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Abstract

RNA velocity has enabled the recovery of directed dynamic infor-
mation from single-cell transcriptomics by connecting measure-
ments to the underlying kinetics of gene expression. This approach
has opened up new ways of studying cellular dynamics. Here, we
review the current state of RNA velocity modeling approaches,
discuss various examples illustrating limitations and potential
pitfalls, and provide guidance on how the ensuing challenges may
be addressed. We then outline future directions on how to general-
ize the concept of RNA velocity to a wider variety of biological
systems and modalities.
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Background

A central challenge in studying cellular dynamics in single-cell geno-

mics is that single-cell RNA-seq provides only static snapshots of

cellular states at the moment of the measurement, instead of follow-

ing cells over time. The concept of RNA velocity (La Manno et al,

2018) has unlocked new ways of studying cellular dynamics by

granting access to not only the descriptive state of a cell, but also to

its direction and speed of movement in transcriptome space, thereby

enabling predictive models of cell dynamics. RNA velocity recovers

directed information by distinguishing newly transcribed pre-

mRNAs (unspliced) from mature mRNAs (spliced), which can be

detected in standard single-cell RNA-seq protocols from the pres-

ence of introns. The change in mRNA abundance, termed RNA

velocity, is inferred by a per-gene reaction model that relates the

abundance of unspliced and spliced mRNA (Fig 1A). Positive veloc-

ity indicates a recent increase in unspliced transcripts (thus abun-

dances being higher than expected in steady state) followed by up-

regulation in spliced transcripts. Conversely, negative velocity indi-

cates down-regulation (Fig 1B). The combination of velocities

across genes is then used to estimate the future state of an individ-

ual cell (Fig 1C).

Recent advances have extended the concept to dynamic popula-

tions and enabled inference of reaction rates, reconstruction of time,

and detection of transiently expressed genes from the underlying

kinetics (Bergen et al, 2020). It has been shown that a small subset

of dynamical genes commonly informs the reconstruction of the

entire velocity vector field. This observation illustrated that in most

scenarios, only a small number of genes appear to obey simple

interpretable kinetics used by RNA velocity, which creates a major

challenge in interpreting RNA velocity results. While RNA velocity

has been taken up in a series of applications as summarized recently

(Lederer & La Manno, 2020); here, we focus on its underlying

modeling concepts, limitations, and possible extensions. In particu-

lar, we discuss issues that can lead to misspecification of transcrip-

tional models and outline potential conceptual and technical model

extensions that may resolve these limitations and generalize the

concept of RNA velocity. Our documented case study can be found

at: https://scvelo.org/perspectives.

Current state, model assumptions, and potential pitfalls

Currently, two modeling approaches exist that leverage expression

kinetics to estimate RNA velocity—the originally proposed “steady-

state” model velocyto and the subsequently extended dynamical

model scVelo. The steady-state model (La Manno et al, 2018) esti-

mates velocities as the deviation of the observed ratio of unspliced

to spliced mRNA from an inferred steady-state ratio. The steady-

state ratio is approximated with a linear regression on cells found in

the lower and upper quantiles where they are expected to have

reached steady-state expression levels. This model makes two

central assumptions: a common splicing rate across genes and the

presence of at least partial observation of the steady-state expression

levels in the sampled data. Although providing robust estimation,

these assumptions may lead to errors in velocity estimates and

cellular states when they are violated, e.g., due to heterogeneous

subpopulation or inability to observe the system near its steady

state. The likelihood-based dynamical model, introduced recently,

generalizes velocity estimation to transient systems (Bergen et al,

2020). While it relaxes the steady-state assumption, it remains that
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the kinetics are explained with a deterministic and fully decoupled

system of linear differential equations with constant kinetic rate

parameters. Beyond the scope of computational modeling, the statis-

tical power of the methods depends on the curvature in the phase

portrait since a lack of curvature challenges current models to

distinguish whether an up- or down-regulation is occurring. The

overall curvature of deviation from the steady-state line in the phase

portrait is mostly impacted by the ratios of splicing to degradation

rates (Box 1), indicating that statistical inference is limited to genes

where splicing is faster or comparable to degradation, while a small

ratio would yield straight lines rather than an interpretable curva-

ture. Note, that this lack of signal is highly gene-specific. Another

source of ambiguity only revealing straight lines is the incomplete

scope of observation of dynamic processes, which we frequently

find in subpopulations because of partially observed expression

kinetics, e.g., being upregulated only at the very end or downregu-

lated at the very beginning of a process.

To demonstrate potential pitfalls, we provide several examples

that disclose different types of limitations of current modeling

approaches (Fig 2). First, as described in the seminal works (La

Manno et al, 2018; Bergen et al, 2020), some genes show multi-

ple kinetic regimes across subpopulations and lineages (Fig 2A).

These can be governed by variations in splicing to degradation

rates ratios and manifest as multiple trajectories in phase space.

Second, as recently shown in mouse gastrulation (Pijuan-Sala

et al, 2019; Barile et al, 2021), a boost in expression has been

observed in erythroid maturation, possibly induced by a change

in transcription rate (Fig 2B). We made the same observation in

human bone marrow CD34+ hematopoietic cells (Setty et al,

2019). This up-regulating boost in expression would incorrectly

yield negative velocity estimates indicating down-regulation.

Third, a common example of incomplete scope is the observation

of only steady-state populations. Thus, we examined erroneously

inferred directions in terminal cell types in PBMCs (Zheng et al,

2017), where we would not have expected any explicit cell type

transition (Fig 2C). Genes not showing any transient states can be

explained by high noise levels. However, in this example it is

more likely that cells are mostly sampled in mature states, where
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Figure 1. Current state of RNA velocity modeling.

(A) Transcription of pre-mRNAs, their conversion into spliced mRNAs, and eventual degradation. Current RNA velocity modeling approaches use basic reaction kinetics for
each gene independently and formulate deterministic differential equations with linear dependencies, assuming constant rates. The system is decoupled across genes
and does not account for transcriptional regulation. (B) The temporal response delay of pre-mRNA being spliced into mature mRNA manifests itself in the curvature in
phase space and is leveraged to model and estimate RNA velocity for each gene. Velocity is obtained from the residual of the observed ratio to the inferred steady-state
ratio, i.e., the ratio of degradation to splicing rate. (C) The combination of velocities across genes is used to extrapolate the future state of an individual cell.
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mRNA levels have already equilibrated and intermediate states

leading to these equilibria have not been sampled. Despite the

lack of dynamic information, we still obtain arbitrary erroneous

directions. To confirm that these directions indeed arise from

distorted estimates and their projection, we show that the direc-

tions were also inferred even if using three top-likelihood selected

genes only (NKG7, IGHM, and GNLY) all of which show noisy

phase portraits without any indication of cell type transitions.

Hence, the unexpected projected directions are likely due to

velocities being estimated independently of noise levels and

uncertainty in estimates not being propagated into the projection.

A simulation of mature cell types further supports the possibility

of false projections as projected arrows are obtained that are not

seen in the ground-truth vector field (Fig 2C). Finally, we investi-

gated potential issues in hematopoiesis, using cord blood CD34+

cells, where we obtain a direction reversal from what is biologi-

cally expected. In CD99 and CD44, we observe complex character-

istics that cannot be resolved by current models: a simultaneous

up- and down-regulation during their transition from HSCs toward

different fates. In RBPMS, we find misleading concavity patterns

where we would have expected a convex curve, causing a direc-

tion reversal not only gene-specific but even in the projected

arrows (Fig 2D), which can be explained by time-dependent rates.

Experimental approaches that started elucidating time-dependent

mRNA turnover reveal frequent modulation of kinetic rates in

time (Battich et al, 2020). Motivated by these examples, we

explored how time-dependent kinetic rates shape the curvature of

gene activation. Simulations show how time-dependent rates can

reshape curvature patterns: Variable synthesis rates deflate curva-

ture (Fig 3A); slowly decreasing degradation and increasing splic-

ing rates inflate curvature, while slowly increasing degradation

and decreasing splicing rates flip curvature (Fig 3B and C).

Conceptual extensions and future directions

Most of the challenges can be addressed with conceptual model

extensions. Here, we will describe possible extensions to account

for more complex kinetics, stochasticity, gene regulation, multivari-

ate, and omics readouts (Fig 4).

Extended kinetic models for gene dynamics
The transcriptional kinetics is currently modeled as simple first-

order equations with constant kinetic rate parameters. The fact that

only a subset of genes follows simple kinetics is partly due to

modulations in transcription, splicing, and degradation rates by

more complex mechanisms. Kinetic rates can be dynamically regu-

lated as demonstrated in neurogenesis and hematopoiesis (Fig 2A

and B). In particular, recent metabolic RNA-labeling experiments,

which quantify preexisting and labeled newly synthesized tran-

scripts at a single-cell level, uncovered diverse behaviors of kinetic

rates during in vitro differentiation of intestinal stem cells and cell

cycle (Battich et al, 2015). Variable kinetic rates either between cell

states or during a dynamic process can lead to phase portraits that

have a misleading interpretation through the lens of existing RNA

velocity models. We expect extensions of RNA velocity kinetic

modeling that account for dynamic changes in kinetic rates (Fig 4

A). These models will improve the quality of RNA velocity predic-

tions, when accounting for alternative processes that modulate the

transcription machinery, splicing, and mRNA stability. Additionally,

such state-variable models will provide insights into transcriptional

and post-transcriptional regulatory processes that control gene

expression dynamics. The latter may also enable kinetics to be

modeled in time series designs. If the underlying kinetic rate param-

eters are state-dependent, thus discretely changing, it should be

possible to identify them upon classifying cells into their kinetic

regimes. Identification of time-variable rates, however, will require

additional constraints such as a pseudotime prior, optimal transport

with marginal constraints in time course measurements (Schie-

binger et al, 2019), or some other form of regularization. Finally,

Box 1: Kinetic signal (overall curvature) is determined by the ratio
of splicing and degradation rate, and the rate of transcription
convergence

Consider the differential equation

du

dt
¼ α�βu,

ds

dt
¼ δu� γs,

where the splicing rate parameters β and δ are treated differently for
generality to account for technical effects such as amplification
biases.
The analytical solution is given by

u tð Þ¼ u0e
�γtþα

β
1�e�βt
� �

,

s tð Þ¼ s0e
�γtþ δ

β

α

γ
1�e�γt
� �þ δ

β

α�βu0
γ�β

e�γt�e�βt
� �

:

The kinetic signal is given by the concavity of the residuals (for up-
regulation, while convexity for down-regulation). Assuming
s0 ¼ u0 ¼ 0, the residuals are given by

r tð Þ¼ u� γ

δ
s

��� ���¼ α

γ�β
e�βt� e�γt
� �

:

The overall deviation from the equilibrium line is given by integration
over the residuals

C¼
Z∞

0

r tð Þds tð Þ¼
Z∞

0

r tð Þds
dt

dt¼ 1

2

β

γþβ

α

β

δα

βγ
¼ 1

2

β

γþβ
ssteadyusteady:

When allowing a time-dependent gradually increasing transcription
rate α tð Þ¼ α 1�e�λαt

� �
, then the overall curvature is given by

C λαð Þ¼ C � 1� βγ

βþλαð Þ γþλαð Þ
� �

:

These equations have three important implications:

1 β
γþβ is the kinetic characteristic of statistical power, which notably
depends only on the unbiased rate parameters of splicing and
degradation, ranging from 0 (straight line) to 1 (maximally
pronounced curvature).

2 ssteadyusteady is the detection power, which is important for practical
settings as noise levels can be regarded as a function of expression
levels.

3 A gradual increase in synthesis rate through λα deflates the curva-
ture pattern.
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◀ Figure 2. Examples illustrating limitations of current RNA velocity models.

(A) A UMAP-based representation (left) and gene unspliced/spliced phase portraits (right) of Dentate Gyrus neurogenesis, adapted and reanalyzed from Bergen et al, 2020
(Suppl. Fig 11) and La Manno et al, 2018 (Suppl. Fig 7). These genes show multiple kinetic regimes across subpopulations and lineages, possibly governed by different
kinetic rates, and manifested as multiple trajectories/slopes. For instance, the endothelial subpopulation in Tmsb10 yields positive velocity estimates indicating up-
regulation, although it can be unambiguously estimated given only a slope distinct from the main granule lineage. To resolve these multiple regimes, it requires a model
that identifies these regimes and allows for variable kinetic rates. (B) Erythroid maturation in mouse gastrulation (top) and human bone marrow CD34+ hematopoietic
cells (bottom) that show transcriptional boosts in expression possibly induced by a change in transcription rate. Data from Setty et al (2019), Barile et al (2021). (C)
Peripheral blood mononuclear cells (PBMCs) from Zheng et al (2017) with mature cell types. Arbitrary directions are projected onto the UMAP representation (left) even
though velocity estimates are used from three genes only (right) that show no transient states. Expected would have been a noisy vector field that is not pointing into
any particular direction. That shows the possibility of false projections that are not supported by gene-wise dynamics. Simulated data of mature cell types support this
observation of possible false projections that are not seen in the ground-truth vector field. (D) Cord blood CD34+ hematopoietic cells with complex kinetics that shows
simultaneous up- and down-regulation during the transition from HSCs toward different fates of megakaryocyte/erythrocyte (MEPs), granulocyte/macrophage (GMPs),
and early lymphocyte progenitors (ELP). RBPMS even shows misleading concavity patterns causing a direction reversal. The possibility of reserved directions can be
explained by time-dependent degradation rates, as demonstrated using simulated data. CD34+ cord blood cell data are unpublished.
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Figure 3. Time-variable kinetic rates shape curvature of gene activation.

(A) Time-dependent kinetic rates shape the curvature patterns of gene activation. A slow increase in transcription rate rather than a stepwise activation deflates the
curvature and thus decreases the statistical power. (B) A slow increase in splicing rates inflates the curvature while a slow decrease in splicing rates flips the curvature.
That results in a convex curve, which yields negative velocities and gets incorrectly interpreted as down-regulation. In the worst case, this can also cause a direction
reversal in the projected velocities. (C) The impact of time-dependent degradation rates is inverse to time-dependent splicing rates. A slow decrease in degradation rates
inflates the curvature while a slow increase in degradation rates flips the curvature.
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statistical quantification of changes in kinetic rates of analogous cell

types under different conditions (e.g., health vs. disease) will allow

us to identify condition-specific dynamics.

Stochastic models for cell-specific dynamics
Expression kinetics are inherently stochastic, driven by random

biophysical interactions involved in the activity of the RNA
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Figure 4. Conceptual future directions and model extensions.

(A) Modulations of transcription, splicing, and degradation rates by more complex mechanisms, including transcriptional bursts, alternative splicing events, and
regulation of mRNA stability, suggest extended kinetic extensions such as modeling time- and state-variable kinetic rates. (B) Stochastic variability may be leveraged to
capture the bursting nature of transcription, to improve parameter identifiability and to identify other sources of heterogeneity in kinetic rates that can be informative
during cell fate decisions, when epigenetic priming or environmental signals guide cellular decisions. (C) The gene expression model can be extended to not only describe
cell-state transitions, but also regulatory interactions along these transitions. (D) In addition to exonic and intronic signals, other molecular moieties can be incorporated
into the model, such as protein measurements, metabolically labeled mRNAs, cytoplasmic mRNA, or chromatin state. The statistical signal as defined by the curvature is
mostly determined by the ratio of rates at which the expression levels of the two modalities decay (ratio of splicing and degradation for RNA velocity), which may be
improved through incorporation of other moieties.
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synthesis and turnover machinery. The randomness of such

biomolecular interactions coupled with the seemingly contradictory

aspect of precise coordination allows cells to explore broader

regimes, e.g., to differentiate toward multiple fates. Such mecha-

nisms include the bursting nature of transcription, which indicates

stochastic synthesis rates. Similarly, the noise induced by small

copy numbers of a given transcript in a cell and the limited amount

of material available per cell contribute to variations across cells

and, consequently, variations in cellular decision making. While in

systems biology, it has been shown that these may be leveraged for

better model identification (Munsky et al, 2009) or in the modeling

of cellular decision making using diffusion processes (Haghverdi

et al, 2016), this stochasticity is currently ignored in RNA velocity

modeling: The models describe the kinetics by deterministic dif-

ferential equations, which do not allow to identify other sources of

heterogeneity in kinetic rates, such as those imposed by external

factors or unmeasured internal cell properties (Hahl & Kremling,

2016). These sources of heterogeneity can have important implica-

tions and may be informative during cell fate decisions (Raj & van

Oudenaarden, 2008), when epigenetic priming or environmental

signals guide different cellular decisions of transcriptionally similar

cells, e.g., at decision forks (Soldatov et al, 2019). While RNA veloc-

ity provides a local estimate of cellular kinetics, global cell fate

trajectories may be inferred through Markov chain transitions along

the expression manifold (La Manno et al, 2018; Bergen et al, 2020)

or between cellular states (preprint: Lange et al, 2020), which we

expect to further improve when explored at the level of stochastic

kinetic modeling. In the future, we are expecting non-deterministic

models of RNA velocity, thus allowing improved detection rates to

account for cell type-specific or even cell-specific kinetic rates (Fig 4

B). The resulting more accurate single-cell estimates will further

enable us to move from a deterministic limit to an estimated distri-

bution of possible directions of a cell in an observed state, e.g., to

facilitate cell fate bifurcation analysis. Such stochastic, cell-specific

models, combined with the inference of cell division and death

rates, will further enable dynamic inference over large expression

manifolds and a better understanding of transitions between cellular

states.

Multivariate models toward system dynamics
Dynamic changes in gene expression are orchestrated by transcrip-

tional and post-transcriptional regulations. As shown in the example

of erythroid maturation from gastrulation and human bone marrow,

a transcriptional boost in expression can be induced by some

upstream regulators (Fig 2B). At the current stage, the model for

transcriptional dynamics is fully decoupled; i.e., each gene is treated

independently, and regulatory relationships are ignored. The

dynamical gene expression model can be extended to a multivariate

model that describes not only cell-state transitions, but also regula-

tory interactions along these transitions. Regulatory events can be

observed statistically in expression changes along pseudotime. To

describe these events, the expression patterns of target genes can be

modeled as a function of transcription factor activities, ideally

treated as a nonlinear system, for instance, using Hill kinetics. A

comprehensive evaluation of network modeling algorithms demon-

strates that none of the currently available methods are capable of

accurately recovering network structures from single-cell expression

data alone, and the effort of inferring gene regulatory networks is

still in its infancy (Pratapa et al, 2020). A recent analysis, however,

indicates that the inclusion of RNA velocity information enables at

least partial recovery of a regulatory network compared with

pseudotime-based approaches (Qiu et al, 2020). It opens an avenue

to generative approaches that model the known mRNA velocities as

a function of expression state to infer the underlying gene regulatory

network (Fig 4C). Using learned networks, we can generate new

trajectories and testable hypotheses from transcription factor activ-

ity, for instance, to understand perturbational responses. Finally, an

ultimate multivariate approach would jointly model the unknown

RNA velocities and the underlying regulatory network from

observed expression states and interpretable models of expression

kinetics. Although efficient inference of the coupled system may

quickly become challenging, such a joint model allows us to better

understand fate decisions and reveal regulatory mechanisms of

lineage priming. Furthermore, technological advances and the inclu-

sion of new functional genomic layers, such as transcription factor

binding, regulatory sequence motifs, chromatin modifications, and

intermediaries such as RNA polymerase activity, hold great promise.

These additional readouts will provide informative priors on the

regulatory network and extend specifications of kinetic models.

Multi-modal omics models
RNA velocity is grounded in connecting measurements to an under-

lying mechanism (mRNA splicing), with two modalities represent-

ing the current and future state. In addition to exonic and intronic

signals, other omics and molecular moieties can be leveraged if such

measurements are available in an unbiased manner (Lederer & La

Manno, 2020). Exploring other modalities becomes particularly

crucial for systems, where the transcriptional dynamics of mRNA

splicing does not provide sufficient signal, e.g., if splicing rate is

relatively small as opposed to a large degradation rate (Box 1, Fig

4D). This issue of insufficient signal presents a challenge for the

current mRNA splicing models, but may be resolvable, for instance,

through analysis of other modalities, e.g., using protein dynamics,

where we could expect the kinetic characteristic of statistical power

(Box 1) to increase from 0.5 to 0.8 (Fig 4D), when assuming a five-

fold half-life in proteins as opposed to RNA. For moieties such as

capped, polyadenylated, and degraded transcript fragments or

protein abundance, the model extension is straightforward upon

revising the underlying assumptions and moiety-specific statistical

model while ensuring reliable quantification. Experimental informa-

tion on the molecular compartments such as separation of nuclear

vs. cytoplasmic balance (Xia et al, 2019) using spatially resolved

MERFISH protocol can also be incorporated into the model. Further-

more, models can be extended to incorporate epigenetic and regula-

tory information based on single-cell chromatin accessibility or

other epigenetic data (Ma et al, 2020).

Ultimately, velocity estimation relies on accurate quantification

of abundances. Experiments indicate that intronic reads are only

noisy approximations of nascent transcription (Erhard et al, 2019)

and approaches for improving this quantification would be helpful.

On the experimental side, relative abundances can be directly

inferred using in vitro metabolic labeling (Erhard et al, 2019; Battich

et al, 2020; Cao et al, 2020). This additional readout can be included

in the dynamical model, incorporating varying labeling lengths as

additional priors. It may also be possible to boost the detection of

intronic molecules or reduce background from non-coding and
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antisense RNAs through improved preprocessing steps. On the

computational side, additional structural features of the reads and

gene-specific models of spliced vs. unspliced read patterns may

improve the signal-to-noise ratio (Fig 4D).

Technical challenges and extensions

Here, we outline technical challenges that impact the modeling,

such as normalization, batch effects, and gene selection, and in

parts discuss how to address them.

Cell size normalization
Current RNA velocity approaches provide normalization by size

factors proportional to the count depth per cell, and variations of

such. However, cell size also reflects the natural extension of the

reservoir of RNA transcription. It is not entirely clear how to best

account for the cell count depth, whether to normalize intronic

and exonic matrices to matrix-specific factors, to shared factors,

or even to not normalize at all. More generally, we should investi-

gate how changes in global cellular parameters, such as splicing

efficiency or abundance of RNA polymerases, affect the kinetic

models. Normalization by cell size is a simple way to remove the

effects of count sampling, but it can also distort these effects in a

non-trivial manner. Adequate preprocessing and ideally the inclu-

sion of these effects into the model are crucial for accurate

velocity estimates.

Estimation from single-nucleus data
Transcriptional measurements from individual nuclei enable the

analysis of tissues where whole cell isolation is challenging (Slyper

et al, 2020). The physical isolation of the nuclei distorts the balance

of spliced and unspliced mRNAs in a complex way. Their relative

abundances can shift depending on the nuclear transport rates or

the tendency to be present in the residual cytoplasmic structures

remaining on the outer surface of the purified nuclei. While first

applications of the existing RNA velocity model show promising

results (Marsh & Blelloch, 2020), the assumptions such as constant

degradation and nuclear export have not been conclusively verified,

so it remains to be seen whether alternative models or normaliza-

tion methods could provide consistent velocity estimates from

single-nucleus data.

Batch effect removal
Current implementations are not designed to yield robust estimates

across multiple samples with potential batch effects. While batch

effect correction has been increasingly addressed in scRNA-seq anal-

ysis, it is yet unclear how these methods can be extended to the

non-trivial setting with two connected modalities of unspliced and

spliced abundances. When applying batch correction to each modal-

ity independently, it is likely that the relationship between the two

modalities is not retained, which results in model misspecification.

It becomes particularly limiting in the context of processes that must

be sampled using time series designs, in which batch effects are

introduced as cells are harvested at different time points. At the

current state, we recommend fitting each sample separately, if

potential batch effects cannot be ruled out. Coupled batch removal

or state-variable models are necessary to address this issue.

Gene selection, visualization, and interpretation
The combination of velocities across genes is used to show the

direction of movement of an individual cell in a dimensionality-

reduced embedding. Incorrect directions can not only result from

erroneous velocity estimates, but also result from biases in the way

velocities are projected.

For instance, only a selection of genes is used for projection as

datasets are filtered to keep only genes that are informative of the

variability in the data. In particular, intron proximity to the 3’ end

may cause compositional bias affecting gene selection. Simultane-

ously, the interpretation of the projected velocities is hampered by

the difficulty in identifying individual gene dynamics that give rise

to the projections. For instance, projections can be distorted due to

multiple dynamic processes that occur simultaneously in a specific

regime, such as cell cycle and differentiation. Here, methods to

assess gene selection bias, joint models for better latent space repre-

sentations, and factor models to untangle compositional effects will

be highly relevant.

Conclusion

The data revolution in single-cell biology, the detailed cellular maps

of tissues, and the emergence of multi-omics technologies provide

unprecedented opportunities to analyze the complexity of biological

systems. We have reviewed the current state of modeling kinetics in

scRNA-seq using RNA velocity and outlined conceptual and techni-

cal extensions that are necessary to account for recent and upcom-

ing advances in single-cell biology. With the ongoing endeavors of

RNA velocity and its impact on various areas in cell biology, we

envision that new directions in dynamic modeling will be enabled

by this intriguing concept.

Analyzed datasets

All scRNA-seq datasets analyzed in this paper are published,

publicly available, and directly accessible through https://scvelo.

org, except for CD34+ cord blood cells. The hippocampal dentate

gyrus neurogenesis datasets at P12 and P35 are available from the

Gene Expression Omnibus repository (GEO) under accession

number GSE95753, and the P0 and P5 hippocampus dataset under

accession GSE104323. The mouse gastrulation atlas (Pijuan-Sala

et al, 2019) is available under accession number GSE87038. The

human bone marrow data are available through the Human Cell

Atlas data portal. The 68k PBMC data are available from the Short

Read Archive under accession number SRP073767.

The results reported in this manuscript are available at https://sc

velo.org/perspectives.
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