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Tuberculosis (TB) is a disease that leads to death over 1 million people per year
worldwide and the biological mediators of this pathology are poorly established,
preventing the implementation of effective therapies to improve outcomes in TB. Host–
bacterium interaction is a key step to TB establishment and the proteases produced by
these microorganisms seem to facilitate bacteria invasion, migration and host immune
response evasion. We presented, for the first time, the identification, biochemical
characterization, molecular dynamics (MDs) and immunomodulatory properties of a
prolyl oligopeptidase (POP) from Mycobacterium tuberculosis (POPMt). POP is a serine
protease that hydrolyzes substrates with high specificity for proline residues and has
already been characterized as virulence factor in infectious diseases. POPMt reveals
catalytic activity upon N-Suc-Gly-Pro-Leu-Gly-Pro-AMC, a recognized POP substrate,
with optimal activity at pH 7.5 and 37◦C. The enzyme presents KM and Kcat/KM values
of 108 µM and 21.838 mM−1 s−1, respectively. MDs showed that POPMt structure is
similar to that of others POPs, which consists of a cylindrical architecture divided into an
α/β hydrolase catalytic domain and a β-propeller domain. Finally, POPMt was capable
of triggering in vitro secretion of proinflammatory cytokines by peritoneal macrophages,
an event dependent on POPMt intact structure. Our data suggests that POPMt may
contribute to an inflammatory response during M. tuberculosis infection.

Keywords: tuberculosis, Mycobacterium tuberculosis, protease, serine protease, prolyl oligopeptidase,
proinflammatory cytokines, molecular dynamic, fluorescence spectroscopy

INTRODUCTION

Despite global effort to stop tuberculosis (TB), it remains the second-deadliest infectious disease
worldwide causing over 1 million deaths per year and an additional 0.4 million death resulting
from TB disease among HIV-positive patients (WHO, 2015). The pathology results from a highly
evolved and multifactorial ability of Mycobacterium tuberculosis, an intracellular bacterium, to
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prevent or evade effective host responses (Goldberg et al.,
2014). The initial host response triggered against M. tuberculosis
infection is characterized by innate immune response that involve
the recruitment of inflammatory cells to the lungs followed by
M. tuberculosis dissemination to draining lymph nodes during
adaptive immune response (Chackerian et al., 2002; Reiley et al.,
2008; Wolf et al., 2008). Even though M. tuberculosis can infect
a variety of cell types, alveolar macrophages are its main niche.
M. tuberculosis spread and dissemination is deeply correlated
with its ability to infect and immunomodulate macrophages. In
reaction to M. tuberculosis infection, macrophages upregulate
effectors and signaling pathways to both prevent bacilli
replication and recruit other immune cells into the site of
infection (Cooper and Torrado, 2012; Sia et al., 2015). However,
M. tuberculosis has an arsenal of potent mechanisms for evading
those antimicrobial reactions, thereby changing the host immune
response toward a pathological rather than a protective one.
TB disease occurs when the pathological process overcomes the
protective response, promoting chronic inflammation and lung
damage leading to severe coughing, fever, and chest pains (Fogel,
2015). Although pulmonary TB is the most typical presentation
of the disease, M. tuberculosis may also disseminate into a variety
of organs causing extrapulmonary TB (Galimi, 2011).

Mycobacterium tuberculosis multidrug- (MRD) and
extensively drug-resistant (XDR) strains along with HIV
coinfection are recognized as predominant threats to public
health and, combined to the lengthy and complex treatment for
TB, they emphasize the eminent necessity to comprehend host-
and pathogen-derived factors and their interactions (Roberts
et al., 2013; Korb et al., 2016). Mycobacteria proteases have
an active role in pathogenicity and viability of M. tuberculosis
inside host cells (Lebrun et al., 2009; Zhao and Xie, 2011).
Recently, M. tuberculosis zinc metalloprotease (zmp1), first
known to be required for bacilli virulence and survival in
macrophages (Master et al., 2008), was described to be implied
with the endothelin system by cleavage of ET-1, which seems
to be responsible for TB progression and inflammatory cell
recruitment (Correa et al., 2014). Rv3671c (marP), an acid
resistant serine-protease from M. tuberculosis periplasm,
is responsible to maintain phagocytosed bacterial pH near
neutrality in the acidic environment generated by IFN-gamma-
activated macrophages. As a consequence, M. tuberculosis is
able to resist to phagosome acidification, which is essential
for M. tuberculosis virulence (Vandal et al., 2008; Zhao et al.,
2015). With respect to proteolytic complex, M. tuberculosis
possesses two potential ClpP proteolytic subunits (CIpP1P2)
that seem to be involved in preventing the accumulation of
misfolded proteins and the degradation of critical endogenous
regulatory proteins. Active site mutants of CIpP1P2 showed
that the enzymatic activity of each subunit is required for
normal growth of M. tuberculosis in vitro and during infection
of mice (Raju et al., 2012). Another protease already studied is
Rv2224c, a cell envelope-associated predicted protease, which
compromised the intracellular survival of M. tuberculosis
into lung macrophages. Mice infected with Rv2224c mutant
survived significantly longer than the wild-type infected-mice
with reduced lung pathology, attenuating the virulence of

M. tuberculosis (Lun and Bishai, 2007; Rengarajan et al., 2008;
Vandal et al., 2009).

This research is focused on M. tuberculosis prolyl
oligopeptidase (POPMt) from the serine peptidase family
S9, which has not been specifically investigated in mycobacteria.
Prolyl oligopeptidase (POP, EC 3.4.21.26) belongs to a specific
group of enzymes that is capable of hydrolyze peptide bonds on
the carboxyl side of proline residues (Koida and Walter, 1976), an
unusual amino acid with a cyclic structure that confers protection
to proline-containing molecules from enzymatic degradation.
Alterations in human POP enzymatic activity have been detected
in patients suffering from depression, mania, schizophrenia,
nervous anxiety, anorexia and bulimia (Maes et al., 1995, 1998,
2001), including Alzheimer’s and Parkinson’s diseases (Mantle
et al., 1996) and multiple sclerosis (Tenorio-Laranga et al., 2010).
POP seems to be related to regulation of pathways involving
inositol (1, 4, 5)-triphosphate (IP3) and it was already shown
that low levels of the enzyme cause neurotrophic effects by
increasing IP3 (Williams et al., 1999; Williams and Harwood,
2000; Maes et al., 2001). POP has also been studied as a potential
therapeutic component for the treatment of celiac disease, a
chronic enteropathy induced by immunotoxic and proline-rich
gluten peptides (Shan et al., 2002).

Additionally, POP orthologous enzymes from some pathogens
have been described as virulence factors of infectious diseases,
as in the case of trypanosomiasis and schistosomiasis. In
Trypanosoma cruzi, POPTc80 is secreted by the infective form
of the parasite and hydrolyzes extracellular matrix components
such as collagen and fibronectin (Santana et al., 1997). Selective
and specific POPTc80 inhibitors blocked in vitro trypomastigotes
entry into different types of non-phagocytic cells reinforcing the
enzyme role in cell invasion (Vendeville et al., 1999; Joyeau et al.,
2000; Grellier et al., 2001; Bastos et al., 2005). POP from T. brucei
is active in the plasma of infected mice and is capable of hydrolyze
native collagen and peptide hormones that are deregulated in
sleeping sickness (Bastos et al., 2010). More recently, POP from
Schistosoma mansoni was partially characterized and it seems to
be able to cleave peptides such as vasoconstrictory angiotensin I
and bradykinin. This ability may provide a survival benefit to the
schistosome during its residence in and movement through the
venous blood system (Fajtová et al., 2015).

In this report, we identified and characterized the biochemical
activity of a recombinant POP from M. tuberculosis. We also
produced data about its three-dimensional structure based on
molecular dynamics (MDs) experiments and investigated murine
macrophages immunomodulatory response elicited by POPMt.

MATERIALS AND METHODS

Bacterial Culture and Growth Conditions
Mycobacterium tuberculosis H37Rv was grown at 37◦C in a
shaking incubator (120 rpm) in DifcoTM Middlebrook 7H9 broth
containing 0.2% glycerol, 0.05% Tween 80, and 10% albumin-
dextrose-catalase growth enrichment (Becton Dickinson and
Company, Diagnostic Systems, Sparks, MD, USA) to OD600
of 0.5. M. tuberculosis H37Rv was cultured in a BSL3 facility
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at the Laboratório Central de Saúde Pública – Brasília – DF
(Lacen – DF).

Cloning of popmt Gene (Rv0457c)
The popmt gene was amplified by PCR from M. tuberculosis
H37Rv genomic DNA using the primers: forward, 5′-
AGATTACATATGACATTTGAGCCTGCCC-3′ (Nde I
site, underlined; initiation codon, bold) and reverse, 5′-
GTTATAGGATCCTTAGCCGGCCAGCATCCG-3′ (BamH I
site, underlined; stop codon, bold). The 2022 bp PCR product
was digested and ligated into similarly digested pET-28a(+)
(Novagen) using T4 DNA ligase (Invitrogen) in frame with
N-terminus 6xHis-tag vector. The cloned popmt sequence was
checked by DNA sequencing of both strands using T7 primers
(Genscript, USA). For overexpression of his-tagged recombinant
protein, the pET-28a(+):popmt plasmid was transformed into
Escherichia coli BL21 (DE3) cells.

Expression and Purification of
Recombinant POPMt
Overnight culture of E. coli BL21 (DE3) carrying pET-
28a(+):popmt was inoculated into 500 ml of LB broth
supplemented with 30 µg/ml kanamycin and incubated at 37◦C,
200 rpm until the OD600 reached 0.4–0.6. Standard conditions
of expression were established with 0.05 mM isopropyl β-D-1-
thiogalactopyranoside (IPTG) at 20◦C for 16 h. Recombinant
POPMt (POPMt) was purified from the soluble fraction through
nickel affinity chromatography (His Bind R© Kit – Novagen)
according to the manufacturer’s protocol. Purified POPMt was
stored in 50% glycerol at −20◦C. POPMt purification was
analyzed on 10% SDS-PAGE followed by Coomassie Brilliant
Blue R staining (Sigma-Aldrich). The protein was quantified
using the molar absorption coefficient ε value of 148,865
(M−1cm−1) at 280 nm measured in water.

Western Blot
The membrane was blocked by incubation in 5% (w/v) non-
fat milk/PBS overnight at 4◦C. Blot was incubated for 2 h
with 1:100 POPMt diluted in 1% non-fat milk/PBS. After
several washes with PBS, the membrane was incubated for
1 h with 1:1000 alkaline phosphatase-conjugated goat anti-
mouse IgG (Invitrogen). Immunocomplexes were revealed
with the alkaline phosphatase substrate 5-bromo-4-chloro-3-
indolyl-phosphate/Nitro Blue Tetrazolium (BCIP/NBT Color
Development Substrate – Promega).

Enzymatic Characterization of POPMt
Recombinant POPMt enzymatic activity was measured using
7-amido-4-methylcoumarin (AMC). The released of AMC
was monitored up to 20 min in 96-well SpectraMax M5
microplate reader (Molecular Devices) at 25◦C as previously
described (Grellier et al., 2001). The POPMt enzymatic activity
was assayed on several AMC-containing substrates: Ala-
Ala-Phe-AMC, L-Proline-AMC hidrobromide, N-Succinyl-Ile-
Ala-AMC, N-Succinyl-Leu-Tyr-AMC, N-Succinyl-Leu-Leu-

Val-Tyr-7-AMC, L-Leucine-AMC hydrochloride, Gly-Pro-
AMC, N-Succinyl-Gly-Pro-AMC (N-Suc-Gly-Pro-AMC) and
N-Succinyl-Gly-Pro-Leu-Gly-Pro-AMC (N-Suc-Gly-Pro-Leu-
Gly-Pro-AMC), which were purchased from Sigma-Aldrich.
Enzymatic reactions were performed with 25 mM Tris pH 7.5
(reaction buffer) containing 20 µM of fluorogenic substrate
with or without additives (NaCl – 0 to 400 mM and DTT – 0
to 20 mM) in 100 µl final volume. The temperature assay was
carried out by incubating the enzyme at different temperatures:
20, 28, 37, 40, 45, 60, or 80◦C for 20 min and afterward 20 µM of
substrate were added. The pH activity optimum of POPMt was
determined in AMT buffer (100 mM acetic acid, 100 mM MES,
and 200 mM Tris-HCl) at pHs ranging from 5.0 to 10.0 (Bastos
et al., 2010). All experiments were performed in triplicate and
repeated three times independently.

Kinetic parameters were determined by incubation of POPMt
in reaction buffer with different concentrations (6.25–150 µM)
of N-Suc-Gly-Pro-Leu-Gly-Pro-AMC. Km and Vmax were
determined by hyperbolic regression according to Cornish-
Bowden (Cornish-Bowden, 1976). The kcat was calculated
by= V max /[E]t, where [E]t is the total enzyme concentration.

Different concentrations of the inhibitors tosyl-
lysylchloromethane (TLCK), N-p-Tosyl-L-phenylalanine
chloromethyl ketone (TPCK), bestatin, EDTA, L-trans-
epoxysuccinylleucylamido-(4-guanidino) butane (E-64),
1,10-phenanthroline and leupeptin (0.01–100 nM) were
incubated with POPMt in 100 µl reaction buffer for 15 min at
room temperature before the addition of 20 µM N-Suc-Gly-Pro-
Leu-Gly-Pro-AMC. The enzymatic reactions were monitored
as described above. The inhibition profile (IC50) using Z-Pro-
Prolinal, a specific inhibitor of POPs, was determined by
non-linear regression analysis from the residual activity versus
inhibitor concentrations curve and the Ki values determined
using the Cheng-Prusoff method Ki= IC50/[1+ ([S]/Km)],
where [S] is the concentration of the substrate (Yung-Chi and
Prusoff, 1973).

Fluorescence Spectroscopy
Fluorescence measurements were performed using an ISS
K-2 (Champaign, IL, USA) spectrofluorimeter at the same
temperatures used in activity assay as described above. Spectra
were recorded from 305 to 450 nm using an excitation wavelength
of 295 and 2 nm bandwidth for both excitation and emission.
Solutions of 0.30 µM POPMt were prepared in AMT buffer at
pHs ranging from 5 to 10. Measurements were carried out in a
1.0× 1.0-cm cuvette. The final spectra were baseline corrected by
subtracting buffer spectrum.

Homology Modeling and Molecular
Dynamics Simulation Parameters
The POPMt 3D-model was built based on the Myxococcus
xanthus POP crystal structure, PDB code 2BKL (Shan et al.,
2005), using the MODELLER 9v8 software (Eswar et al.,
2006). Briefly, using the NCBI BLASTP webservers (Altschul
et al., 1997), the POPMt sequence was submitted to a search
query against a structure database [Protein Data Bank (PDB)
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(Berman et al., 2000)]. The PSI-BLAST algorithm was used to
perform an alignment profile between all the homologous
sequences and facilitate the alignment between the target
sequence (POPMt) and the template. The alignment was then
subjected to the MODELLER software, resulting in 5 comparative
models. The one with the lowest DOPE score was selected to
further refinements by MDs simulations.

The MD simulation was performed using the computational
package GROMACS 4 – Groningen Machine for Chemical
Simulations (Hess et al., 2008). The simulated ensemble was
composed of the POPMt model immersed in 14,46 Single Point
Charge (SPC) water molecules (Berendsen et al., 1981) in a
cubic box with edges of 77 Å. Four sodium atoms were also
included in order to neutralize the system charges. The lysine
residues of the protein were protonated and an amide group was
added to the C-terminus. The SETTLE algorithm was used to
constrain the geometry of water molecules, and the LINCS (Hess
et al., 1997) algorithm was used to constrain bond lengths. The
electrostatic corrections were performed by the Particle Mesh
Ewald (PME) algorithm with a cutoff radius of 1.4 nm, in order
to minimize the computational time of the simulation. Derived
from the Ewald summation, PME estimates in the Fourier space
the long-range interactions that happen in real space (Darden
et al., 1993; Essmann et al., 1995). The same radius value cutoff
was also used in the van der Waals interactions. The neighbors
list of each atom was updated every 10 simulation steps of 20 fs
each.

The system was contained. Two steps of energy minimization
were performed (2 ns each), the first used the conjugate
gradient algorithm and the other one used the steepest descent
algorithm. After the energy minimization step, the system went
through a pressure and temperature normalization process
using the integrator stochastic dynamics (SD), also for 2 ns.
Thereafter, the system went through a position restrain step
using the MDs integrator for another 2 ns. This ensemble was
subjected to a relaxation MDs run at GridUNESP computers.
The 50 ns simulation was divided into 25,000,000 steps of 2 fs
each.

Stimulation of Peritoneal Macrophages
with POPMt In vitro
Peritoneal macrophages from naive C57BL/6 mice were
harvested by lavage with sterile Roswell Park Memorial Institute
(RPMI) 1640 medium. Macrophages (106 cells/mL) were
cultured overnight in RPMI containing 2% fetal calf serum.
Non-adherent cells were removed after phosphate-buffered
saline (PBS) wash. Macrophages were stimulated with POPMt
(0.01–10 mg/mL), either native or denatured by boiling, for 24 h
at 37◦C in CO2 atmosphere. Macrophages viability assessed by
trypan blue exclusion at the end of each experiment was always
>95%.

Immunomodulatory Properties of POPMt
Cell-free supernatants from in vitro POPMt stimulated
macrophages were collected after 24 h and stored at −20◦C until
analysis. TNF-α, IL-6, IL-12p70, IL-23, IL-10, IL-1b, and MCP-1
levels were measured in supernatants from in vitro POPMt

stimulated macrophages by enzyme-linked immunosorbent
assay, in accordance with manufacturer instructions (R&D
Systems).

Statistical Analysis
Bars graphics were generated with Prism software (GraphPad).
All data was expressed as mean and standard deviation. Statistical
analyses were performed by ANOVA followed by the Newman-
Keuls-Student and Student’s t-tests. The significance level was set
at p < 0.05.

RESULTS

Expression and Purification of POPMt
The popmt gene from M. tuberculosis has an open read frame of
2,022 bp and encodes a protein of 673 amino acids residues with
predict molecular mass of 74.40 kDa. POPMt has about 65 and
78% identity compared to M. smegmatis and M. avium POPs,
respectively. On the other hand, POPMt amino acid sequence
identity compared to human POP is about 24%. POPMt was
expressed in E. coli BL21(DE3) as a soluble and active enzyme
which allowed us to proceed to its purification (Figure 1A) and
biochemical characterization. When subjected to intra-dermal
immunization, isogenic BALB/c yielded specific anti-POPMt
serum capable of recognizing a single band of approximately 75
kDa in the total extract of M. tuberculosis proteins. This result
confirms that POPMt is immunogenic in mice and is expressed in
H37Rv, a M. tuberculosis human pathogenic strain (Figure 1B).

Substrate Specificity and Kinetic
Parameters of POPMt
Some fluorogenic peptides were used to define the substrate
specificity of POPMt (Table 1). Among these substrates, the
enzyme cleaved specifically at the carboxyl terminus of proline
residues, feature similar to other POP, which are known to cleave
a Pro-Xaa bond in peptides, where Xaa is not a proline residue

FIGURE 1 | Purification and analysis of the recombinant and native
POPMt. (A) POPMt was produced in Escherichia coli BL21(DE3), purified on
nickel-agarose resin and evaluated by comassie-stained 10% SDS-PAGE.
(B) Mycobacterium tuberculosis total protein extract was resolved by 10%
SDS PAGE and transferred to nitrocellulose membrane. Blot was probed with
anti-POPMt. (1) POPMt purified; (2) M. tuberculosis H37Rv total protein
extract.
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TABLE 1 | POPMt substrate specificity.

Substrate Relative activity (%)

Ala-Ala-Phe-AMC n.a

L-Proline-AMC n.a

Gly-Pro-AMC n.a

N-Succinyl-Ile-Ala-AMC 1.31

N-Succinyl-Leu-Tyr-AMC n.a

N-Succinyl-Leu-Leu-Val-Tyr-AMC n.a

L-Leucine-AMC n.a

N-Succinyl-Gly-Pro-AMC 48

N-Succinyl-Gly-Pro-Leu-Gly-Pro-AMC 100

n.a, no activity. Assays were performed by incubating 300 ng of POPMt with 20 µM
of each substrate. Substrate hydrolysis was recorded up to 20 min.

(Koida and Walter, 1976). With respect to these substrates, the
enzyme was active on N-Suc-Gly-Pro-Leu-Gly-Pro-AMC and
N-Suc-Gly-Pro-AMC but totally inactive toward L-Pro-AMC
and Gly-Pro-AMC. The KM and Kcat/KM values of POPMt
toward N-Suc-Gly-Pro-Leu-Gly-Pro-AMC were 108 µM and
21.83 mM−1 s−1, respectively.

Effects of NaCl and DTT on POPMt
Catalysis
Thiol-reacting reagents and salts are known to improve POP
enzymatic activity (Usuki et al., 2009). Based on that, NaCl and
DTT were added into buffer reaction to determine their influence
on POPMt enzymatic activity. As shown in Figure 2A, up to
20 mM DTT did not affect the enzyme activity. As for DTT,
increasing concentrations of NaCl (up to 400 mM) did not alter
POPMt enzymatic activity toward N-Suc-Gly-Pro-Leu-Gly-Pro-
AMC (Figure 2B).

Influence of pH and Temperature on
POPMt Structure and Enzymatic Activity
The characterization of POPMt revealed that the enzyme
had a strong dependence on slightly alkaline pH 7.0–8.5.
It was most stable at pH 7.5 and retained more than 90%
of the residual activity at pH 8.0 and 8.5 (Figure 3A).

We also analyzed POPMt tertiary structure changes under
different pHs by fluorescence spectroscopy (Figure 3B).
It is possible to observe changes in emission spectra of
tryptophan in response to protein conformational transitions,
subunit association, substrate binding or denaturation, all
of which can affect the local environment surrounding the
tryptophan indole ring (Lakowicz, 2004). POPMt contains
20 tryptophan residues and, as shown in Figure 4B, the
emission maximum was 335 nm, indicating that most POPMt
tryptophans are partially buried in the protein. The shape
of the enzyme intrinsic fluorescence spectra did not change
from pH 7.5 to 8.5 and a limited red-shift happened at pH 9.0
and 10.0.

The effect of temperature on the enzymatic activity of
POPMt was examined over a range of 20–80◦C at pH 7.5. The
enzyme showed maximal enzymatic activity between 20 and
37◦C. While at 45◦C, the enzyme activity decreased nearly 50%
(Figure 4A). As for pH analysis, we also applied the tryptophan
residue fluorescence as a reporter for structural changes under
different temperatures and, according to all the adjusted spectra,
temperatures up to 60◦C did not alter tryptophan emission
pattern (Figure 4B).

Specificity of POPMt Enzymatic Activity
Inhibition
Table 2 summarizes the effects of protease inhibitors on the
enzymatic activity of POP from M. tuberculosis. Although
POPMt is a serine protease, its activity was partially inhibited
by AEBSF and TLCK, 33 and 35%, respectively. On the
other hand, TPCK, a chymotrypsin-like protease inhibitor,
inhibited 66% of the enzyme activity. Leupeptin, E64, pepstatin
A and metalloproteinase inhibitors such as o-phenanthroline,
bestatin and EDTA had no effect on the enzyme activity. The
canonical POP inhibitor Z-Pro-Prolinal (Wilk and Orlowski,
1983; Yoshimoto et al., 1987) was also assayed on POPMt,
showing a Ki value of 16.87 nM. Z-Pro-Prolinal was a less
efficient inhibitor when compared to mouse and human POPs
with Ki value of 0.35 and 0.50 nM, respectively (Bakker et al.,
1990).

FIGURE 2 | Effects of additives on POPMt enzymatic activity. The substrate N-Suc-Gly-Pro-Leu-Gly-Pro-AMC was hydrolyzed by POPMt in the presence of
(A) 0–20 mM DTT; (B) 0–400 mM NaCl. Results are expressed as the percent activity relative to the maximum value obtained at each condition.
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FIGURE 3 | pH influence on POPMt enzymatic activity and POPMt tertiary structure. (A) pH optimum enzymatic activity of POPMt was assayed in AMT
buffer against N-Suc-Gly-Pro-Leu-Gly-Pro-AMC. Results are expressed as the percent activity relative to the maximum value obtained at each condition. (B) Intrinsic
spectra were recorded at 25◦C from 305 to 400 nm using excitation wavelength of 295 nm at different pHs.

FIGURE 4 | Influence of temperature on POPMt enzymatic activity and POPMt tertiary structure. (A) POPMt was incubated with substrate at different
temperatures for 20 min and the release of AMC was quantified as described in Section “Materials and Methods.” Results are expressed as the percent activity
relative to the maximum value obtained at each condition. (B) Intrinsic spectra were recorded from 305 to 400 nm using excitation wavelength of 295 nm at different
temperatures.

POPMt Homology Modeling and
Molecular Dynamics Simulations
Concerning the homology modeling, the top ranked homolog
structure returned by BLAST was that of M. xanthus (PDB ID
2BKL), with a query coverage of 64 and 37% identity. As we could
not obtain higher query coverage, we opted to perform MDs
simulations to both refine and validate our model. We predicted
that an equilibrium MDs simulation would allow a relaxation
of the macromolecule, in which the POPMt features would be
adopted instead of those from M. xanthus enzyme.

The POPMt macromolecular structure is divided in two
domains with a catalytic α/β hydrolase domain and a β-propeller
domain (Figure 5A). The propeller domain is based on a
radially arranged seven-fold repeat of four stranded antiparallel
β sheets. In the case of POPs, this domain is considered to be
of the “open-velcro” topology, where first and seventh blades
are connected only through hydrophobic interactions, although
their primary sequences diverge (Kaushik and Sowdhamini,
2011). The POPMt catalytic triad residues (Ser 532, Asp 615,
e His 647) position is conserved like in other POPs and

TABLE 2 | Inhibition of POPMt by protease inhibitors.

Inhibitor Concentration (mM) Inhibition (%)

AEBSF 1 33

Bestatin 0.1 n.i

E-64 0.1 n.i

EDTA 1 n.i

Leupeptin 0.1 n.i

Pepstatin A 0.1 n.i

Phenanthroline 0.1 n.i

TLCK 0.1 35

TPCK 0.1 66

n.i, no inhibition. Assays were performed by incubating 300 ng of POPMt with the
inhibitor for 15 min, before the addition of 20 µM of substrate. Substrate hydrolysis
was recorded up to 20 min.

it is localized at the interface of the catalytic and propeller
domains (Figure 5B) (Rea and Fülöp, 2006). The amino acid
sequence of POPMt with the assigned secondary structure
comprising coil, β sheet, α helix and Pi helix is shown in
Figure 5B.
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FIGURE 5 | Sequence and three dimensional structure of POPMt. (A) POPMt tertiary structure showing α/β hydrolase catalytic domain, β-propeller domain
and the hinge region between the two domains. (B) The amino acid sequence of POPMt with the assigned secondary structure: coil (black line), β sheet (yellow), α

helix (red), Pi helix (green). Catalytic site is highlighted in cyan.

FIGURE 6 | POPMt 3D model comparison and stability during the molecular dynamics simulation. (A) Superposition of the POPMt 3D model after MD
simulations (cyan) and the POPMx crystallographic structure (red). (B) Root-mean square deviation analysis of the trajectory frames (RMSD, red line, left y axis)
indicates that the model achieved structural stability after 5 ns of simulation. The decrease of the radius of gyration over simulation time (Rgyr, blue line, right y axis)
corroborates the stability hypothesis, suggesting that the protein has become more compact at the end of the simulation.
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FIGURE 7 | Immunomodulation triggered by POPMt. Peritonial
macrophages were stimulated with either intact or boiled POPMt for 24 h
in vitro. Levels of (A) IL-1b, (B) IL-12p70, (C) IL-6, (D) TNF-α, (E) MCP-1,
(F) IL-23, and (G) IL-10 were analyzed from the supernatant cultured.
Statistical significances (p < 0.05) between intact and boiled enzymes are
represented by the symbol +. Unstimulated versus intact enzyme are
represented by the symbol ∗.

The superposition of the predicted and template structures
(Figure 6A) shows an average RMSD of 4.86 Å (Figure 6B, red
line). This might be explained by the fact that the M. xanthus
POP template is a crystal structure, hardened due to the
compression inherent in the crystallization process, which results
in the inability of structure accommodation and its respective
adaptation to the environment. Structures subjected to MDs
simulations are expected to exhibit RMSD changes, as they go
through a process of relaxation and adjustments, always driven
by biochemical and structural restrictions.

Albeit resulting in conformational changes when compared
to the initial structure, as observed by the RMSD shift,
the POPMt relaxation process led the structure to a smaller

radius of gyration (Figure 6B, blue line), indicating the
contraction of the system. This can be interpreted as a sign of
conformational stability, as during protein unfolding we would
expect the opposite, and may be explained due to the increasing
number of intramolecular hydrogen bonds during the simulation
(Supplementary Figure S1). This kind of interactions cooperates
to reduce the volume of the system and thus increase the degree
of compactness of the protein.

Another sign of compactness is the solvent accessible area
(Supplementary Figure S1), which corresponds to the area of
solvent removed due to the relationship of the protein with
itself. By folding, the protein contracts, resulting in the reduction
of the solvent accessible area, decreasing the protein volume
characterized by the separation of hydrophobic and hydrophilic
portions.

Data extracted from this MD trajectory will be applied
to identify clusters of conformational families as recently
accomplished to the Dengue virus NS3 protease (de Almeida
et al., 2013), which will be used in ensemble docking
campaigns aiming the identification of new drug-like hits against
POPMt.

POPMt Induces Proinflammatory
Cytokine Production In vitro
To investigate the immunomodulatory properties of POPMt in
triggering immune responses in vitro, peritonial macrophages
were stimulated with purified POPMt for 24 h. POPMt
significantly triggered production of the proinflammatory
cytokines TNF, IL-12p70, IL-6, IL-23 and IL-1b, as well as
chemokine MCP-1 after 24 h (Figures 7A–F). However, POPMt
failed to trigger the anti-inflammatory and immunosuppression
cytokine IL-10 (Figure 7G). In addition, all analyzed
cytokines and chemokine secretion induced by POPMt were
dependent on the enzyme intact structure since cytokine and
chemokine production induced by boiled POPMt were greatly
reduced.

DISCUSSION

Here we report, for the first time, the identification, purification,
biochemical characterization and some immunomodulatory
features of a POP from M. tuberculosis. POPs have already
been described in bacteria like Flavobacterium meningosepticum
(Yoshimoto et al., 1980, 1991), Sphingomonas capsulate
(Kabashima et al., 1998), Aeromonas hydrophila (Kanatani et al.,
1993), and M. xanthus (Shan et al., 2004).

Enzymatic tests were performed using N-Suc-Gly-Pro-Leu-
Gly-Pro-AMC as substrate since it was hydrolyzed more
efficiently than the others tested. This result was also observed
for POP from T. cruzi and T. brucei (Santana et al., 1997;
Bastos et al., 2010). The additives used in this study (DTT
and NaCl) are known to influence the enzymatic activity of
POP family, however, such effect was not observed for POPMt.
Nevertheless, the insensitivity to thiol-reacting reagents, such
as DTT, has been reported for other members of POP family.
For example, DTT did not interfere in the enzymatic activity
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of oligopeptidase B from T. cruzi (Motta et al., 2012) neither
in POP from F. meningosepticum and Lyophyllum cinerascens
(Yoshimoto et al., 1988, 1991). Oligopeptidase B from T. brucei
has a Cys residue located at position 256 that was identified as the
one responsible for interaction with thiol reagents (Morty et al.,
2005). It also has been shown that porcine brain POP is inhibited
by pCMB, a cysteine protease inhibitor, possibly by its reaction
with Cys256, a residue located close to the enzyme substrate
binding site (Szeltner et al., 2000). Based on our model, the
two Cys residues predicted in POPMt primary sequence (Cys40
and Cys554) are not located near the catalytic site. Moreover,
according to our MD studies, the distance between these POPMt
Cys residues remained at approximately 17 Å throughout the
simulation, such distance is not favorable for formation of a
disulfide bridge, which is postulated between 4.4 and 6.8 Å
(Richardson, 1981). Both features may explain the insensitivity
of POPMt to thiol reagents.

POPMt optimum pH and temperature is at 7.5 and 37◦C,
respectively. These values are compatible with those already
described for other POPs (Yoshimoto et al., 1980; Szwajcer-Dey
et al., 1992). Fluorescence spectroscopy has been widely used
in structural and functional studies of proteins. The intrinsic
fluorescence of the tryptophan residues of proteins is a natural
sensitive probe for protein denaturation and can be used in
experiments of protein tertiary structure (Lakowicz, 2004). These
approaches have already been used to probe into the tertiary
structure unfolding of two carbonic anhydrase, Rv3588c and
Rv1284, both from M. tuberculosis (Mukherjee et al., 2009). The
spectra of POPMt tryptophan fluorescence did not alter the
maximum emission wavelength in response to changes in pH,
suggesting that POPMt preserved a similar degree of structure
folding throughout the experiment. Notably, POPMt unfolding
was minimum when temperature increased. The maximum
emission intensity for POPMt decreased following temperature
increasing and, on the other hand, the maximum emission
wavelength did not (red)shift, suggesting, as for pH, a similar
degree of structure folding. Even though it appears that POPMt
tertiary structure is stable regarding to pH and temperature
changes, it is necessary to take into account that this enzyme
contains 20 tryptophan residues, which could influence their
utilization as reporter groups in studying protein (un)folding
(Pokalsky et al., 1995).

Extracellular matrix constituent destruction is critical to the
success of M. tuberculosis infection, but the essential mechanisms
of this destruction remain poorly understood. It has been mainly
proposed that host matrix metalloproteinases (MMPs) play a
central role in the event, owing to their unique ability to degrade
fibrillar collagens and other matrix components (Elkington
et al., 2011). Besides tissue damage, collagen fragmentation may
generate active peptides named matrikines, which have been
implicated in immune response by altering cellular migration
and chemotaxis (Wells et al., 2015). Emerging evidences has
suggested that POPs could participate in the inflammatory
response through the modulation of active peptides (Gaggar
et al., 2010; Tenorio-Laranga et al., 2013, 2015). For instance,
in concert with MMPs, POP is responsible for generation of

one type of matrikine, the tripeptide PGP (proline-glycine-
proline), a neutrophil chemoattractant that has been implicated
in inflammation and disorders of the respiratory system (O’Reilly
et al., 2009).

Inflammatory cytokines such as IFNγ, mainly secreted
by T lymphocytes, could activate macrophage antimicrobial
mechanisms against M. tuberculosis. Moreover, TNFα is a
crucial proinflammatory cytokine for M. tuberculosis control
in humans and in experimental animals (Solovic et al., 2010),
by contributing to activation of macrophages for killing of
intracellular mycobacteria and to modulate apoptosis of infected
cells (Balcewicz-Sablinska et al., 1998; Clay et al., 2008). Unlike
TNFα, IL-6 is critical to resistance against M. tuberculosis, but
it is dispensable for the control of mycobacterial growth after
low-dose aerosol-delivered infection (Sodenkamp et al., 2012).
Despite its importance in mediating inflammation, IL-6 is not
as essential as TNFα for antimycobacterial effector mechanisms
(Ladel et al., 1997; Saunders et al., 2000; Nagabhushanam et al.,
2003; Martinez et al., 2013). Another important macrophage
produced proinflammatory cytokine essencial to M. tuberculosis
killing is IL-1β, which can also regulate Th17 cytokines
secretion. Mice that lack IL-1β or its receptor are highly
susceptible to M. tuberculosis infection, and IL-1β directly
inhibits M. tuberculosis intracellular growth (Jayaraman et al.,
2010, 2013; Mayer-Barber et al., 2010; Qiu et al., 2012; Sada-
Ovalle et al., 2012). Here, we have showed that POPMt is capable
of immunomodulating murine macrophages by inducing the
secretion of the proinflammatory Th1 cytokines TNFα, IL-1β,
IL-6, IL-12, as well as the Th17 IL-23 in murine macrophages,
indicating that POPMt could significantly contribute to TB
immunopathology.

Mycobacterium tuberculosis infection is also characterized
by induction of elevated levels of a variety of chemokines,
such as CXCL-8, MCP-1, MCP-3, MCP-5, RANTES, MIP1-α,
MIP1-β, MIP-2 and IP-10 and their receptors (Orme and
Cooper, 1999; Juffermans et al., 2000; Mihret et al., 2013).
Our data demonstrated that POPMt induced high levels
of MCP-1 secretion, suggesting that it could be critical
in monocyte/macrophage recruitment process. Beyond
monocyte/macrophage recruitment, these inflammatory
chemokine recruit additional cells from the blood compartment
(Gerszten et al., 1999) and from other areas of the lung (Sertl
et al., 1986; Holt and Schon-Hegrad, 1987) to amplify the
inflammatory response. In addition, MCP-1 is associated with
the immune response to M. tuberculosis infection, as MCP-1
deficient mice had early and persistent defects on macrophage
recruitment to the lungs and a reduced number of macrophage
and dendritc cells in mediastinal linfonodes (Peters et al., 2001,
2004).

We have provided the first biochemical and structural analysis
of POPMt together with some in vitro murine macrophages
immunomodulatory response elicited by the intact protease.
More studies must be carried out to determining if native POMt
has a role in M. tuberculosis infection. If ratified, POPMt could be
proposed as new target for the development of anti-mycobacteria
drugs.
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