of ’LP in the P-gmax-Dpeak space for C-DC and C-Dur cases
To search for phase constancy across different P values in our dataset, we expressed ’LP as a func-

tion of the three IPSC parameters, P, gmax and Dpeak: ’LP ¼ F P; gmax;Dpeak

� �

. Figure 8 shows heat

map plots of the function F, plotted for the range of values of P and Dpeak and four values of gmax.

In these plots, phase constancy can be seen as the set of values in each graph that are isochromatic,

indicating the level sets of the function F. These level sets are mathematically defined as hypersurfa-

ces on which the function has a constant value: F P; gmax;Dpeak

� �

¼ ’c. For the C-DC case, in each

gmax section of the plot, the level sets (e.g. ’c=0.34 denoted in white) spanned a moderate range of

P values as Dpeak increased (Figure 8A1). The span of P values across all four panels indicates the

range of cycle periods for which phase constancy could be achieved by varying gmax and Dpeak. This

range of P values (spanned by the white curves) was considerably smaller for the C-Dur case

(Figure 8A2).

For any constant phase value ’c, these level sets can be expressed as

P¼ P’c
gmax;Dpeak

� �

;

which describes a surface in the 3D space, yielding the P value for which phase can be maintained at

’c, for the given values of gmax and Dpeak. The level set indicated by the white curves in panel A for

the C-DC case is plotted as a heat map in Figure 8B1 and can be compared with the same plot for

the C-Dur case in Figure 8B2. The range of colors in each plot (marked next to each panel) indicates

the range of P values for which phase can be kept at ’c=0.34. To reveal how this range depends on

the desired phase, we measured this range for all values of ’c between 0.2 and 0.8 (Figure 8C1 and

C2). We found that the LP neuron could not achieve phases below 0.3 in the C-DC case

(Figure 8C1), which is simply because the neuron never fired during the inhibitory synaptic current

(which had a duty cycle of 0.3). Furthermore, the range of P values for which the LP phase could be

Figure 6 continued

Dpeak. (C) ’LP increases as a function of Dpeak. (C1) Intracellular recording of the LP neuron showing the conductance input for five values of Dpeak. (C2)

’LP for the example neuron in C1 plotted as a function of Dpeak (for p=500 ms, gmax = 0.4 mS) for both C-DC and C-Dur cases. (C3) ’LP increased with

Dpeak for both C-DC and C-Dur cases and for all values of gmax. In all panels, error bars show standard deviation.
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maintained by varying gmax and Dpeak was much larger for C-DC inputs compared to C-Dur Inputs,

for all ’c values between 0.31 and 0.54.

A model of synaptic dynamics could predict activity onset phase of the
LP neuron
To gain a better understanding of our experimental results, we derived a mathematical description

of the phase of a follower neuron such as LP, based on the following assumptions: 1, that the firing

time of this neuron was completely determined by its synaptic input, 2, that in each cycle the synap-

tic conductance gsyn increased to a maximum value gmax for a time interval Tact (the active duration

of the synapse) and decayed to 0 otherwise, and 3, that the follower neuron remained inactive when
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Figure 7. Sensitivity analysis shows that jLP increases more effectively if gmax and Dpeak increase together. (A) The

sensitivity of ’LP to local changes in gmax and Dpeak was averaged across all values of P for the C-DC case.

Sensitivity was largest if both parameters were increased together (gmax + Dpeak) and smallest if they were varied in

opposite directions (gmax - Dpeak; one-way RM-ANOVA, p<0.001, F = 3.330). (B) The same sensitivity analysis in the

C-Dur case shows similar results (one-way RM-ANOVA, p<0.001, F = 2.892). In both panels, error bars show

standard deviation.

DOI: https://doi.org/10.7554/eLife.46911.009

The following source data is available for figure 7:

Source data 1. This Excel file contains two sheets for the C-DC and C-Dur cases.
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Figure 8. Simultaneous increase of both Dpeak and gmax across their range of values can produce phase maintenance across a large P range in the

C-DC case and a much smaller P range in the C-Dur case. (A) Heat map plots of the function F (see Materials and methods), plotted for the range of

values of P and Dpeak and 4 values of gmax for the C-DC (A1) and C-Dur (A2) cases. The white curves show the level set of ’LP=0.34, shown as an

example of phase constancy. The color maps are interpolated from sampled data (see Materials and methods; N = 9 experiments). The locations of the

Figure 8 continued on next page
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gsyn was above some threshold g*. The derivation of this model is described in the

Materials and methods.

This simple model provided a mathematical description of ’LP as a function of P, gmax and Dpeak,

for the C-Dur and C-DC cases. In the C-Dur case (Equation (7)), as P increased, ’LP decayed and

approached 0 like 1/P. In contrast, in the C-DC case (Equation (8)), ’LP approached its lower limit

Dpeak�DC, as P increased, and thus behaved very differently than in the C-Dur case.

We used these equations to describe gmax as a function of P (for any given Dpeak) so that LP main-

tained a constant phase ’c, (Equation (10) for the C-DC case). Alternatively, Dpeak could be given as

a function of P (for any given gmax, Equation (11) for the C-DC case). We used these derivations to

compare how phase constancy depends on gmax or Dpeak in the C-DC case. A comparison of these

two cases can be seen in Figure 9A, where either gmax (green) or Dpeak (blue) is varied to keep ’LP

constant at ’c=0.34 across different P values. (The red curve is the depressing case, described

below.) As the figure shows, phase constancy can be achieved by varying either parameter, but each

parameter produces a different range of P across which phase is maintained.

These equations and their corresponding counterparts for the C-Dur case can be used to calcu-

late the range of P values over which changing Dpeak (from 0 to 1) can maintain a constant phase ’c.

If DP denotes the range of P values for which phase can be constant, it is straightforward to show

that DPDC > DPDur (compare blue and black curves in Figure 9B and C; see Materials and methods

for derivation).

Two additional points are notable in Figure 9C. First, the lower bound on ’LP for which phase

constancy can occur is smaller in the C-Dur (black) than the C-DC (blue) case. This is because we

have assumed that in the C-DC case the LP neuron cannot fire during inhibition and therefore the

constant value of DC produces a lower limit for ’LP. Second, for ’c larger than ~0.5, DP is larger for

the C-Dur case. This occurs because Equation (12) can no longer be satisfied when ’c is large. That

is, with constant duty cycle, it is not possible to produce an arbitrarily large follower neuron phase,

but with constant duration, any large phase is attainable if the cycle period is not much larger than

the synaptic duration. These findings are consistent with our experimental results described above

(see Figure 8).

The pacemaker synaptic input to the LP neuron shows short-term synaptic depression

(Rabbah and Nadim, 2007). In a previous modeling study, we explored how the phase of a follower

neuron was affected when the inhibitory synapse from an oscillatory neuron to this follower had

short-term synaptic depression (Manor et al., 2003). In that study the role of the parameter Dpeak

was not considered. We now consider how the presence of short-term synaptic depression influen-

ces phase constancy by changing both gmax and Dpeak. As stated in the Materials and methods

(Equation (16)), the effect of synaptic depression on synaptic strength can be obtained as

gmax ¼ �gmax � smax Pð Þ), where smax is an increasing function whose value approaches one as P increases.

This indicates that the synapse becomes stronger due to more recovery from depression at longer

cycle periods. When synaptic depression dictates how gmax varies with P and Dpeak also varies with P

and gmax (Equation (11)), the simultaneous changes in gmax and Dpeak (red) greatly increase the

range of P values over which ’LP is constant (Figure 9A).

Note that the C-DC case with short-term depression spans a larger range of P values than the

non-depressing case (Figure 9B). Similarly, the range of P values for which phase can be maintained

is larger than the non-depressing case across ’LP values, except where ’LP is so large that the

depressing synapse operates outside its dynamic range (Figure 9C). These results are consistent

with our experimental results, indicating that although phase constancy can be achieved when either

gmax or Dpeak increases with P, a concomitant increase of both - which could occur for example with

Figure 8 continued

sampled data are marked by black dots. (B) Heat map for the level sets ’LP=0.34 for the C-DC (B1) and C-Dur (B2) cases. Range of colors in each panel

indicate the range of P values for which ’LP could remain constant at 0.34 for each case, as indicated by the gray arrows on the side of the heatmap

color legend. (C) The range (DP) of P values for which ’LP could remain constant at any value between 0.2 and 0.8 for the C-DC (C1) and C-Dur cases

(C2). Filled circles show the values shown in panel B. The LP neuron cannot achieve ’LP values below 0.3 in the C-DC case. For ’LP values between 0.3

and ~0.65, the range was larger in C-DC case.
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a depressing synapse - greatly expands the range of P values for which a constant phase is

maintained.

Discussion

The importance of phase in oscillatory networks
A common feature of oscillatory networks is that the activities of different neuron types are

restricted to specific phases of the oscillation cycle. For example, different hippocampal and cortical

neurons are active in at least three distinct phases of the gamma rhythm (Hájos et al., 2004;

Hasenstaub et al., 2005), and distinct hippocampal neuron types fire at different phases of the

theta rhythm and sharp wave-associated ripple episodes (Somogyi and Klausberger, 2005).

Experimental studies quantify the latency of neural activity with respect to a reference time in the

cycle, but in most cases, these latencies are normalized and reported as phase. Distinct neuron types
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Figure 9. Model prediction of the range of phase constancy. (A) For the C-DC case, a constant phase of ’LP=0.34 can be maintained across a range of

cycle periods P when gmax is constant (at 335 nS; blue plane) and Dpeak varies from 0 to 1 according to Equation (11) (blue), or when Dpeak is fixed (at

0.5; green plane) and gmax varies from 200 to 800 nS according to Equation (10). Alternatively, gmax and Dpeak can covary to maintain phase, as in a

depressing synapse, where gmax varies with P according to Equation (16) , and Dpeak is calculated for each P and gmax value according to

Equation (11). As seen in the 2D coordinate-plane projections of the 3D graph (right three graphs), the range of P values for which phase constancy is

achieved is largest when gmax and Dpeak covary (dotted lines show limits of P for phase constancy). The depressing synapse conductance value is chosen

to be 335 nS at P = 1 s. (B, C) A comparison between the C-DC and C-Dur cases shows that in the latter case a constant phase of ’LP can be

maintained across a larger range of P values when Dpeak increases with P (and gmax is fixed at 400 nS) according to Equation (11). The relationship of

Dpeak and P is shown in B for ’LP=0.34. (C) shows the range of P values (DP) of cycle periods for which phase remains constant at any value of ’LP. If

gmax also varies with P, as in a depressing synapse (red; Equation (16)), the range of P values for which phase is constant is further increased. (Dotted

line: ’LP=0.34.).
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can maintain a coherent activity phase, despite wide variations in the network frequency (30–100 Hz

for gamma rhythms, 4–7 Hz for theta rhythms, and 120–200 Hz for sharp wave-associated ripple epi-

sodes). Phase-specific activity of different neuron types is proposed to be important in rhythm gen-

eration (Wang, 2010), and indicates the necessity of precise timing for producing proper circuit

output and behavior (Kopell et al., 2011). For example, phase locking of spike patterns to oscilla-

tions is important for auditory processing, single cell and network computations and Hebbian learn-

ing rules (Kayser et al., 2009; McLelland and Paulsen, 2009; Panzeri et al., 2010). For brain

oscillations, phase relationships may provide clues about the underlying circuit connectivity and

dynamics, but a behavioral correlate of varying frequencies is not obvious. In contrast, the activity

phase of distinct neuron types in rhythmic motor circuits is a tangible readout of the timing of motor

neurons and muscle contractions, thus defining phases of movement (Grillner and El Manira, 2015;

Kiehn, 2016; Le Gal et al., 2017; Bidaye et al., 2018). Because meaningful behavior depends cru-

cially on proper activity phases, whether neurons maintain their activity phase in face of changes in

frequency simply translates to whether the movement pattern changes as it speeds up or slows

down.

Determinants of phase
In oscillatory networks, the activity phases of different neuron types depend to different degrees on

the precise timing and strength of their synaptic inputs (Oren et al., 2006). Our results from noise

current injections showed that the timing of the LP neuron is strongly dependent on the timing of

inputs it receives. Dynamic clamp injection of realistic or triangular conductance waveforms with dif-

ferent periods (P) indicated that ’LP was largely determined by the duration of the synaptic input.

’LP changed substantially with P when inputs had constant duration, but much less when inputs had

a constant duty cycle, that is when duration scaled with P. However, our experiments also showed

that inputs of constant duty cycles alone are insufficient for phase constancy. ’LP decreased with P

even with a constant duty cycle of inputs, but increased with either synaptic strength (gmax) or peak

phase of the synaptic input (Dpeak). The increase in ’LP had similar sensitivity to gmax and Dpeak, and

therefore a larger sensitivity to a simultaneous increase in both. Consequently, it was possible to

keep ’LP constant over a wide range of cycle periods by increasing both parameters with P.

The fact that an increase in gmax with P promotes phase constancy is biologically relevant, as

short-term depression in pyloric synapses means that synaptic strength indeed increases with P

(Manor et al., 1997). Previous modeling studies show that short-term synaptic depression of inhibi-

tory synapses promotes phase constancy (Nadim et al., 2003; Bose et al., 2004), largely because of

longer recovery times from depression at larger values of P.

The finding that an increase of Dpeak with P promotes phase maintenance is somewhat surprising,

as we have previously shown that Dpeak in LP actually decreases with P (Manor et al., 1997;

Tseng et al., 2014). On the face of it, this suggests that an increase in Dpeak is not a strategy

employed in the intact circuit. However, the caveat is that such results may critically depend on the

cause of the change in P, either experimentally or biologically. While in our current study we varied

Dpeak with direct conductance injection into LP, previous results were obtained by changing the

waveform and period of the presynaptic pacemaker neurons. When P is changed in an individual

preparation by injecting current into or voltage-clamping the pacemakers, phase of follower neurons

is not particularly well maintained. An example of this is shown in Figure 1, where ’LP values fall

between constant phase and constant duration and, additionally, all pyloric neurons show behavior

that falls between constant phase and constant latencies (Hooper, 1997b; Hooper, 1997a). This

may reflect that neurons are not keeping phase particularly well when the only cause of changing P

is the presynaptic input. This is supported by the observation that even during normal ongoing pylo-

ric activity, phases change with cycle-to-cycle variability of P in individual preparations

(Bucher et al., 2005). However, it does not preclude the possibility that Dpeak plays an important

role in stable phase relationships when P differs because of temperature, neuromodulatory condi-

tions, or inter-individual variability (discussed below).

It is noteworthy that a change in the synaptic strength or peak phase with P is not peculiar to

graded synapses. The fact that short-term synaptic plasticity can act as a frequency-dependent gain

control mechanism is well known for many spike-mediated synaptic connections. In bursting neurons,

the presence of a combination of short-term depression and facilitation in the same spike-mediated
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synaptic interaction could also result in changes in the peak phase of the summated synaptic current

as a function of burst frequency and duration, and the intra-burst spike rate (Markram et al., 1998).

The mathematical model in the current study provides mechanistic explanations for several of our

experimental findings. First, it can be used to produce a quantitative measure of phase, given the

values of gmax, Dpeak and P. Thus, these equations can be used to compare the C-DC and C-Dur

cases, which match our experimental results. They show that, for most phase values, the C-DC case

provides a larger range of cycle periods at which phase constancy can occur. Second, these equa-

tions provide the activity phase no matter how the pacemaker synaptic input duration changes with

cycle period. For instance, our experiments were conducted by changing synaptic input through

sampling individual values of the parameter pairs gmax and Dpeak, and then calculating the resulting

phase. We then used fitting to find level sets of constant phase (Figure 8). In contrast, when we

combined our mathematical derivation here with previous results on the role of short-term synaptic

depression (Bose et al., 2004), we could demonstrate how a neuronal circuit can naturally follow a

level set of phase (Equation (7), (8), (15), (16)). Moreover, we showed that the combined increase in

gmax and Dpeak with P produces a larger range of periods for phase constancy than increasing either

parameter alone. In short, this mathematical formulation produces a simple quantitative distillation

of our experimental results.

In this study, we did not explore the role of the intrinsic properties of the LP neuron on its phase.

In separate experiments, we simultaneously measured post-inhibitory rebound properties in LP neu-

rons and the levels of voltage-gated ionic currents (the transient potassium current IA and the hyper-

polarization-activated inward current Ih) that influence rebound spiking. These data were not

included in this study for brevity and because they showed that the timing of post-inhibitory spiking

was relatively stable across preparations. Therefore, we would expect the contribution of intrinsic

properties in controlling the timing of the LP neuron burst onset to be relatively small. However, this

result does not generalize to all follower neurons. For example, the follower ventral dilator (VD) and

PY neurons have a much higher levels of IA, which in turn has a larger effect on the timing of post-

inhibitory spiking. In a set of computational studies, we addressed the role of IA in determining the

burst phase in response to periodic inputs (Zhang et al., 2008; Zhang et al., 2009) and in conjunc-

tion with short-term depression in the synaptic input (Bose et al., 2004). An experimental clarifica-

tion of the relative contribution of intrinsic properties vs. synaptic input could be done with

controlled dynamic clamp synaptic input, such as those used in the current study, injected in PY or

VD neurons. Such a data set would fittingly complement the results of the current study to elucidate

more general rules in determining the activity phase of neurons in an oscillatory network.

Phase relationships in changing temperatures
An interesting case is provided by the observation that phases are remarkably constant when pyloric

rhythm frequency is changed with temperature. Tang et al. (2012) report a fourfold decrease in P of

the pyloric rhythm between 7 and 23˚ C. In this study, none of the pyloric phases changed signifi-

cantly, and it is worth noting that under conditions of changing temperatures, the relationships

between P, gmax, and Dpeak appeared to be fundamentally different from when P is changed at a

constant temperature. Presynaptic voltage trajectories scaled with changing P, and Dpeak of postsyn-

aptic currents was independent of P, in contrast to the decrease described at constant temperature

(Manor et al., 1997; Tseng et al., 2014). Amplitudes of synaptic potentials did not change with

temperature, despite an increase in synaptic current amplitudes with increasing temperature (and

associated decrease in P). This is in contrast to the positive relationship between gmax and P that

results from synaptic depression at a constant temperature (Manor et al., 1997). Therefore, it

appears that the likely substantial effects of temperature on synaptic dynamics and ion channel gat-

ing are subject to a set of compensatory adaptations different from when P is changed at constant

temperature.

Variability and slow compensatory regulation of phase
Phase maintenance in the face of changing P in an individual animal requires the appropriate short-

term dynamics of synaptic and intrinsic neuronal properties. The fact that characteristic (and there-

fore similar) phase relationships can also be observed under the same experimental conditions

across individual preparations is a different conundrum, particularly when P can vary substantially, as
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is true for brain oscillations (Hájos et al., 2004; Hasenstaub et al., 2005; Somogyi and Klaus-

berger, 2005). Phases show different degrees of variability across individuals in a variety of systems,

for example leech heartbeat (Wenning et al., 2018), larval crawling in Drosophila (Pulver et al.,

2015), and fictive swimming in zebrafish (Masino and Fetcho, 2005), but in all these cases phases

are not correlated with P. In the pyloric rhythm, phases are also variable to a degree across individu-

als, but not correlated with the mean P, which varies >2 fold (Bucher et al., 2005; Goaillard et al.,

2009). This phase constancy occurs despite considerable inter-individual variability in ionic currents,

and is considered the ultimate target of slow compensatory regulation, that is homeostatic plasticity

(Marder and Goaillard, 2006; Ma and LaMotte, 2007; Marder et al., 2014). Slow compensation

can also be observed directly when rhythmic activity is disrupted by decentralization, and subse-

quently recovers to similar phase relationships over the course of many hours (Luther et al., 2003).

It is interesting to speculate if our findings about how synaptic parameters must change to keep

phase constant would hold across individuals with different mean P. The prediction would be coordi-

nated positive correlations of both gmax and Dpeak with P.

Synaptic inputs to the LP neuron show considerable variability across preparations (e.g.

Figure 3B), which mirrors the variability seen in the levels of voltage-gated ionic currents in pyloric

neurons (Schulz et al., 2006). We did not address the role and extent of variability in this study,

because a proper analysis of variability required us to first establish the mechanisms that give rise to

a consistent output, in this case phase constancy. Based on our findings regarding the influence of

synaptic parameters on phase, a natural next step is to explore whether the variability of different

parameters defining the synaptic input influences variability of phase or, alternatively, whether vari-

ability in some synaptic parameters may be irrelevant to phase or restrained by the postsynaptic

neuron.

Phase relationships under different neuromodulatory conditions
The flipside of the question how neurons maintain phase is the question how their phase can be

changed. In motor systems, in particular, changes in phase relationships are functionally important

to produce qualitatively different versions of circuit output, for example to produce different gaits in

locomotion (Vidal-Gadea et al., 2011; Grillner and El Manira, 2015; Kiehn, 2016). The activity of

neural circuits is flexible, and much of this flexibility is provided by modulatory transmitters and hor-

mones which alter synaptic and intrinsic neuronal properties (Brezina, 2010; Harris-Warrick, 2011;

Jordan and Sławińska, 2011; Bargmann, 2012; Marder, 2012; Bucher and Marder, 2013;

Nadim and Bucher, 2014). The pyloric circuit is sensitive to a plethora of small molecule transmitters

and neuropeptides which affect cycle frequency and phase relationships (Marder and Bucher, 2007;

Stein, 2009; Daur et al., 2016). Indeed, extensive research has indicated the role of amine modula-

tion of synaptic strength and neuronal firing phase in the pyloric circuit, and how amine modulation

of synaptic and intrinsic firing properties changes firing phases (Johnson et al., 2003; Gruhn et al.,

2005; Johnson et al., 2005; Peck et al., 2006; Harris-Warrick and Johnson, 2010; Harris-War-

rick, 2011; Kvarta et al., 2012). With respect to our findings, any given neuromodulator could act

presynaptically to alter P, duration, or duty cycle on the one hand, and gmax and Dpeak on the other.

In addition, the neuromodulator could affect the postsynaptic neuron’s properties and alter its sensi-

tivity to any of these parameters. Therefore, our findings could not just further our understanding of

how phase can be maintained across different rhythm frequencies, but also provide a framework for

testing if and how changes in synaptic dynamics may contribute to altering phase relationships under

different neuromodulatory conditions.

Materials and methods
Adult male crabs (Cancer borealis) were acquired from local distributors and maintained in aquaria

filled with chilled (10–13˚C) artificial sea water until use. Crabs were prepared for dissection by plac-

ing them on ice for 30 min. The dissection was performed using standard protocols as previously

described (Tohidi and Nadim, 2009; Tseng and Nadim, 2010). The STNS, including the four gan-

glia (esophageal ganglion, two commissural ganglia, and the STG) and their connecting nerves, and

the motor nerves arising from the STG, were dissected from the stomach and pinned into a Sylgard

(Dow-Corning) lined Petri dish filled with chilled saline. The STG was desheathed, exposing the

somata of the neurons for intracellular impalement. Preparations were superfused with chilled (10-
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13˚C) physiological Cancer saline containing: 11 mM KCl, 440 mM NaCl, 13 mM CaCl2 � 2H2O, 26

mM MgCl2 � 6H2O, 11.2 mM Trizma base, 5.1 mM maleic acid with a pH of 7.4.

Extracellular recordings were obtained from identified motor nerves using stainless steel electro-

des, amplified using a differential AC amplifier (A-M Systems, model 1700). One lead was placed

inside a petroleum jelly well created to electrically isolate a small section of the nerve, the other right

outside of it. For intracellular recordings, glass microelectrodes were prepared using the Flaming-

Brown micropipette puller (P97; Sutter Instruments) and filled with 0.6 M K2SO4 and 20 mM KCl.

Microelectrodes used for membrane potential recordings had resistances of 25–30 MW; those used

for current injections had resistances of 15–22 MW. Intracellular recordings were performed using

Axoclamp 2B and 900A amplifiers (Molecular Devices). Data were acquired using pClamp 10 soft-

ware (Molecular Devices) and the Netsuite software (Gotham Scientific), sampled at 4–5 kHz and

saved on a PC using a Digidata 1332A (Molecular Devices) or a PCI-6070-E data acquisition board

(National Instruments).

Individual pyloric neurons were impaled and identified via their membrane potential waveforms,

correspondence of spike patterns with extracellular nerve recordings, and interactions with other

neurons within the network (Weimann et al., 1991).

Constructing realistic graded IPSC waveforms
Inhibitory postsynaptic currents (IPSCs) were recorded from LP neurons during the ongoing rhythm

using two-electrode voltage clamp and holding the LP neuron at �50 mV, far from the IPSC reversal

potential of ~ �80 mV (Figure 3A). We refer to the total current measured in the voltage-clamped

LP neuron during the activity of the PD and PY neurons as a synaptic current for the following rea-

sons: 1, the after blocking the PTX-sensitive component of the pacemaker synapses, the LP neuron

produces tonic spiking activity (see, for example Figure 2B), and 2, holding the LP neuron at differ-

ent voltages (e.g. �60 or �110 mV) produces a similarly shaped current, but with a different ampli-

tude or reversed sign (at �110 mV).

When the LP soma is voltage clamped at �50 mV, the axon (which is electrotonically distant from

the soma) produced action potentials following the synaptic inhibition from the PY neuron and the

pacemaker neurons. The onset of the LP neuron action potentials (recorded in the current trace) was

used to calculate the mean IPSC for each experiment averaging the IPSCs over 10–20 cycles. The

IPSC waveforms were then extracted by normalizing both the amplitude and the duration of the

mean IPSC.

Driving the LP neuron with noise current
In these experiments, the preparation was superfused in Cancer saline plus 10-5 M picrotoxin (PTX;

Sigma Aldrich) for 30 min to block the synaptic currents to the LP neuron. The removal of synaptic

inhibition onto LP neurons changed the activity of these neurons from bursting to tonic firing. Then,

noise current, generated by the Ornstein-Uhlenbeck (O-U) process (Lindner, 2019), 60 min using the

Scope software (available at http://stg.rutgers.edu/Resources.html, developed in the Nadim labora-

tory). The baseline of the noise current was adjusted by adding DC current so that it can provide

enough inhibition to produce silent periods alternating with bursts of action potentials. The O-U pro-

cess was defined as

dXt ¼�
1

t
Xtdt þsdWt:

The parameters used for noise injection were t = 10 to 20 ms, s = 200 pA and a DC current of

�200 to �100 pA. In these experiments, we defined bursts as groups of at least two action poten-

tials with inter-spike intervals < 300 ms, following a gap of at least 300 ms.

Driving the LP neuron with realistic or triangular IPSC waveforms in
dynamic clamp
The dynamic clamp current was injected using the Netclamp software (Netsuite, Gotham Scientific).

We pharmacologically blocked synaptic inputs from the pacemaker AB and follower PY neurons to

the LP neuron by superfusing the perparation in Cancer saline plus 10-5 M picrotoxin (PTX; Sigma

Aldrich) for 30 min. This treatment does not block the cholinergic synaptic input from the PD
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neurons for which no clean pharmacological blocker is known. Although the PD neuron input has

some influence on the LP neuron activity, this input only constitutes <20% of the total pacemaker

synapse and cannot drive oscillations in the follower LP neuron.

The LP neuron was driven in PTX with an artificial synaptic current in dynamic clamp. The synaptic

current was given as

Isyn ¼ gsyn VLP�Esyn

� �

where the synaptic conductance gsyn was a pre-determined waveform, repeated periodically with

period P, and Esyn was the synaptic reversal potential set to �80 mV (Zhao et al., 2011).

Two sets of dynamic clamp experiments were performed on different animals. In one set of

experiments, gsyn was set to be a triangular waveform. We measured the effects of four different

parameters in these triangle conductance injections (Figure 1): peak phase (Dpeak), duration (Tact),

period (P = time between onsets of dynamic clamp synaptic injections), and maximal conductance

(gmax, the peak value of gsyn). This allowed us to explore which combinations of the different param-

eters influences the LP phase. Five values for P were used: 500, 750, 1000, 1500, and 2000 ms, which

cover the typical range of pyloric cycle periods. Three values of gmax were used: 0.1, 0.2 and 0.4 mS,

consistent with previous measurements of synaptic conductance (Zhao et al., 2011; Tseng et al.,

2014). The value of Dpeak was varied to be 0, 0.25, 0.5, 0.75 or 1. In the same experiment, all runs

were done in two conditions: with Tact constant across different P values (C-Dur case with Tact = 300

ms) or with Tact changing proportionally to P (C-DC case with duty cycle DC =Tact/P=0.3).

In the other set of experiments, gsyn was a realistic IPSC waveform, based on a pre-recorded IPSC

in the LP neuron. In these experiments, P was varied to be 500, 750, 1000, 1250, 1500, or 2000 ms

by scaling the realistic waveform in the time direction. In these experiments, gmax was set to be 0.1,

0.2, 0.4, 0.6, or 0.8 mS. The LP neuron burst onset delay (Dt) was measured relative to the onset of

the pacemaker component of the synaptic input (identified by the kink in the synaptic conductance

waveform) in each cycle. The burst phase was calculated as ’LP = Dt/P. Phase constancy means that

Dt changed proportionally to P. To measure the LP neuron phase with respect to a new reference

point, the end of the pacemaker input. This reference point was defined by drawing a horizontal line

from the kink on the synaptic waveform that identified the onset of the pacemaker input, and chos-

ing the first intersection point.

Determining relationship between cycle period (P), synaptic strength
(gmax) and LP phase (’LP) using the realistic IPSC waveform
We determined how well the mathematical model derived for constant input duty cycles (see Equa-

tion (8) below), matched the experimental data obtained with realistic IPSC waveforms. To this end,

we fit the model to ’LP values measured for all values of gmax and P, using the standard fitting rou-

tine ’fit’ in MATLAB (Mathworks).

Sensitivity of ’LP to gmax and Dpeak across all P values
To explore how gmax and Dpeak may interact to influence ’LP, we examined the sensitivity of ’LP to

these two parameters, individually and in combination, for all values of P in our data. For each P, we

computed the mean value of ’LP across all experiments, and all values of gmax (0.1, 0.2, 0.3 and 0.4

mS) and Dpeak (0, 0.25, 0.5, 0.75 or 1). (The ’LP value for gmax = 0.3 mS was obtained in this case by

linearly interpolating the values for 0.2 and 0.4 mS.) This produced a 4 by 5 matrix of all values. For

each data point in the matrix, we moved along eight directions (+gmax, +Dpeak, –gmax, –Dpeak,+gmax

and +Dpeak, –gmax and –Dpeak,+gmax and –Dpeak,+gmax and –Dpeak). Here "+” denotes increasing and

“- “denotes decreasing. We then calculated the change in ’LP per unit gmax (normalized by 0.4 mS),

Dpeak, or both. For example, the sensitivity of ’LP when Dpeak was changed from 0.25 to 0.5 was mea-

sured as

’LP atDpeak ¼ 0:5
� �

�’LP atDpeak ¼ 0:25
� �

0:5� 0:25

Similarly, the sensitivity of ’LP when gmax was changed from 0.2 to 0.4 was measured as
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’LP atgmax ¼ 0:4ð Þ�’LP atgmax ¼ 0:2ð Þ

0:4� 0:2ð Þ=0:4

These data are provided in Figure 7—source data 1. As the next step, we averaged the sensitiv-

ity along each aligned direction: [+gmax and –gmax]; [+Dpeak and –Dpeak]; [+gmax & +Dpeak and –gmax &

–Dpeak]; [+gmax & –Dpeak and +gmax & –Dpeak]. This produced the four cardinal directions, shown in

Figure 7. Finally, we averaged the sensitivity across all P values.

A model of synaptic dynamics
In the derivation of the model, the firing time of the LP neuron was assumed to be completely deter-

mined by its synaptic input. This synaptic conductance (gsyn) was assumed to rise and fall with dis-

tinct time constants. The following holds over one cycle period and therefore time is reset with

period P (t (mod P)):

dgsyn

dt
¼

gmax � gsyn
� �

tr t modPð Þ

�gsyn=ts t modPð Þ

<tpeak

� tpeak
(1)

(

where the time tpeak, corresponding to Dpeak, is tpeak = Dpeak Tact. We assumed that LP neuron

remained inactive when gsyn was above a fixed threshold (g*) less than gmax. Because the synaptic

input is periodic with period P, we solved for the minimum and maximum values of gsyn in each

cycle. The minimum (glo) occurred just before the onset (t = 0) of AB/PD activity, whereas the maxi-

mum occurred at the peak synaptic phase Dpeak for the C-Dur case. In the C-DC case, Tact = DC �P,

where DC is the duty cycle (fixed at 0.3 in our experiments).

To calculate g*, we set the value t = 0 so that gsyn(0) = glo (and, by periodicity, gsyn(P)=glo), and

solved the first part of Equation (1) where gsyn increases until t = tpeak. This yielded

gpeak ¼ gsyn tpeak
� �

¼ gmax þ glo � gmaxð Þe�tpeak=tr (2)

We then used the second part of Equation (1) to track the decay of gsyn for tpeak <t < P:

gsyn tð Þ ¼ gpeake
� t�tpeakð Þ=ts (3)

Using Equation (3) , we calculated the time Dt at which the synaptic conductance gsyn(Dt)=g
* as

follows:

g�¼ gpeake
� Dt�tpeakð Þ=ts (4)

Solving Equation (4) for Dt yielded

Dt¼ tsln
g tpeak
� �

g�
þ tpeak:

Dividing this equation by P yielded ’LP:

’LP ¼ F P;gmax;Dpeak

� �

¼
ts

P
ln
gpeak

g�
þ
tpeak

P
; (5)

where gpeak is given by Equation (2) . This expression provides a description of the dependence of

’LP as a function of P, gmax and Dpeak. To explore the role of the parameters in this relationship, we

made a simplifying assumption that the synaptic conductance gsyn(t) rapidly reached its peak (i.e., tr
was small), stayed at this value and started to decay at t = tpeak. In this case g(t)=gmax on the interval

(0,tpeak) and the value of glo is irrelevant. With this assumption, Equation (5) reduced to

’LP ¼
ts

P
ln
gmax

g�
þ
tpeak

P
: (6)

Substituting tpeak = Dpeak�Tact in Equation (6) , gave

’LP ¼ F P;gmax;Dpeak

� �

¼
1

P
tsln

gmax

g�
þDpeakTact

� �

; (7)
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which we used to describe the LP phase in the C-Dur case. To describe the C-DC case, after substi-

tuting tpeak = Dpeak�DC�P, we obtained

’LP ¼ F P;gmax;Dpeak

� �

¼
1

P
tsln

gmax

g�

� �

þDpeakDC: (8)

Note that these equations also describe the relationship between ’LP with Tact in the C-Dur case,

and DC in the C-DC case).

Equations (7), (8) and can be used to approximate a range of parameters over which ’LP is main-

tained at a constant value ’c. To do so, we assumed a specific parameter set, say P̂; ĝmax; D̂peak

� �

,

satisfies

F P̂; ĝmax; D̂peak

� �

¼ ’c;

for some fixed phase value, ’c. We could now ask whether there are nearby parameters for which

phase remains constant, that is F remains equal to ’c. The Implicit Function Theorem (Krantz and

Parks, 2012) guarantees that this is the case, provided certain derivatives evaluated at

P̂; ĝmax; D̂peak

� �

are non-zero, which turns out to be true over a large range of parameters. Since the

partial derivative with respect to Dpeak of F(P,gmax,Dpeak) at this point is a non-zero constant equal to

Tact/P (or DC) in the C-Dur (or C-DC) case, there is a function Dpeak = h(P,gmax) such that

F P;gmax;h P;gmaxð Þð Þ ¼ ’c (9)

for values of P and gmax near P̂; ĝmax
� �

. In other words, the Implicit Function Theorem guarantees

that small changes in P and gmax can be compensated for by an appropriate choice of Dpeak in order

to maintain a constant LP phase. A similar analysis can be done by solving for gmax in terms of P and

Dpeak or by solving for P in terms of gmax and Dpeak.

Keeping gmax (respectively, Dpeak) constant in these equations allows us to obtain a relationship

between P and Dpeak (respectively, gmax), for which ’LP is kept constant at ’c. Consider Equations (7),

(8) and for fixed values of both ’LP (= ’c) and gmax. Then these equations reduce to simple func-

tional relationships where Dpeak can be expressed as a function of P. In the C-DC case, for example,

evaluating Dpeak from Equation (8) produces

gmax ¼ g � �exp
P

ts
’c�DpeakDC
� �

� �

(10)

Equation (10) describes how gmax must vary with P for the system to maintain a constant phase

’c for any given Dpeak.

Alternatively, Dpeak can be expressed as a function of P. In the C-DC case, evaluating Dpeak from

Equation (8) produces

Dpeak ¼
’c

DC
�

ts

DC �P
ln
gmax

g�
; (11)

Equation (11) can be used to calculate the range of P values over which changing Dpeak (from 0

to 1) can maintain a constant phase ’c. Solving 0 < Dpeak < 1 using Equation (11) yields

ts

’c

ln
gmax

g�
<PDC<

ts

’c�DC
ln
gmax

g�
(12)

Performing the same procedure in the C-Dur case, we find

ts

’c

ln
gmax

g�
<PDur<

Tact

’c

þ
ts

’c

ln
gmax

g�
: (13)

The lower limits of the two cases (PDC and PDur) are the same. The upper limit for PDC is larger

than that of PDur if
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’c<DC 1þ
ts

Tact
ln
gmax

g�

� �

: (14)

If DP denotes the range of P values that respectively satisfy Equation (12) or (13), then DPDC >

DPDur if the inequality given by holds, which it does for true for ts and gmax large enough.

Adding synaptic depression to the model of synaptic dynamics
In a previous modeling study, we explored how the phase of a follower neuron was affected when

the inhibitory synapse from an oscillatory neuron to this follower had short-term synaptic depression

(Manor et al., 2003). In that study the role of the parameter Dpeak was not considered. It is straight-

forward to add synaptic depression to Equations (7), (8) and therefore examine how phase is

affected if Dpeak increases with P and synaptic strength also changes with P according to the rules of

synaptic depression. We will restrict this section to the C-DC case. A similar derivation can be made

for the C-Dur case.

An ad hoc model of synaptic depression can be made using a single variable sd which will be a

periodic function that denotes the extent of depression and takes on values between 0 and 1

(Bose et al., 2004). sd decays during the AB/PD burst (from time 0 to Tact, indicating depression)

and then recovers during the inter-burst interval (from Tact to P, indicating recovery). Thus, sd can be

described by an equation of the form:

dsd

dt
¼

�sd=tb t mod Pð Þ � Tact
1� sdð Þ=ta Tact<t mod Pð Þ<P

�

Using periodicity, it is straightforward to show that the maximum value of sd, which occurs at the

start of the AB/PD burst, is given by:

smax Pð Þ ¼
1� e�P 1�DCð Þ=ta

1� e�P 1�DCð Þ=tae�DC�P=tb
: (15)

Note that smax is a monotonically increasing function with values between 0 and 1. Its value

approaches one as P increases, indicating that the synapse becomes stronger. For a complete deri-

vation and description, see Bose et al. (2004). The effect of synaptic depression on synaptic

strength can be obtained by setting

gmax ¼ �gmax � smax Pð Þ (16)

where smax is given by Equation (15).

Software, analysis and statistics
Data were analyzed using MATLAB scripts to calculate the time of burst onset and the phase. Statis-

tical analysis was performed using Sigmaplot 12.0 (Systat). Significance was evaluated with an a

value of 0.05, error bars and error values reported denote standard error of the mean (SEM) unless

otherwise noted.
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Oren I, Mann EO, Paulsen O, Hájos N. 2006. Synaptic currents in anatomically identified CA3 neurons during
hippocampal gamma oscillations in vitro. Journal of Neuroscience 26:9923–9934. DOI: https://doi.org/10.1523/
JNEUROSCI.1580-06.2006, PMID: 17005856

Panzeri S, Brunel N, Logothetis NK, Kayser C. 2010. Sensory neural codes using multiplexed temporal scales.
Trends in Neurosciences 33:111–120. DOI: https://doi.org/10.1016/j.tins.2009.12.001, PMID: 20045201

Martinez et al. eLife 2019;8:e46911. DOI: https://doi.org/10.7554/eLife.46911 25 of 26

Research article Neuroscience

https://doi.org/10.1073/pnas.1019676108
http://www.ncbi.nlm.nih.gov/pubmed/21321198
https://doi.org/10.1152/jn.00586.2012
https://doi.org/10.1152/jn.00586.2012
http://www.ncbi.nlm.nih.gov/pubmed/22933725
https://doi.org/10.1152/jn.00370.2003
http://www.ncbi.nlm.nih.gov/pubmed/12840081
https://doi.org/10.1523/JNEUROSCI.3699-07.2007
https://doi.org/10.1523/JNEUROSCI.3699-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/18094245
https://doi.org/10.1523/JNEUROSCI.23-29-09557.2003
https://doi.org/10.1523/JNEUROSCI.23-29-09557.2003
http://www.ncbi.nlm.nih.gov/pubmed/14573535
https://doi.org/10.1523/JNEUROSCI.0482-04.2004
https://doi.org/10.1523/JNEUROSCI.0482-04.2004
http://www.ncbi.nlm.nih.gov/pubmed/15175383
https://doi.org/10.1523/JNEUROSCI.17-14-05610.1997
https://doi.org/10.1523/JNEUROSCI.17-14-05610.1997
http://www.ncbi.nlm.nih.gov/pubmed/9204942
https://doi.org/10.1152/jn.00411.2003
http://www.ncbi.nlm.nih.gov/pubmed/12815020
https://doi.org/10.1016/j.cub.2005.08.022
http://www.ncbi.nlm.nih.gov/pubmed/16139202
https://doi.org/10.1016/j.neuron.2012.09.010
https://doi.org/10.1016/j.neuron.2012.09.010
http://www.ncbi.nlm.nih.gov/pubmed/23040802
https://doi.org/10.1146/annurev-neuro-071013-013958
http://www.ncbi.nlm.nih.gov/pubmed/25032499
https://doi.org/10.1016/S0960-9822(01)00581-4
http://www.ncbi.nlm.nih.gov/pubmed/11728329
https://doi.org/10.1146/annurev.physiol.69.031905.161516
https://doi.org/10.1146/annurev.physiol.69.031905.161516
http://www.ncbi.nlm.nih.gov/pubmed/17009928
https://doi.org/10.1038/nrn1949
http://www.ncbi.nlm.nih.gov/pubmed/16791145
https://doi.org/10.1073/pnas.95.9.5323
http://www.ncbi.nlm.nih.gov/pubmed/9560274
https://doi.org/10.1152/jn.01248.2004
http://www.ncbi.nlm.nih.gov/pubmed/15673549
https://doi.org/10.1113/jphysiol.2008.164111
https://doi.org/10.1113/jphysiol.2008.164111
http://www.ncbi.nlm.nih.gov/pubmed/19103680
https://doi.org/10.1007/s00285-007-0150-2
http://www.ncbi.nlm.nih.gov/pubmed/18084765
https://doi.org/10.1016/j.pneurobio.2010.11.001
https://doi.org/10.1016/j.pneurobio.2010.11.001
http://www.ncbi.nlm.nih.gov/pubmed/21093529
https://doi.org/10.1016/S0925-2312(02)00811-1
https://doi.org/10.1016/j.conb.2014.05.003
http://www.ncbi.nlm.nih.gov/pubmed/24907657
https://doi.org/10.1016/S0959-4388(00)00159-8
http://www.ncbi.nlm.nih.gov/pubmed/11240276
https://doi.org/10.1523/JNEUROSCI.1580-06.2006
https://doi.org/10.1523/JNEUROSCI.1580-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/17005856
https://doi.org/10.1016/j.tins.2009.12.001
http://www.ncbi.nlm.nih.gov/pubmed/20045201
https://doi.org/10.7554/eLife.46911


Peck JH, Gaier E, Stevens E, Repicky S, Harris-Warrick RM. 2006. Amine modulation of ih in a small neural
network. Journal of Neurophysiology 96:2931–2940. DOI: https://doi.org/10.1152/jn.00423.2005, PMID: 16
943317

Pulver SR, Bayley TG, Taylor AL, Berni J, Bate M, Hedwig B. 2015. Imaging fictive locomotor patterns in larval
Drosophila. Journal of Neurophysiology 114:2564–2577. DOI: https://doi.org/10.1152/jn.00731.2015,
PMID: 26311188

Rabbah P, Nadim F. 2007. Distinct synaptic dynamics of heterogeneous pacemaker neurons in an oscillatory
network. Journal of Neurophysiology 97:2239–2253. DOI: https://doi.org/10.1152/jn.01161.2006,
PMID: 17202242

Rosenbaum P, Marder E. 2018. Graded transmission without action potentials sustains rhythmic activity in some
but not all modulators that activate the same current. The Journal of Neuroscience 38:8976–8988. DOI: https://
doi.org/10.1523/JNEUROSCI.2632-17.2018, PMID: 30185461

Schulz DJ, Goaillard JM, Marder E. 2006. Variable channel expression in identified single and electrically coupled
neurons in different animals. Nature Neuroscience 9:356–362. DOI: https://doi.org/10.1038/nn1639,
PMID: 16444270

Skinner FK, Mulloney B. 1998. Intersegmental coordination in invertebrates and vertebrates. Current Opinion in
Neurobiology 8:725–732. DOI: https://doi.org/10.1016/S0959-4388(98)80114-1, PMID: 9914235

Somogyi P, Klausberger T. 2005. Defined types of cortical interneurone structure space and spike timing in the
hippocampus. The Journal of Physiology 562:9–26. DOI: https://doi.org/10.1113/jphysiol.2004.078915,
PMID: 15539390

Soofi W, Goeritz ML, Kispersky TJ, Prinz AA, Marder E, Stein W. 2014. Phase maintenance in a rhythmic motor
pattern during temperature changes in vivo. Journal of Neurophysiology 111:2603–2613. DOI: https://doi.org/
10.1152/jn.00906.2013, PMID: 24671541

Stein W. 2009. Modulation of stomatogastric rhythms. Journal of Comparative Physiology A 195:989–1009.
DOI: https://doi.org/10.1007/s00359-009-0483-y

Stein PSG. 2018. Central pattern generators in the turtle spinal cord: selection among the forms of motor
behaviors. Journal of Neurophysiology 119:422–440. DOI: https://doi.org/10.1152/jn.00602.2017, PMID: 2
9070633

Tang LS, Taylor AL, Rinberg A, Marder E. 2012. Robustness of a rhythmic circuit to short- and long-term
temperature changes. Journal of Neuroscience 32:10075–10085. DOI: https://doi.org/10.1523/JNEUROSCI.
1443-12.2012, PMID: 22815521

Tohidi V, Nadim F. 2009. Membrane resonance in bursting pacemaker neurons of an oscillatory network is
correlated with network frequency. Journal of Neuroscience 29:6427–6435. DOI: https://doi.org/10.1523/
JNEUROSCI.0545-09.2009, PMID: 19458214

Tseng HA, Martinez D, Nadim F. 2014. The frequency preference of neurons and synapses in a recurrent
oscillatory network. Journal of Neuroscience 34:12933–12945. DOI: https://doi.org/10.1523/JNEUROSCI.2462-
14.2014, PMID: 25232127

Tseng HA, Nadim F. 2010. The membrane potential waveform of bursting pacemaker neurons is a predictor of
their preferred frequency and the network cycle frequency. Journal of Neuroscience 30:10809–10819.
DOI: https://doi.org/10.1523/JNEUROSCI.1818-10.2010, PMID: 20702710

Vidal-Gadea A, Topper S, Young L, Crisp A, Kressin L, Elbel E, Maples T, Brauner M, Erbguth K, Axelrod A,
Gottschalk A, Siegel D, Pierce-Shimomura JT. 2011. Caenorhabditis Elegans selects distinct crawling and
swimming gaits via dopamine and serotonin. PNAS 108:17504–17509. DOI: https://doi.org/10.1073/pnas.
1108673108, PMID: 21969584

Wang XJ. 2010. Neurophysiological and computational principles of cortical rhythms in cognition. Physiological
Reviews 90:1195–1268. DOI: https://doi.org/10.1152/physrev.00035.2008, PMID: 20664082

Weimann JM, Meyrand P, Marder E. 1991. Neurons that form multiple pattern generators: identification and
multiple activity patterns of gastric/pyloric neurons in the crab stomatogastric system. Journal of
Neurophysiology 65:111–122. DOI: https://doi.org/10.1152/jn.1991.65.1.111, PMID: 1999725

Wenning A, Hill AA, Calabrese RL. 2004. Heartbeat control in leeches. II. fictive motor pattern. Journal of
Neurophysiology 91:397–409. DOI: https://doi.org/10.1152/jn.00528.2003, PMID: 13679405

Wenning A, Norris BJ, Günay C, Kueh D, Calabrese RL. 2018. Output variability across animals and levels in a
motor system. eLife 7:e31123. DOI: https://doi.org/10.7554/eLife.31123, PMID: 29345614

Zhang Y, Bose A, Nadim F. 2008. Predicting the activity phase of a follower neuron with A-current in an
inhibitory network. Biological Cybernetics 99:171–184. DOI: https://doi.org/10.1007/s00422-008-0248-7,
PMID: 18719938

Zhang Y, Bose A, Nadim F. 2009. The influence of the A-current on the dynamics of an oscillator-follower
inhibitory network. SIAM Journal on Applied Dynamical Systems 8:1564–1590. DOI: https://doi.org/10.1137/
090760994, PMID: 20664815

Zhang C, Guy RD, Mulloney B, Zhang Q, Lewis TJ. 2014. Neural mechanism of optimal limb coordination in
crustacean swimming. PNAS 111:13840–13845. DOI: https://doi.org/10.1073/pnas.1323208111, PMID: 25201
976

Zhao S, Sheibanie AF, Oh M, Rabbah P, Nadim F. 2011. Peptide neuromodulation of synaptic dynamics in an
oscillatory network. Journal of Neuroscience 31:13991–14004. DOI: https://doi.org/10.1523/JNEUROSCI.3624-
11.2011, PMID: 21957260

Martinez et al. eLife 2019;8:e46911. DOI: https://doi.org/10.7554/eLife.46911 26 of 26

Research article Neuroscience

https://doi.org/10.1152/jn.00423.2005
http://www.ncbi.nlm.nih.gov/pubmed/16943317
http://www.ncbi.nlm.nih.gov/pubmed/16943317
https://doi.org/10.1152/jn.00731.2015
http://www.ncbi.nlm.nih.gov/pubmed/26311188
https://doi.org/10.1152/jn.01161.2006
http://www.ncbi.nlm.nih.gov/pubmed/17202242
https://doi.org/10.1523/JNEUROSCI.2632-17.2018
https://doi.org/10.1523/JNEUROSCI.2632-17.2018
http://www.ncbi.nlm.nih.gov/pubmed/30185461
https://doi.org/10.1038/nn1639
http://www.ncbi.nlm.nih.gov/pubmed/16444270
https://doi.org/10.1016/S0959-4388(98)80114-1
http://www.ncbi.nlm.nih.gov/pubmed/9914235
https://doi.org/10.1113/jphysiol.2004.078915
http://www.ncbi.nlm.nih.gov/pubmed/15539390
https://doi.org/10.1152/jn.00906.2013
https://doi.org/10.1152/jn.00906.2013
http://www.ncbi.nlm.nih.gov/pubmed/24671541
https://doi.org/10.1007/s00359-009-0483-y
https://doi.org/10.1152/jn.00602.2017
http://www.ncbi.nlm.nih.gov/pubmed/29070633
http://www.ncbi.nlm.nih.gov/pubmed/29070633
https://doi.org/10.1523/JNEUROSCI.1443-12.2012
https://doi.org/10.1523/JNEUROSCI.1443-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/22815521
https://doi.org/10.1523/JNEUROSCI.0545-09.2009
https://doi.org/10.1523/JNEUROSCI.0545-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19458214
https://doi.org/10.1523/JNEUROSCI.2462-14.2014
https://doi.org/10.1523/JNEUROSCI.2462-14.2014
http://www.ncbi.nlm.nih.gov/pubmed/25232127
https://doi.org/10.1523/JNEUROSCI.1818-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/20702710
https://doi.org/10.1073/pnas.1108673108
https://doi.org/10.1073/pnas.1108673108
http://www.ncbi.nlm.nih.gov/pubmed/21969584
https://doi.org/10.1152/physrev.00035.2008
http://www.ncbi.nlm.nih.gov/pubmed/20664082
https://doi.org/10.1152/jn.1991.65.1.111
http://www.ncbi.nlm.nih.gov/pubmed/1999725
https://doi.org/10.1152/jn.00528.2003
http://www.ncbi.nlm.nih.gov/pubmed/13679405
https://doi.org/10.7554/eLife.31123
http://www.ncbi.nlm.nih.gov/pubmed/29345614
https://doi.org/10.1007/s00422-008-0248-7
http://www.ncbi.nlm.nih.gov/pubmed/18719938
https://doi.org/10.1137/090760994
https://doi.org/10.1137/090760994
http://www.ncbi.nlm.nih.gov/pubmed/20664815
https://doi.org/10.1073/pnas.1323208111
http://www.ncbi.nlm.nih.gov/pubmed/25201976
http://www.ncbi.nlm.nih.gov/pubmed/25201976
https://doi.org/10.1523/JNEUROSCI.3624-11.2011
https://doi.org/10.1523/JNEUROSCI.3624-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21957260
https://doi.org/10.7554/eLife.46911

