scientific reports

OPEN QTL mapping and candidate gene analysis of seed vigor-related traits during artificial aging in wheat (Triticum aestivum)

Huawei Shi¹, Wanghui Guan¹, Yugang Shi¹, Shuguang Wang¹, Hua Fan¹, Jinwen Yang¹, Weiquo Chen¹, Wenjun Zhang¹, Daizhen Sun¹™ & Ruilian Jing²™

High vigor seeds have greater yield potential than those with low vigor; however, long-term storage leads to a decline in this trait. The objective of this study was to identify quantitative trait loci (QTLs) for seed vigor-related traits under artificial aging conditions using a high-density genetic linkage map of wheat (Triticum aestivum) and mine the related candidate genes. A doubled haploid population, derived from a cross between Hanxuan 10 x Lumai 14, was used as the experimental material. Six controlled-environment treatments were set up, i.e. the seeds were aged for 0, 24, 36, 48, 60, and 72 h at a high temperature (48 °C) and under high humidity (relative humidity 100%). Eight traits including seed germination percentage, germination energy, germination index, seedling length, root length, seedling weight, vigor index, and simple vigor index were measured. With the prolongation of artificial aging treatment, these traits showed a continuous downward trend and significant correlations were observed between most of them. A total of 49 additive QTLs for seed vigor-related traits were mapped onto 12 chromosomes (1B, 2D, 3A, 3B, 3D, 4A, 4D, 5A, 5B, 5D, 6D, and 7A); and each one accounted for 6.01–17.18% of the phenotypic variations. Twenty-five pairs of epistatic QTLs were detected on all chromosomes, except for 5D, 6A, and 7D, and each epistasis accounted for 7.35-26.06% of the phenotypic variations. Three additive QTL hot spots were found on chromosomes 5A, 5B, and 5D, respectively. 13 QTLs, QGEe5B, QGIe5B, QSLc5B, QSLd5B, QSLf5B, QRLd5B, QRLe5B, QRLf5B, QVId5B, QVIe5B, QVIf5B, QSVId5B, and QSVIe5B, were located in the marker interval AX-94643729 ~ AX-110529646 on 5B and the physical interval 707,412,449-710,959,479 bp. Genes including TRAESCS5B01G564900, TRAESCS5B01G564200, TRAESCS5B01G562600, TraesCS5B02G562700, TRAESCS5B01G561300, TRAESCS5B01G561400, and TRAESCS5B01G562100, located in this marker interval, were found to be involved in regulating the processes of carbohydrate and lipid metabolism, transcription, and cell division during the germination of aging seeds, thus they were viewed as candidate genes for seed viability-related traits. These findings provide the basis for the seed-based cloning and functional identification of related candidate genes for seed vigor.

Seeds not only contain all of a plant's genetic information, but are also important agricultural production materials. Seed vigor is the primary index used to measure seed quality and is also an important factor in determining yield¹. Seeds with high vigor demonstrate a high percentage of germination, uniform seedlings that grow quickly, enhanced resistance to stress, and greater productivity. However, the percentage of germination in seeds with low vigor is small and seedling growth is weak2. Therefore, it is necessary to investigate seed vigor-related traits, explore their genetic laws, and combine modern breeding methods to select varieties with high-vigor in order to promote the development of agricultural production³⁻

Seed aging refers to the natural decline of seed vigor. The temperature and humidity during seed storage greatly impact seed vigor and the aging process of seeds is often accelerated under conditions of high temperature and high humidity⁶. As it would take a long time to study the effect of storage on vigor under normal conditions, aging can be accelerated artificially, in order to speed up the process of investigation. Accelerated aging is a method recommended by the International Seed Testing Association (ISTA)⁷.

¹College of Agronomy, Shanxi Agricultural University, Taigu 030801, People's Republic of China. ²Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China. [™]email: sdz64@126.com; jingruilian@caas.cn

The peroxidation of membrane lipids and proliferation of radicals are two important reasons for decreases in seed vigor⁸. Lipoxygenase (LOX) is one of the key enzymes that catalyze the metabolism of unsaturated fatty acids. Following an increase in LOX activity, levels of unsaturated fatty acids decrease, fatty acids are oxidized, free radicals form, then seeds deteriorate quickly⁹. Also, when seeds are stimulated by an adverse external environment or undergo the natural aging process, a series of physiological and biochemical changes occurs within, which leads to protein denaturation, damage to the nucleic acid synthesis system, or injury to the cell membrane, resulting in seed deterioration and decreased vigor¹⁰.

The development of functional genomics has promoted the study of seed vigor. In *Arabidopsis*, overexpression of ZmGOLS2 and ZmRS, or overexpression of ZmGOLS2 alone, can significantly increase the oligosaccharide content and enhance seed vigor¹¹. Cheng et al. ¹² found that lectin-like receptor protein kinase (LecRK) contributed to seed germination and innate immunity in rice and demonstrated that a knockout of OslecRK inhibiteds the expression of the α -amylase gene, thus reducing seed vigor¹². Additional factors related to seed vigor are small heat shock proteins (sHSPs). Kaur et al. ¹³ found that the cytoplasmic sHSP oshsp18.2 can improve seed vigor in rice by reducing the harmful accumulation of active oxygen in seeds. In addition, Châtelain et al. ¹⁴ found that methionine sulfoxide re ductase (MSR) can increase seed life by regulating oxidative repair in *Arabidopsis* seeds. With acceleration in aging, proteins containing isoaspartic acid over-accumulate in embryos. Protein repair L-isoaspartyl methyltransferase1 (Ospimt1) can improve seed vigor by repairing the harmful proteins containing isoaspartic acid ^{15,16}.

Seed vigor is a complex agronomic trait⁹. It has many measures including average germination rate (AGR), germination index (GI), vigor index (VI)¹⁷, seed root length (SRL), seedling length (SL), seed wet weight (SWW), and seed dry weight (SDW), etc¹⁸. These traits are all quantitative and controlled by multiple genes. There have been many reports on quantitative trait loci (QTL) analyses of seed vigor traits over recent years in *Arabidopsis*, rice, wheat, rape, maize, and barley, etc^{19–23}. Progress has also been made in the fine mapping of seed vigor QTLs. Xie et al.²⁴ mapped eight seed vigor-related QTLs using a recombinant inbred line population of an indica and japonica rice hybrid and shortened the regions of two main QTLs, *qsv1* and *qsv5c* of rice chromosomes 1 and 5, to physical intervals of 1.13 Mb and 400 kb, respectively. Li et al.²⁵ detected 19 QTLs related to seed vigor on 12 chromosomes of rice and located *qgp9* in a region of 92.6 kb between two sequenced tagged site (STS) markers on chromosome 9 of rice. Abe et al.²⁶ located a QTL controlling seedling height at the end of the long arm of rice chromosome 3 and predicted that the candidate gene was a GA20 oxidase gene (*OsGA20ox1*).

In recent years, most studies on wheat seed vigor have focused on revealing the physiological mechanisms during artificial aging, following seed priming, and after other treatments, such as the changes of antioxidant system, storage substances, endogenous hormones and harmful substances, while the relevant molecular mechanism has rarely been discussed. In this study, a doubled haploid (DH) population of wheat (*Triticum aestivum*) was artificially aged and eight seed vigor-related traits were determined. The changing trend of each trait after aging treatment was analyzed and correlation analysis was performed. A high-density linkage genetic map was used for QTL mapping of related traits and the candidate genes were screened out. These candidate genes will provide the basis for breeding and improvement of new wheat varieties with high vigor seeds.

Results

Phenotypic changes to seed vigor-related traits in a wheat DH population under different aging conditions. In the current study, eight seed vigor indexes of a wheat DH population were measured under artificial aging conditions. As the period of aging treatment increased, the eight seed vigor-related traits in the DH population showed a gradually decreasing trend (Supplementary Table S1). At 0 h of aging treatment, the VI, SVI, SL, RL, and SW values for the female parent Hanxuan 10 were significantly higher than those of the male parent Lumai 14. At 24 and 36 h after the onset of aging treatment, the other seven traits in Hanxuan 10, except RL, were significantly greater than those of Lumai 14. After 48 h of aging treatment, the VI, SVI, SL, and SW values for Hanxuan 10 were significantly greater than those for Lumai 14. After 60 h of aging treatment, the GP and GE values for Hanxuan 10 were significantly greater than those for Lumai 14. After 72 h of aging treatment, the GP, GI, SW, VI, and SVI values for Hanxuan 10 were significantly higher than those for Lumai 14.

Under the six treatment conditions, eight seed vigor-related traits in the DH population exhibited the phenomenon of superaffinity separation, indicating that the genes controlling each trait were widely separated within the population. The variation coefficient for each trait in the population was more than 14% and the absolute values of skewness and kurtosis coefficients for most traits were less than 1, which conformed to normal distribution (Supplementary Table S1). The absolute values of skewness coefficient and kurtosis coefficient of some characters, such as VIf and SVIf, are greater than one, indicating that there are major QTLs. Under aging treatment, the eight seed vigor-related traits of the DH population were continuously distributed (Fig. 1), indicating that each trait was controlled by multiple genes. The heritability of each seed vigor-related trait was above 81% and the heritability of a large portion of traits reached more than 95%, indicating that these eight traits were strongly affected by genetic factors (Supplementary Table S1).

Correlation of seed vigor traits in the DH population. Under the same treatment, the GP, GE, GI, VI and SVI values were significantly or extremely correlated in the DH population, while SW, SL, and RL were significantly or extremely correlated. Under different aging conditions, most of the seed vigor-related traits were significantly or extremely significantly correlated (Fig. 2).

Systematic clustering was conducted using the 150 lines of the DH population, were divided into nine types (Fig. 3).

Figure 1. Frequency distribution of seed vigor-related traits in wheat DH population.

Figure 2. Correlation of seed vigor-related traits in wheat DH population.

Additive QTLs for seed vigor-related traits in the DH population of wheat. QTL mapping was performed on eight vigor-related traits of the DH population under six different treatment conditions. A total of 49 additive QTLs for wheat seed vigor-related traits were detected and each ones contributed 6.01–17.18% of the phenotypic variation. The logarithm of odds scores (LOD score) ranged from 3.54 to 7.28, distributed on 12 chromosomes including 1B, 2D, 3A, 3B, 3D, 4A, 4D, 5A, 5B, 5D, 6D, and 7A, respectively. Among them, 43 elitealleles of additive QTLs were from the female parent Hanxuan 10 and six were from the male parent Lumai 14. The chromosome with the most QTL loci was 5D, which contained a total of 18 additive QTLs, followed by chromosome 5B, with 14 additive QTLs. Additionally, chromosome 5A contained 7 additive QTLs and chromosome 2D contained 2 additive QTLs. One additive QTL locus each was detected on chromosomes 1B, 3A, 3B, 3D, 4A, 4D, 6D, and 7A, respectively (Table 1).

Epistatic QTLs. A total of 25 pairs of epistatic QTLs were detected, which were distributed on all of the wheat chromosomes, except 5D, 6A, and 7D. Their LOD Scores ranged from 5.03 to 9.14, their contribution to phenotypic variation were 7.35–26.06%, and epistatic interaction effects ranged from 0.02 to 61.23 (Table 2). Among them, there were 14 pairs of epistatic QTLs with a negative interaction effects, indicating that the parent epistasis effect was smaller than the recombinant epistasis effect. Eleven pairs of epistatic QTLs had positive interaction effect values, indicating that the recombinant epistasis effects were smaller than the parent epistasis effect.

Additive QTL hotspots and candidate genes. Using the ICIM methods, three additive QTL hotspots were found. The first one was within the marker interval Xgwm156 ~ Xgwm415 on chr 5A, which contains three QTLs related to SL under different aging treatments. The second one was within marker interval Xgdm3 ~ AX-109095227 on chr 5D, which contains fifteen QTLs related to GE, GI, SL, RL, VI, and SVI under different aging treatments. The last one was within marker interval AX-94643729 ~ AX-110529646 on chr 5B, it contains thirteen QTLs related to GE, GI, SL, RL, VI, and SVI under different aging treatments (Fig. 4).

By the GCIM methods, three QTLs related to SL under different aging treatments were detected on the marker Xgwm415 on chr 5A, two QTLs related to SL and VI under different aging treatments were detected

Figure 3. Systematic clustering of wheat DH population.

on the marker Xgdm3 on chr 5D, and seven QTLs related to SL and RL under different aging treatments were detected on the marker AX-110529646 on chr 5B (Supplementary Table S2). Clearly, the QTL hotspots found by the two methods are consistent.

The physical distances of the first and second hotspots are too long and the number of genes is too large, so it is difficult to predict candidate genes. For the last one, the physical distance between the two markers AX-94643729 and AX-110529646 is 707412449-710959479 bp.

According to the Chinese Wheat Complete Genome Reference Sequence (*IWGSC RefSeqv1.0*) published by the International Wheat Whole Genome Sequencing Consortium, a total of 56 genes were found in this marker range and gene annotation was carried out by referring to the website https://plants.ensembl.org/index.html. It was found that seven genes, *TRAESCS5B01G564900*, *TRAESCS5B01G564200*, *TRAESCS5B01G562600*, *TraesCS5B02G562700*, *TRAESCS5B01G561300*, *TRAESCS5B01G561400*, and *TRAESCS5B01G562100* may be related to seed vigor (Table 3).

GO and **KEGG** analyses of candidate genes. We performed GO (gene ontology) enrichment analysis on candidate genes (Supplementary Table S3, Fig. 5). The genes *TraesCS5B02G561300* and *TraesCS5B02G561400* appeared in four terms, and the response pathways included metabolic process, catalytic activity, cellular pro-

GPR QPR D 19 Xgdm3 18.5 AX 109095227 19.5 12.0 11.3 0.1130 GPR QPOPRD 30 19 Xgdm3 18.5 AX 109095227 10.5 6.47 11.65 0.1130 GEA QCREAD 30 19 Xgdm3 18.5 AX 109095227 10.5 4.3 11.77 0.0130 GEO QCREAD 30 19 AX 11602461 12.5 AX 10905227 19.5 3.73 11.77 0.0130 GEO QCREAD 30 13 AX 11602461 12.5 AX 10905227 19.5 3.73 0.0170 0.0170 GEO QCREAD 30 13 AX 11612560 12.5 AX 11612560 13.5 4.5 AX 1000021 GEO QCREAD 30 13 AX 48043729 12.5 AX 11012560 19.5 4.04 11.1 14.9 2.045 GEO QGRESD 50 10 Xyama13 18.5 <th>Trait</th> <th>QTL</th> <th>Chr</th> <th>Position (cM)</th> <th>Left marker</th> <th>Left CI</th> <th>Right marker</th> <th>Right CI</th> <th>LOD score</th> <th>PVE (%)</th> <th>Add</th>	Trait	QTL	Chr	Position (cM)	Left marker	Left CI	Right marker	Right CI	LOD score	PVE (%)	Add
GPF QGPSD 1D 19 Aghma 18.5 AX.109905227 20.5 6.47 14.65 0.1230 GGB QGEASD 50 19 AX.9443729 22.65 3.4 3.11.70 0.0130 GE QGEASD 50 9 9 AX.9443729 22.65 1.9 5.3 1.17.9 0.0189 GE QGESA-1 5A 19 AX.11626464 12.5 AX.95683790 2.5 3.5 1.7 0.0789 GEF QGESA-1 5A 19 AX.94632460 12.5 AX.9462320 2.5 3.5 0.5 0.079 0.0789 GEF QGESD 5D 13 AX.94643729 2.6 AX.11052964 2.9 3.4 0.039 0.0949 GIG QGEAS 5D 19 AX.94643729 2.6 AX.11052964 2.9 3.4 0.039 2.0434 GIG QGEASA 5D 9 AX.94643729 2.6 AX.1052924 <		-									
GGE QGEASD SD 19 Agama 18.5 AX 109095227 20.5 4.34 11.70 0.0080 GGE QGEASS 58 29 AX 94647729 22.65 AX 110905227 15.5 4.5 11.77 0.0090 GEF QGEAS 50 19 Xgman 18.5 AX -10905220 10.5 3.5 1.70 0.0778 GGF QGEAS 50 13 AX -11012406 12.5 AX -8484230 12.0 4.50 1.00 0.0078 GGF QGEAS 50 19 AX -9453460 15.0 AX -110125060 12.0 1.00 0.00 GG QGEAS 50 19 AX 9464732 2.6 AX -110029062 10 1.01 1.05 2.6 GG QGEAS 50 19 AX 9401310 18.5 AX -100905227 15.0 1.01 1.01 1.05 2.6 GG QGEASA 30 10 AX 9401432 1.0		-			-						
GGE GGE SB 29 AX-9464729 26.5 AX-11052964 29 4.5 1,77 0.00980 GGE GGEACD 5D 19 AX-11662464 12.5 AX-10059227 19.5 5.73 14.99 0.1120 GGE GGEAC 5A 15 AX-111662464 12.5 AX-9682300 21.5 4.20 8.64 -0.0859 GGE GGEBAC 5D 13 AX-94524600 12.5 AX-11052960 15.5 4.64 10.30 0.0989 GGE GGEBAC 5D 19 Xgbm3 18.5 AX-110929227 15.5 6.11 13.99 2.2453 GGE GGESBAC 5D 19 Xgbm3 18.5 AX-110929227 10.5 6.11 13.49 2.2453 GGE QGEASA 5D 9 Xgbm3 18.5 AX-11052960 25.9 4.5 13.9 2.2452 SLA QGEASA 5D Ygbm3 18.5 AX-10052920 <td></td> <td>· ·</td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>		· ·			-		-				
GE QGE SD 19 Ngdm3 18.5 AX-1109095277 19.5 5.73 14.99 0.1120 GEI QGE/FSA-2 AX 19 AX-11166246 12.5 AX-50583796 20.5 3.5 7.07 0.0739 GEI QGE/FSA-2 AX 10 AX-80452460 12.5 AX-80452300 21.5 AX-90452460 12.5 AX-90452460 12.5 AX-90452460 12.5 AX-90452460 12.5 AX-9045260 12.5 AX-9045260 12.0 12.0 12.0 0.0099 GIG QGE/FS 58 28 22 AX-90464739 22.5 AX-11029600 22.5 6.11 15.4 2.0093 GIG QGE/FS 50 19 Ngdm3 18.5 AX-100095227 19.5 6.11 13.4 12.0 2.0455 GIG QGE/FS 43 40 AX-89143340 6.5 Xyem156 29.5 4.45 11.0 0.0582 SL QSLEAR A		-			-						
GEF QGE/SA-L SA 19 AX-111662464 12.5 AX-9583796 20.5 3.55 7.07 0.0778 GEF QGE/SA-L 2A 15 AX-94524600 12.5 AX-98452330 21.5 4.29 8.64 -0.0879 GEF QGE/SD 5D 10 AX-94523600 12.5 AX-110529640 12.5 4.63 10.5 0.0949 GIG QGE/SD 5D 19 AX-94643729 22.6 AX-110529640 22.9 3.94 0.5 2.0943 GIG QGE/SD 5D 19 AX-98043298 18.5 AX-100995227 19.5 6.11 13.4 2.2590 GIG QGE/SD 5D 19 AX-98073288 18.5 AX-100995227 19.5 6.11 13.4 0.2510 SIA QSIASA 5D 10 AX-89703288 18.5 AX-91099227 19.5 6.11 13.4 0.2510 SIA QSIZASA 5A QSELSA AX		-								14.99	0.1120
GER QGE/SISA-2 SA 15 AX-9452460 12.5 AX-8915230 21.5 A.20 1.03 A.008975492 1.15 AX-110129540 13.5 5.5 1.03 0.09498 0.0949 GIGI QGE/SB 50 19 MAX-98752492 11.5 AX-110129540 21.5 5.5 1.03 0.0949 GIG QGIcSD 50 19 AX-94643729 28.5 AX-11029640 22 3.94 9.7 2.0404 GIG QGI/SD 50 19 AX-94643729 18.5 AX-1012270 2.5 6.11 13.4 2.2529 SLA QGI/SD 50 16 AX-95143344 6.5 XX-1012270 18.5 AX-1012270 AX-9614329 18.5 XX-1012270 18.5 AX-1012270 AX-9614329 18.5 XX-1012270 AX-9614329 18.5 XX-1012270 AX-9614329 </td <td></td> <td>-</td> <td>5A</td> <td>19</td> <td>+ -</td> <td>1</td> <td>AX-95683796</td> <td></td> <td></td> <td></td> <td></td>		-	5A	19	+ -	1	AX-95683796				
GEF ORE/BOT SD 13 AX-89752452 11.5 AX-110129540 13.5 5.05 19.9 Applema GId QCIGASD 5D 19 Applema 18.5 AX-10029627 20.5 4.63 10.55 2.2073 GIG QCIGAD 5D 19 AX-94464379 22.6 AX-10029646 229 3.94 9.7 2.0943 GIG QCIGAD 5D 19 Applema 18.5 AX-100995227 19.5 6.11 13.4 2.2450 GIG QCIGAD 4D 10 AX-8010308 18.5 AX-100995227 18.5 6.11 13.4 2.246 18.0 0.5019 3.0 1.0 0.5019 3.0 1.0 0.5019 3.0 1.0 0.5019 3.0 1.0 0.5019 3.0 2.246 1.0 1.0 0.5019 3.0 2.0 3.0 3.0 1.0 1.0 0.5029 3.0 3.0 3.0 3.0 1.0 0.	GEf		5A	15	AX-94524640	12.5	AX-89452330	21.5	4.29	8.64	-0.0859
GRIC QGIGSB SB 229 AX-9464729 226.5 AX-110529646 229 3.94 9.77 2.0435 GIC QGISD 5D 19 Xgdm3 18.5 AX-109095227 19.5 6.11 15.49 2.6455 SIA QGISD 5D 19 Xgdm3 18.5 AX-109095227 19.5 6.11 15.49 2.2590 SLA QGISDA 4D 16 AX-8903298 14.5 AX-109095227 15.5 .54 .61 14.34 2.50 SLA QKL6A AX 68 AX-9614334 65.5 Xgwm15 65.5 42.4 11.10 0.6678 SLD QKL6A AX 69 Xgwm15 68.5 Xgwm15 71.5 4.49 11.2 0.6678 SLA QKL6A AX 69 Xgwm156 68.5 Xgwm15 71.5 4.49 11.12 0.6678 SLA QKL6AB AX 6 Xgwm167 47.5	GEf		5D	13	AX-89752452	11.5	AX-110129540	13.5	5.05	10.39	0.0949
GGe GGe/SD SD 19 Xgdm3 18.5 AX-109095227 20.5 6.11 15.4 2.5290 GIÍ QGI/SD 5D 19 Xgdm3 18.5 AX-109095227 20.5 6.11 1.34 2.5290 SLA QSL64D 4D 16 AX-89703298 14.5 AX-10905227 20.5 6.1 1.13 0.5390 SLA QSL65A 5A 68 AX-9514338 65.5 Xgwm15 65.5 4.5 1.10 0.5892 SLA QSL65A 5A 69 Xgwm156 68.5 Xgwm156 2.5 4.24 1.11 0.6678 SLA QSL65A 5B 22 AX-9464729 21.5 AX-10029646 229 4.99 1.27 0.0353 SLA QSL43B 3B 48 AX-10122723 0.5 AX-9869123 1.5 3.64 0.12 1.02 0.0372 SLA QSL63A 5A 38 48 AX-1012272	GId	QGId5D	5D	19	Xgdm3	18.5	AX-109095227	20.5	4.63	10.55	2.3675
GGI QGI/SD SD 19 Xgdm3 18.5 AX-109095227 20.5 6.41 14.34 2.5290 SLa QSLarD 4D 16 AX-89701289 1.5 AX-89421921 18.5 3.54 8.31 0.5099 SLD QSLa5A 5A 68 AX-99148348 65.5 Xgwm156 68.5 Xgwm145 71.5 5.76 17.18 0.6678 SLC QSLc5A 5A 69 QSUm156 68.5 Xgwm156 22.5 4.24 11.12 0.6678 SLC QSLc5B 5B 26 AX-94643729 21.5 AX-11022964 22.9 4.69 12.27 0.6368 SLC QSLc5B 3B 28 AX-94643729 21.5 AX-110229640 29 4.69 12.27 0.6378 SLL QSLd5B 3B 29 AX-94643729 21.5 AX-110529640 29 4.79 4.79 0.776 SLL QSLd5B 3B 29	GIe	QGIe5B	5B	229	AX-94643729	226.5	AX-110529646	229	3.94	9.77	2.0943
SLA QLAHD 4D 16 AX-89703298 14.5 AX-89421921 18.5 3.54 8.31 0.5019 SLA QSLa5A 5A 68 AX-95148334 65.5 Symm156 69.5 4.45 11.10 0.5882 SLC QSL65A 5A 69 Xymm156 68.5 Xymm415 72.5 4.24 11.12 0.6188 SLC QSL65B 5B 226 AX-94643729 21.55 AX-110529646 229 4.69 12.27 0.6389 SLd QSL63B 3B 48 Xwm231 45. Xwm231 48.5 3.64 60.1 -0.702 SLd QSLd3A 5A 51 Xymm231 47.5 3.54 48.9 6.17 0.6395 SLd QSLd3A 5A 51 Xymm231 47.5 3.64 6.0 1.772 SLd QSLd3A 5A 51 Xymm251 47.1 4.5 4.7 4.7 4.7 <t< td=""><td>GIe</td><td>QGIe5D</td><td>5D</td><td>19</td><td>Xgdm3</td><td>18.5</td><td>AX-109095227</td><td>19.5</td><td>6.11</td><td>15.49</td><td>2.6455</td></t<>	GIe	QGIe5D	5D	19	Xgdm3	18.5	AX-109095227	19.5	6.11	15.49	2.6455
SLIA QSLab5A 5A 68 AX-95148343 65.5 Xgwm156 69.5 4.45 11.0 0.5892 SLIb QSLb5A 5A 69 Xgwm156 68.5 Xgwm156 7.5 5.76 17.18 0.6668 SLC QSLc5B 5B 226 AX-94643729 215.5 AX-11052964 229 4.69 12.27 0.6365 SLA QSLd3A 3B 226 AX-94643729 215.5 AX-110529646 229 4.69 12.27 0.6395 SLA QSLd3A 3B 48 Xwmc231 47.5 Xwmc231 48.5 6.17 10.68 -0.790 SLA QSLd3A 3B 48 Xwmc231 47.5 Xwmc231 48.5 6.17 10.68 -0.793 SLA QSLd3B 3B 29 AX-94643729 224.5 AX-10876901 19.5 3.6 8.0 10.727 SLE QSL2BB 3B 29 AX-94643729 25.5	GIf	QGIf5D	5D	19	Xgdm3	18.5	AX-109095227	20.5	6.41	14.34	2.5290
SIL QLID5A SA 69 Xgwm156 68.5 Xgwm415 71.5 5.76 17.18 0.6678 SLC QSLc5A 5A 69 Xgwm156 68.5 Xgwm156 72.5 4.24 11.12 0.6168 SLC QSLc5B 5B 226 AX-94643729 21.5 AX-110529646 229 4.69 1.27 0.6168 SLG QSLd3B 3B 48 XX-1012273 0 AX-89691266 229 4.69 1.27 0.7972 SLG QSLd3B 3B 48 Xwmc231 47.5 Xwmc231 48.5 6.17 10.68 -0.9909 SLG QSLd3B 3B 48 Xwmc231 47.5 Xwmc231 48.5 6.17 10.68 -0.9909 SLG QSLd3A 3B 29 AX-94643729 224.5 AX-10529646 229 3.68 10.14 13.48 SLG QSL6B 3B 29 AX-94643729 225.5 <td< td=""><td>SLa</td><td>QSLa4D</td><td>4D</td><td>16</td><td>AX-89703298</td><td>14.5</td><td>AX-89421921</td><td>18.5</td><td>3.54</td><td>8.31</td><td>0.5019</td></td<>	SLa	QSLa4D	4D	16	AX-89703298	14.5	AX-89421921	18.5	3.54	8.31	0.5019
SID QSLb5A SA 69 Xgwm156 68.5 Xgwm415 71.5 7.5 17.8 0.6688 SLC QSLc5A 5A 69 Xgwm156 68.5 Xgwm415 72.5 4.24 11.12 0.6168 SLC QSLc5A 5A 69 Xgwm415 68.5 Xgwm415 72.5 4.24 11.12 0.6168 SLA QSLc5A 3A 1 AX-110122723 0 AX-8691263 1.5 0.61 6.01 -0.7172 SLA QSLd3A 3A 1 AX-101022721 0 AX-96891263 1.5 0.72 0.73 0.73 0.75 SLG QSLd3A 3A 1 Xxyew2051 5.5 AX-9643729 2.2 AX-10824991 11.5 3.9 7.4 0 0.02 0 0.02 0 0.02 0 0.02 0 0.02 0 0.02 0 0.02 0.02 0.02 0.02 0.02 0	SLa	QSLa5A	5A	68	AX-95148334	65.5	Xgwm156	69.5	4.45	11.10	0.5892
SLC QSL65B 5B 226 AX-94643729 21.53 AX-110529646 229 4.69 12.27 0.6395 SLd QSLd3AA 3A 1 AX-110122723 0 AX-89691263 1.5 3.64 6.01 -0.7172 SLd QSLd3AA 3B 4 Xwmc231 47.5 Xwm2531 45.5 1.51 3.99 7.49 0.7803 SLd QSLd3BA 3B 229 AX-94643729 224.5 AX-110529646 229 4.17 7.03 0.7520 SLe QSLd3BA 5B 229 AX-94643729 224.5 AX-110529646 229 4.17 7.03 0.7520 SLe QSLc5BA 5B 229 AX-94643729 224.5 AX-110529646 229 4.60 1.285 1.214 1.3485 SLf QSLfSD 5D 19 Xgdm3 18.5 AX-10905227 19.5 4.60 12.25 1.214 1.148 RL QRL5BA	SLb	QSLb5A	5A	69	Xgwm156	68.5	-	71.5	5.76	17.18	0.6678
Sch QSLd3A 3 1 AX-11012272 0 AX-89691263 1.5 3.64 6.01 -0.717 SLd QSLd3B 3B 48 Xwmc231 47.5 Xwmc231 48.5 6.17 10.68 -0.9369 SLd QSLd3B 5B 21 Xymc231 47.5 Xwmc231 48.5 6.17 10.68 -0.9360 SLd QSLd3B 1B 18 Xymc44 115.5 AX-10829461 22.9 47.4 7.03 7.0720 SLe QSLe5B 1B 118 Xwmc44 115.5 AX-10829564 22.9 4.7 7.0	SLc		5A	69	-	68.5	-	72.5	4.24	11.12	0.6168
SLI QSLd3B 3B 48 Xmmc231 47.5 Xmmc231 48.5 6.17 10.68 -0.998 SLI QSLd5A 5A 51 Xgmm205.1 50.5 AX-9668047 51.5 3.99 7.49 0.7830 SLI QSLd5B 5B 229 AX-94643729 224.5 AX-108745931 119.5 3.61 7.03 0.7527 SLE QSLe5A 5A 69 Xgmm156 6.85 Xgmm415 71.5 7.28 17.1 1.348 SLE QSLe5A 5A 69 Xgmm156 6.85 Xgmm415 71.5 7.28 17.1 1.348 SLE QSL5B 5B 229 AX-94643729 225.5 AX-109351504 16-1 5.71 1.219 1.027 RLG QRL2D 1D 162 AX-94643729 225.5 AX-110529646 229 3.69 17.0 1.027 RLG QRL2D 1D 162 AX-9463729 225.5	SLc		5B	226	+ -	215.5	-	229	4.69	12.27	0.6395
SLId QSLd3B 3B 48 Xmmc231 47.5 Xmmc231 48.5 6.17 10.68 -0.999 SLId QSLd5A 5.4 51 Xgmc205.1 50.5 AX-9668047 51.5 3.99 7.49 0.7803 SLId QSLeB 18 229 AX-94643729 224.5 AX-108745931 119.5 3.65 8.08 -0.9160 SLE QSLeBA 5.4 69 Xgmn156 68.5 Xgmn415 71.5 7.28 17.1 1.38 SLE QSLeBA 5.4 69 Xgmn156 68.5 Xgmn415 71.5 7.28 17.1 1.38 SLE QSLEBA 5.0 QSum156 8.5 Xx-1082646 229 3.68 10.3 1.03 1.03 SLE QSLEBA 50 19 Xgmn156 8.5 Xx-1082664 229 3.68 10.3 1.01 1.03 SLE QSLEBA 58 229 AX-9463729 225.	SLd	QSLd3A	3A	1	AX-110122723	0	AX-89691263	1.5	3.64	6.01	-0.7172
SLI QSLd5B 5B 229 AX-94643729 224.5 AX-110529646 229 4.17 7.03 0.7527 SLe QSLe1B 1B 118 Xwmc44 115.5 AX-108745931 119.5 3.65 8.08 -0.9160 SLe QSLe5A 5A 69 Xgwm156 68.5 Xgwm415 71.5 7.28 17.14 13.485 SLf QSLf5B 5D 19 AX-94643729 224.5 AX-1005996227 19.5 4.60 12.85 12.015 RLd QSLf5D 5D 19 Xgdm3 18.5 AX-1005995227 19.5 4.60 12.81 12.01 10.603 RLd QSLf5D 5D 162 AX-108820505 160.5 AX-1005951504 164.5 5.71 12.19 1.0691 RLd QRL62B 5B 229 AX-94643729 225.5 AX-110529646 229 4.25 9.24 0.941 RLf QRL65B 5B 229	SLd		3B	48	Xwmc231	47.5	Xwmc231	48.5	6.17	10.68	
SLI QSLd5B 5B 229 AX-94643729 224.5 AX-110529646 229 4.17 7.03 0.7527 SLe QSLe1B 1B 118 Xmc44 115.5 AX-108745931 119.5 3.65 8.08 -0.9160 SLe QSLe5A 5A 69 Xgwm156 68.5 Xgwm415 71.5 7.28 17.14 1.3485 SLf QSLf5B 5B 229 AX-94643729 224.5 AX-10059646 229 3.68 10.13 1.0635 RLd QSLf5D 5D 19 Xgdm3 18.5 AX-1005951504 16.5 571 12.19 1.0691 RLd QRLd2D 2D 162 AX-94643729 225.5 AX-110529646 229 3.69 7.76 0.8432 RLe QRLd2D 2D 162 AX-94643729 225.5 AX-110529646 229 4.25 9.24 0.9411 RLf QRL62B 5B 229 AX-94643729	SLd	QSLd5A	5A	51	Xgwm205.1	50.5	AX-95685047	51.5	3.99	7.49	0.7803
SLe QSLe5A 5A 69 Xgwm156 68.5 Xgwm415 71.5 7.28 17.14 1.3485 SLf QSLfSB 5B 229 AX-94643729 224.5 AX-110529646 229 3.68 10.13 1.0635 SLf QSLfSD 5D 19 Xgdm3 18.5 AX-109095227 19.5 4.60 12.85 1.2015 RLd QRLd2D 2D 162 AX-108820505 160.5 AX-1109351504 164.5 5.71 12.19 1.0691 RLd QRLd5B 5B 229 AX-94643729 225.5 AX-110529646 229 3.69 7.76 0.8432 RLe QRLe5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.81 11.09 0.970 RLf QRLe5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.81 11.09 0.960 RLf QRL/5D 5D 19 Xgdm3	SLd		5B	229	-	224.5	AX-110529646	229	4.17	7.03	0.7527
SLf QSL/5B SB 229 AX-94643729 224.5 AX-110529646 229 3.68 10.13 1.0635 SLf QSL/5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 4.60 12.85 1.2015 RLd QRLd2D 2D 162 AX-108820505 160.5 AX-109351504 164.5 5.71 12.19 1.0691 RLd QRLd3B 5B 229 AX-94643729 225.5 AX-110529646 229 3.69 7.76 0.8432 RLe QRLe5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.81 1.07 1.0277 RLe QRLe5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.81 1.07 1.0277 RLe QRLf5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.81 1.07 1.077 1.027 RLf QRLf5B 5D 19 <td>SLe</td> <td>QSLe1B</td> <td>1B</td> <td>118</td> <td>Xwmc44</td> <td>115.5</td> <td>AX-108745931</td> <td>119.5</td> <td>3.65</td> <td>8.08</td> <td>-0.9160</td>	SLe	QSLe1B	1B	118	Xwmc44	115.5	AX-108745931	119.5	3.65	8.08	-0.9160
SLf QSL/5B SB 229 AX-94643729 224.5 AX-110529646 229 3.68 10.13 1.0635 SLf QSL/5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 4.60 12.85 1.2015 RLd QRLd2D 2D 162 AX-108820505 160.5 AX-109351504 164.5 5.71 12.19 1.0691 RLd QRLd3B 5B 229 AX-94643729 225.5 AX-110529646 229 3.69 7.76 0.8432 RLe QRLe5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.81 1.07 1.0277 RLe QRLe5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.81 1.07 1.0277 RLe QRLf5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.81 1.07 1.077 1.027 RLf QRLf5B 5D 19 <td>SLe</td> <td>QSLe5A</td> <td>5A</td> <td>69</td> <td>Xgwm156</td> <td>68.5</td> <td>Xgwm415</td> <td>71.5</td> <td>7.28</td> <td>17.14</td> <td>1.3485</td>	SLe	QSLe5A	5A	69	Xgwm156	68.5	Xgwm415	71.5	7.28	17.14	1.3485
SLI QXI/SD 5D 19 Xgdm3 18.5 AX-109095227 19.5 4.60 12.85 1.2015 RLd QRLd2D 2D 162 AX-108820505 160.5 AX-109351504 164.5 5.71 12.19 1.0691 RLd QRLd5B 5B 229 AX-94643729 225.5 AX-110529646 229 3.69 7.76 0.8432 RLe QRLe5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.25 9.24 0.9411 RLf QRLe5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.25 9.24 0.9411 RLf QRLf5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.81 11.09 0.9670 RLf QRLf5D 5D 19 Xgdm3 18.5 AX-110529646 229 4.81 11.09 0.9670 RLf QRLf5D 5D 18 AX-9452577 <td>_</td> <td>-</td> <td>5B</td> <td>229</td> <td></td> <td>224.5</td> <td>1</td> <td>229</td> <td>3.68</td> <td>10.13</td> <td></td>	_	-	5B	229		224.5	1	229	3.68	10.13	
RLd QRId2D 2D 162 AX-108820505 160.5 AX-109351504 164.5 5.71 12.19 1.0691 RLd QRId3B 5B 229 AX-94643729 225.5 AX-110529646 229 3.69 7.76 0.8432 RLe QRLe2D 2D 162 AX-108820505 160.5 AX-109351504 164.5 4.99 10.77 1.0277 RLe QRLe5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.25 9.24 0.9411 RLf QRLf5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.81 11.09 0.9670 RLf QRLf5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.81 11.09 0.9670 RLf QRLf5D 5D 19 Xgdm3 18.5 AX-110529646 229 4.81 11.09 0.9670 RLf QRVa5D 5D 19 Xg4	SLf		5D	19		18.5	AX-109095227	19.5	4.60	12.85	1.2015
RLe QRLe2D 2D 162 AX-108820505 160.5 AX-109351504 164.5 4.99 10.77 1.0277 RLe QRLe5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.25 9.24 0.9411 RLf QRLf5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.81 11.09 0.9670 RLf QRLf5D 5D 19 Xgdm3 18.5 AX-109095227 20.5 4.30 9.79 0.9109 SWa QSWa3D 3D 25 AX-94550177 42.5 AX-111713694 49.5 5.07 10.01 -0.0178 SWe QSWe4A 4A 91 AX-94581303 90.5 Xwmc468 91.5 5.77 15.58 -0.0201 SWe QSWe7A 7A 143 AX-94502577 140.5 Xgmm282 145.5 3.64 10.29 0.0269 Vic QVIc5D 5D 18 AX-110091432<	RLd	-	2D	162	-	160.5	AX-109351504	164.5	5.71	12.19	1.0691
RLe QRLe5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.25 9.24 0.9411 RLf QRLf5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.81 11.09 0.9670 RLf QRLf5D 5D 19 Xgdm3 18.5 AX-109095227 20.5 4.30 9.79 0.9109 SWa QSWa3D 3D 25 AX-94550177 42.5 AX-111713694 49.5 5.07 10.01 -0.0178 SWe QSWe4A 4A 91 AX-94581303 90.5 Xwmc468 91.5 5.77 15.58 -0.0201 SWe QSWe7A 7A 143 AX-94502577 140.5 Xgwm282 145.5 3.64 10.29 0.0269 Vic QVIc5D 5D 18 AX-110091432 15.5 Xgdm68 18.5 4.34 10.38 26.2836 Vid QVId5D 5D 19 Xgdm3 <t< td=""><td>RLd</td><td>QRLd5B</td><td>5B</td><td>229</td><td>AX-94643729</td><td>225.5</td><td>AX-110529646</td><td>229</td><td>3.69</td><td>7.76</td><td>0.8432</td></t<>	RLd	QRLd5B	5B	229	AX-94643729	225.5	AX-110529646	229	3.69	7.76	0.8432
RLf QRLf5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.81 11.09 0.9670 RLf QRLf5D 5D 19 Xgdm3 18.5 AX-109095227 20.5 4.30 9.79 0.9109 SWa QSWa3D 3D 25 AX-94581707 42.5 AX-111713694 49.5 5.07 10.01 -0.0178 SWc QSWc4A 4A 91 AX-94581303 90.5 Xwmc468 91.5 5.77 15.58 -0.0201 SWe QSWc7A 7A 143 AX-94502577 140.5 Xgwm282 145.5 3.64 10.29 0.0269 VIc QVIc5D 5D 18 AX-110091432 15.5 Xgdm8 18.5 4.34 10.38 26.2836 VId QVIc5D 5D 19 Xgdm3 18.5 AX-110529646 229 4.19 10.25 24.1877 VIe QVIe5D 5D 19 Xgdm3 18.5<	RLe	QRLe2D	2D	162	AX-108820505	160.5	AX-109351504	164.5	4.99	10.77	1.0277
RLf QRLf5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.81 11.09 0.9670 RLf QRLf5D 5D 19 Xgdm3 18.5 AX-109095227 20.5 4.30 9.79 0.9109 SWa QSWa3D 3D 25 AX-94581707 42.5 AX-111713694 49.5 5.07 10.01 -0.0178 SWc QSWc4A 4A 91 AX-94581303 90.5 Xwmc468 91.5 5.77 15.58 -0.0201 SWe QSWc7A 7A 143 AX-94502577 140.5 Xgwm282 145.5 3.64 10.29 0.0269 VIc QVIc5D 5D 18 AX-110091432 15.5 Xgdm8 18.5 4.34 10.38 26.2836 VId QVIc5D 5D 19 Xgdm3 18.5 AX-110529646 229 4.19 10.25 24.1877 VIe QVIe5D 5D 19 Xgdm3 18.5<	RLe	QRLe5B	5B	229	AX-94643729	225.5	AX-110529646	229	4.25	9.24	0.9411
RLIF QRL/5D 5D 19 Xgdm3 18.5 AX-109095227 20.5 4.30 9.79 0.9109 SWa QSWa3D 3D 25 AX-94550177 42.5 AX-111713694 49.5 5.07 10.01 -0.0178 SWc QSWc4A 4A 91 AX-94581303 90.5 Xwmc468 91.5 5.77 15.58 -0.0201 SWe QSWc7A 7A 143 AX-94502577 140.5 Xgwm282 145.5 3.64 10.29 0.0269 VIc QVIc5D 5D 18 AX-110091432 15.5 Xgdm68 18.5 4.34 10.38 26.2836 VId QVId5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.19 10.25 24.1877 VId QVId5D 5D 19 Xgdm3 18.5 AX-10529646 229 4.79 11.46 24.2392 VIe QVIe5B 5B 229 AX-94643729		-	5B	229							
SWa QSWa3D 3D 25 AX-94550177 42.5 AX-111713694 49.5 5.07 10.01 -0.0178 SWc QSWc4A 4A 91 AX-94581303 90.5 Xwmc468 91.5 5.77 15.58 -0.0201 SWe QSWc7A 7A 143 AX-94502577 140.5 Xgwm282 145.5 3.64 10.29 0.0269 Vic QVIc5D 5D 18 AX-110091432 15.5 Xgdm68 18.5 4.34 10.38 26.2836 Vid QVId5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.19 10.25 24.1877 Vid QVIc5B 5B 229 AX-94643729 226.5 AX-110529646 229 4.79 11.46 24.2392 Vie QVIc5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 6.95 17.06 29.6617 Vif QVIf5B 5B 229 AX-94643729 <td></td> <td>-</td> <td>5D</td> <td>19</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>		-	5D	19			-				
SWc QSWc4A 4A 91 AX-94581303 90.5 Xwmc468 91.5 5.77 15.58 -0.0201 SWe QSWe7A 7A 143 AX-94502577 140.5 Xgwm282 145.5 3.64 10.29 0.0269 Vic QVIc5D 5D 18 AX-110091432 15.5 Xgdm68 18.5 4.34 10.38 26.2836 Vid QVId5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.19 10.25 24.1877 Vid QVId5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 5.66 14.01 28.3611 Vie QVIe5B 5B 229 AX-94643729 226.5 AX-110529646 229 4.79 11.46 24.2392 Vie QVIe5D 5D 19 Xgdm3 18.5 AX-105995227 19.5 6.95 17.06 29.6617 Vif QVIf5B 5B 229 AX-94643729		-	3D	25	-						
SWe QSWe7A 7A 143 AX-94502577 140.5 Xgwm282 145.5 3.64 10.29 0.0269 VIc QVIc5D 5D 18 AX-110091432 15.5 Xgdm68 18.5 4.34 10.38 26.2836 VId QVId5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.19 10.25 24.1877 VId QVId5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 5.66 14.01 28.3611 VIe QVIe5B 5B 229 AX-94643729 226.5 AX-110529646 229 4.79 11.46 24.2392 VIe QVIe5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 6.95 17.06 29.6617 VIf QVIf5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.09 9.61 19.3606 VIf QVIf5D 5D 19 Xgdm3		-	4A	91	AX-94581303	90.5	Xwmc468				
VIc QVIc5D 5D 18 AX-110091432 15.5 Xgdm68 18.5 4.34 10.38 26.2836 VId QVId5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.19 10.25 24.1877 VId QVId5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 5.66 14.01 28.3611 VIe QVIe5B 5B 229 AX-94643729 226.5 AX-110529646 229 4.79 11.46 24.2392 VIe QVIe5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 6.95 17.06 29.6617 VIf QVIf5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.09 9.61 19.3606 VIf QVIf5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 6.28 15.13 24.3613 SVIa QSVI6D 5D 18 AX-11062987		-	7A	143	AX-94502577	140.5	Xgwm282		3.64		
VId QVId5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.19 10.25 24.1877 VId QVId5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 5.66 14.01 28.3611 VIe QVIe5B 5B 229 AX-94643729 226.5 AX-110529646 229 4.79 11.46 24.2392 VIe QVIe5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 6.95 17.06 29.6617 VIf QVIf5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.09 9.61 19.3606 VIf QVIf5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 6.28 15.13 24.3613 SVIa QSVIa5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 6.28 15.13 24.3613 SVIa QSVIa5D 5D 18 AX-11062987		-				15.5					
VId QVId5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 5.66 14.01 28.3611 VIe QVIe5B 5B 229 AX-94643729 226.5 AX-110529646 229 4.79 11.46 24.2392 VIe QVIe5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 6.95 17.06 29.6617 VIf QVIf5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.09 9.61 19.3606 VIf QVIf5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 6.28 15.13 24.3613 SVIa QSVIa6D 6D 25 AX-111602987 23.5 AX-89689923 26.5 4.17 10.13 0.7989 SVIc QSVIc5D 5D 18 AX-110091432 16.5 Xgdm68 18.5 4.11 9.86 1.1407 SVId QSVId5B 5B 229 AX-94643729											
VIe QVIe5B 5B 229 AX-94643729 226.5 AX-110529646 229 4.79 11.46 24.2329 VIe QVIe5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 6.95 17.06 29.6617 VIf QVIf5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.09 9.61 19.3606 VIf QVIf5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 6.28 15.13 24.3613 SVIa QSVIa6D 6D 25 AX-111602987 23.5 AX-89689923 26.5 4.17 10.13 0.7989 SVIc QSVIc5D 5D 18 AX-110091432 16.5 Xgdm68 18.5 4.11 9.86 1.1407 SVId QSVId5B 5B 229 AX-94643729 225.5 AX-110529646 229 3.67 9.26 1.0514 SVIe QSVIe5D 5D 19 Xgdm3		-									
VIe QVIe5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 6.95 17.06 29.6617 VIf QVIf5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.09 9.61 19.3606 VIf QVIf5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 6.28 15.13 24.3613 SVIa QSVIa6D 6D 25 AX-111602987 23.5 AX-89689923 26.5 4.17 10.13 0.7989 SVIc QSVIc5D 5D 18 AX-110091432 16.5 Xgdm68 18.5 4.11 9.86 1.1407 SVId QSVId5B 5B 229 AX-94643729 225.5 AX-110529646 229 3.67 9.26 1.0514 SVIe QSVIe5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 4.99 12.72 1.2360 SVIe QSVIe5D 5D 19 Xgdm3		-			-		-				
VIf QVIf5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.09 9.61 19.3606 VIf QVIf5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 6.28 15.13 24.3613 SVIa QSVIa6D 6D 25 AX-111602987 23.5 AX-89689923 26.5 4.17 10.13 0.7989 SVIc QSVIc5D 5D 18 AX-110091432 16.5 Xgdm68 18.5 4.11 9.86 1.1407 SVId QSVId5B 5B 229 AX-94643729 225.5 AX-110529646 229 3.67 9.26 1.0514 SVIe QSVId5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 4.99 12.72 1.2360 SVIe QSVIe5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.49 11.09 1.0948 SVIe QSVIe5D 5D 19 Xgdm3 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td>								1			
VIf QVIf5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 6.28 15.13 24.3613 SVIa QSVIa6D 6D 25 AX-111602987 23.5 AX-89689923 26.5 4.17 10.13 0.7989 SVIc QSVIc5D 5D 18 AX-110091432 16.5 Xgdm68 18.5 4.11 9.86 1.1407 SVId QSVId5B 5B 229 AX-94643729 225.5 AX-110529646 229 3.67 9.26 1.0514 SVId QSVId5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 4.99 12.72 1.2360 SVIe QSVIe5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.49 11.09 1.0948 SVIe QSVIe5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 6.31 15.93 1.3158 SVIe QSVIf5B 5B 229 AX-94643729 </td <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td>					_		-	-			
SVIa QSVIa6D 6D 25 AX-111602987 23.5 AX-89689923 26.5 4.17 10.13 0.7989 SVIc QSVIc5D 5D 18 AX-110091432 16.5 Xgdm68 18.5 4.11 9.86 1.1407 SVId QSVId5B 5B 229 AX-94643729 225.5 AX-110529646 229 3.67 9.26 1.0514 SVId QSVId5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 4.99 12.72 1.2360 SVIe QSVIe5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.49 11.09 1.0948 SVIe QSVIe5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 6.31 15.93 1.3158 SVIf QSVIf5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.25 9.87 0.9306		-									
SVIc QSVIc5D 5D 18 AX-110091432 16.5 Xgdm68 18.5 4.11 9.86 1.1407 SVId QSVId5B 5B 229 AX-94643729 225.5 AX-110529646 229 3.67 9.26 1.0514 SVId QSVId5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 4.99 12.72 1.2360 SVIe QSVIe5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.49 11.09 1.0948 SVIe QSVIe5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 6.31 15.93 1.3158 SVIe QSVIf5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.25 9.87 0.9306					<u> </u>						
SVId QSVId5B 5B 229 AX-94643729 225.5 AX-110529646 229 3.67 9.26 1.0514 SVId QSVId5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 4.99 12.72 1.2360 SVIe QSVIe5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.49 11.09 1.0948 SVIe QSVIe5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 6.31 15.93 1.3158 SVIf QSVIf5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.25 9.87 0.9306		-									
SVId QSVId5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 4.99 12.72 1.2360 SVIe QSVIe5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.49 11.09 1.0948 SVIe QSVIe5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 6.31 15.93 1.3158 SVIf QSVIf5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.25 9.87 0.9306							-				
SVIe QSVIe5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.49 11.09 1.0948 SVIe QSVIe5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 6.31 15.93 1.3158 SVIf QSVIf5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.25 9.87 0.9306											
SVIe QSVIe5D 5D 19 Xgdm3 18.5 AX-109095227 19.5 6.31 15.93 1.3158 SVIf QSVIf5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.25 9.87 0.9306	-				+ -						
SVIf QSVIf5B 5B 229 AX-94643729 225.5 AX-110529646 229 4.25 9.87 0.9306							-				
		-			<u> </u>		-				
	SVIf	QSVIf5D	5D	19	Xgdm3	18.5	AX-109095227	19.5	6.73	16.14	1.1929

Table 1. Additive QTLs for seed vigor traits in wheat DH lines using the ICIM method. GP, GE, GI, SL, RL, SW, VI, SVI = Germination Percentage, Germinating Energy, Germination Index, Seedling Lengh, Root Length, Seedling Weight, Vigor Index, and Simple Vigor Index, respectively. PVE = percentage of phenotypic variance explained by the QTL, Add = additive effect. a, b, c, d, e, and f represent aging for 0 h, 24 h, 36 h, 48 h, 60 h and 72 h, respectively.

Trait	QTL 1	Chr	Position 1 (cM)	Flanking marker 1	QTL 2	Chr	Position 2 (cM)	Flanking marker 2	LOD	PVE (%)	AA
GPe	QGPe6B	6B	70	Xwmc269.3-Xwmc494	QGPe7B	7B	50	AX-108946649- AX-108772866	5.22	13.21	-0.13
GPf	QGPf1D	1D	15	Xcwm170-AX-109860229	QGPf3D	3D	70	AX-110558400- AX-110394178	5.64	15.34	-0.11
GEb	QGEb3A	3A	35	AX-110673267- AX-109444631	QGEb6D	6D	0	AX-94474462- AX-108941325	5.16	16.08	-0.10
GEe	QGEe2A	2A	20	Xcwm138.2-AX-110686688	QGEe3B	3B	0	AX-111125857- AX-111663217	5.18	14.68	-0.10
GEf	QGEf3B	3B	0	AX-111125857- AX-111663217	QGEf6B	6B	105	AX-110928656- AX-109883174	6.07	17.68	0.10
GIf	QGIf1D	1D	15	Xcwm170-AX-109860229	QGIf3D	3D	75	AX-108859112- AX-108735265	5.03	12.35	-2.14
GIf	QGIf3B	3B	0	AX-111125857- AX-111663217	QGIf6B	6B	105	AX-110928656- AX-109883174	5.60	14.02	2.24
SLa	QSLa1D	1D	145	AX-111581326- AX-111644713	QSLa7B	7B	65	AX-110380079-Xwmc269.1	5.15	12.46	-0.61
RLb	QRLb5B	5B	150	AX-110671305- AX-111586069	QRLb6B	6B	0	Xcwm449-AX-109378013	5.04	14.20	1.02
RLe	QRLe1B	1B	50	Xgwm582-AX-95230830	QRLe3B	3B	145	AX-108729033- AX-110061327	5.28	22.61	-1.04
SWa	QSWa1A	1A	40	Xwmc336-AX-89414766	QSWa3A	3A	10	EST47-AX-95661215	5.38	15.22	-0.02
SWa	QSWa1B	1B	85	AX-94867126- AX-111073230	QSWa5A	5A	0	AX-94515371- AX-109485082	5.60	12.75	-0.02
SWa	QSWa7A	7A	0	Xcwm461.2-Xcwm462.2	QSWa7A	7A	75	AX-94712676- AX-110011761	5.30	12.79	0.02
SWb	QSWb3D	3D	260	AX-110945080- AX-89662133	QSWb4A	4A	145	AX-95143704-AX-94460900	6.50	18.57	-0.02
SWc	QSWc3D	3D	260	AX-110945080- AX-89662133	QSWc4A	4A	150	AX-94460900-AX-9525105	5.17	15.50	-0.02
SWd	QSWd1B	1B	25	AX-89662088-EST122	QSWd1B	1B	100	AX-111496745- AX-108753515	5.84	14.91	0.03
SWd	QSWd2D	2D	25	AX-109783007-Xgwm296.1	QSWd4A	4A	20	AX-110532752- AX-111118108	5.05	11.90	0.02
SWe	QSWe1B	1B	30	EST122-Xcwm548	QSWe1B	1B	125	AX-111708758- AX-94912518	5.29	19.33	0.03
VIb	QVIb3A	3A	125	AX-110161651- AX-111635376	QVIb4D	4D	25	AX-110564616- AX-111354775	5.12	14.06	27.12
VIb	QVIb3A	3A	35	AX-110673267- AX-109444631	QVIb6D	6D	0	AX-94474462- AX-108941325	5.49	13.60	-27.98
VIe	QVIe5B	5B	115	AX-110167647- AX-95232642	QVIe6B	6B	95	AX-111604989- AX-11098608	5.09	20.60	24.43
VIe	QVIe2B	2B	20	Xwmc317-AX-111601433	QVIe2B	2B	30	AX-109283083- AX-95101397	9.14	26.06	-61.23
VIf	QVIf3B	3B	0	AX-111125857- AX-111663217	QVIf6B	6B	105	AX-110928656- AX-109883174	5.39	7.35	21.35
SVIf	QSVIf2B	2B	20	Xwmc317-AX-111601433	QSVIf2B	2B	25	AX-108874208- AX-110043446	7.24	23.65	-2.72
SVIf	QSVIf3B	3B	0	AX-111125857- AX-111663217	QSVIf6B	6B	105	AX-110928656- AX-109883174	5.41	7.37	1.01

Table 2. Epistatic QTLs for seed vigor traits in wheat DH population. Positive value for epistatic effect means the greater genetic values of parental types than those of recombination types, while the negative value indicates the opposite scenarios. PVE = percentage of phenotypic variance explained by each QTL, AA = Additive-by-additive interaction effect.

cess, and biological regulation. The gene *TraesCS5B02G562100* appeared in three terms, and the response pathways involved include binding activity and membrane part. Gene *TraesCS5B02G564900* appeared in two terms, the response pathways included metabolic process and biological regulation. The genes *TraesCS5B02G562600*, *TraesCS5B02G562700* appeared in one term, and the participating response pathway was catalytic activity.

KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis was performed to mine candidate genes (Supplementary Table S4, Fig. 6). Genes *TraesCS5B02G562600* and *TraesCS5B02G562700* were significantly enriched in five metabolic pathways of 3-phytase, alkaline phosphatase D, solute carrier family 3, cetylajmaline esterase, and cholinesterase. The gene *TraesCS5B02G562100* is significantly enriched in eight metabolic pathways, which include nucleotides, protein metabolism and ribosome assembly, etc. The gene *TraesCS5B02G564200* was significantly enriched in the three metabolic pathways of C-Jun-amino-terminal kinase-interacting p, serine and arginine repetitive matrix 1, and ATP-dependent (S)-NAD(P)H-hydrate dehydra. The genes *TraesCS5B02G561300*

Figure 4. Distribution of additive QTL hotspot regions in seed vigor traits of wheat DH population.

and TraesCS5B02G561400 were significantly enriched in the three metabolic pathways of cytokinin riboside, 5'-monophosphate, and phosphoribohydrolase.

Discussion

Significant phenotypic correlation among wheat seed vigor-related traits. Seed vigor is affected by various external conditions. Under high temperature and humidity, a large number of seeds at different degrees of aging can be obtained, which is conducive to further research on vigor theory and applications. This method has provided useful results for investigations into the seed vigor of various crops. Ye²⁷ studied the response to high temperatures of rice seeds containing different water contents. Under long-term high temperature conditions, seed vigor and the longevity of high water content seeds were low. Han et al.² analyzed the GP and Ge of maize seeds under artificial aging and carried out relevant QTL mapping.

Gene ID	Gene annotation					
TraesCS5B01G564900	Invertase/pectin methylesterase inhibitor family protein					
TraesCS5B01G561300	Cytokininriboside 5'-monophosphate phosphoribohydrolase					
TraesCS5B01G561400	Cytokininriboside 5'-monophosphate phosphoribohydrolase					
TraesCS5B01G562100	WD40 repeat-containing protein					
TraesCS5B01G562600	GDSL esterase/lipase					
TraesCS5B01G562700	GDSL esterase/lipase					
TraesCS5B01G564200	Trihelix transcription factor					

Table 3. Genetic information of additive QTL hotspots in wheat DH population.

Figure 5. GO annotation clustering map of the candidate genes.

Figure 6. Pathway distribution map of the candidate genes.

In this study, the GP, GE, GI, SL, RL, SW, VI, and SVI values of the DH population decreased continuously with the increasing period of aging treatment. There were significant differences in seed vigor-related traits between parents Hanxuan 3 and Lumai 14 of DH population under artificial aging treatment, which may be due to the great differences in the source and physiological characteristics of parents. The absolute values of skewness and kurtosis coefficient of each trait in DH population are mostly less than one, which conforms to normal distribution. The absolute values of skewness coefficient and kurtosis coefficient of some traits, such as VIf and SVIf, are greater than one, indicating that there are major QTLs. Under different aging conditions, GP, GE, GI, VI, and SVI were significantly positively correlated, while SW, SL, and RL were also significantly correlated under most aging conditions. Under different aging conditions, GP, GE, GI, VI, and SVI were significantly positively correlated, while SW, SL, and RL were also significantly correlated under most aging conditions. QTL mapping was carried out for the eight seed vigor-related traits and four additional QTL hot spots were found. First, three QTLs related to SL under different aging treatments was detected in the marker range xgwm156 ~ xgwm415 on chromosome 5A. Second, QTLs related to GE, GI, SL, RL, VI, and SVI were detected in the marker interval Xgdm3 ~ AX-109095227 on chromosome 5D under different aging treatments. Third, a QTL associated with VI and SVI was detected on chromosome 5D in marker interval AX-110091432 ~ Xgdm68. Fourth, a QTL associated with six traits including GE, GI, SL, RL, VI, and SVI was detected on chromosome 5B under different aging treatments in the marker interval AX-94643729 ~ AX-110529646. Further mapping showed that these QTLs may be due to multiple effects or close linkage, which provided good molecular genetic evidence for the significant phenotypic correlation among the traits.

New QTLs for wheat seed vigor-related traits. In recent years, great progress has been made in the QTL mapping of various important traits including seed vigor in many crops. So far, research has focused on a limited number of plants such as rice, *Arabidopsis*, cabbage, barley, and sorghum. For example, Shi et al.²⁸ used two maize recombinant inbred line populations under low temperatures to detect 26 QTLs related to seed vigor such as GP and GI. These QTLs were located on all chromosomes, except chromosome 10. However, there are few studies on QTL mapping of wheat seed vigor. Misheva et al.²⁹ performed QTL mapping on GP and SL of aged wheat seeds under osmotic stress. The results showed that 20 QTLs were detected and distributed on chromosomes 1D, 2D, 4D, 5D, and 7D. Arif et al.²³ detected loci associated with seed longevity in bread wheat on chromosomes 1D, 2A, 7B, and 7D. Zuo et al.³⁰ found that chromosomes 2D, 3D, 4A, and 6B of wheat are important related to six seed germination parameters. In this study, 49 additive QTLs of wheat seed vigor-related traits were detected and found to be distributed on 12 chromosomes including 1B, 2D, 3A, 3B, 3D, 4A, 4D, 5A, 5B, 5D, 6D, and 7A. Among them, the seed vigor-related QTLs on 8 chromosomes (1B, 3A, 3B, 4D 5A, 5B, 6D, and 7A) (Supplementary Table S5) have not previously been reported, indicating that these may be new related QTLs.

Prediction of candidate genes related to seed vigor in wheat. Seed germination is a complex physiological process involving the metabolism of carbohydrates, lipids, proteins, and other substances. In this study, 56 genes were found in the marker interval AX-94643729 ~ AX-110529646 (physical range 707,412,449-710,959,479 bp) on chromosome 5B, and 7 candidate genes related to seed vigor were screened out, according to gene function annotation and the results of GO and KEGG analyses. The functional annotation of the candidate gene TraesCS5B01G564900 is an invertase/pectin methylesterase (PME) inhibitor family protein. Hothorn et al.³¹ demonstrated that PME and invertase are key enzymes for plant carbohydrate metabolism, which are involved in the development of plant roots, stems, and fruits. Inhibitors of these two enzymes form the sequence family of extracellular proteins and participate in the regulation of carbohydrate metabolism. The functional annotation of the candidate gene TraesCS5B01G562600 and TraesCS5B01G562700 are GDSL esterase/lipase protein. The GDSL lipase gene has been shown to be involved in plant growth and development, lipid metabolism, and stress responses³². BnLIP1, the GDSL lipase gene from Brassica napus, changes with seed germination and may also be involved in regulating other physiological processes³³. During the germination of aging seeds, the participation of transcription factors can ensure that the target gene is expressed at a specific time in a specific space. The functional annotation of the candidate gene Traescs5b01g564200 is a Trihelix transcription factor. Studies have shown that the Trihelix transcription factor is involved in plant embryogenesis and seed development ^{24,34}, along with the plant abiotic stress response³⁵.

Cytokinins are a class of plant hormones that promote cell division, bud formation, and growth and are related to seed development^{36,37}. Jameson et al.³⁷ detected cytokinins in bloated pea seeds and found that they were actively synthesized during germination. In this study, the candidate genes TRAESCS5B01G561300.1 and TRAESCS5B01G561400.1 were found to be functionally related to cytokinin nucleoside 5-monophosphate phosphatase. Other factors involved in plant growth and development are members of the WD40 protein family, which act as scaffolds in biomacromolecule interactions and exist widely in eukaryotes. In Arabidopsis, these proteins are considered to be the key regulatory factors in signal transmission during development and stress. For example, the WD40 repeat sequence protein AGB1 in Arabidopsis negatively regulates the signal transduction of auxin and affects cell division in fruits, hypocotyls, and roots 38,39. GIGANTUS1 (GTS1), a member of the WD40 protein superfamily, is highly expressed in Arabidopsis embryos and controls seed germination, growth, and biomass accumulation through interactions with ribosomal protein chaperones⁴⁰. Nucleosome remodeling factor complex components 101 and 102, which contain WD40 repeat sequences in maize, regulate seed germination, plant height, flowering time, etc. by regulating chromatin modification⁴¹. The functional annotation of the candidate gene Traescs5b01g562100.1 was that of a WD40 repeat domain and the gene was also found to be closely related to seed vigor. In future studies, the expression of these seven genes during the germination of aging seeds should be analyzed to verify their functions using transgene experiments, following by investigations into the mechanisms underlying their functions.

Materials and methods

Test material. A wheat DH population, derived from a Hanxuan $10 \times \text{Lumai}$ 14 cross was used as experimental material. The DH population with 150 lines was established by in vitro culture of anthers. The female parent, Hanxuan 10 is a dryland variety, bred by the Shanxi Academy of Agricultural Sciences in 1966; it exhibits excellent resistance to drought, barren soil, and cold temperatures. The male parent, Lumai 14, is a high-yield variety grown on irrigated land, which was bred in 1986 at the Yantai Agricultural Science Research Institute. The population was planted at Shanxi Agricultural University (37° 25′ N, 112° 25′ E) in 2017–2018. The field design consisted of randomized complete blocks with three replications. Each plot consisted of two rows of 2 m long, with 25 cm between rows. Forty seeds were sown in each row. Water and fertilizer management during the growth period was the same as that used in the local production practice. The seeds were harvested in June 2018.

Experiment methods. The experiment was carried out at Shanxi Agricultural University between January and July, 2019. First, the seeds were artificially aged. There were six controlled-environment treatments for each line, 100 seeds for each treatment, and three replicates. Seeds were placed in an artificial climate incubator at a temperature of 48 °C and relative humidity of 100%. The seeds were aged under dark conditions for 0 h (a), 24 h (b), 36 h (c), 48 h (d), 60 h (e), and 72 h (f), respectively. The aged seeds were dried at room temperature for 3 days and then the standard germination test was carried out. The seeds were first disinfected, soaked in a 0.1% HgCl₂ solution for 15 min, and washed three times with distilled water. The seeds were placed with the ventral groove facing down evenly in a culture dish (12 cm in diameter) with two layers of filter paper. An appropriate amount of distilled water was added and the dish was put in an artificial climate incubator (25 °C, 75% relative humidity) for germination. During germination, the photoperiod was 16 h light / 8 h dark. The plates were checked regularly and distilled water was replenished with an appropriate amount every day. From the third day of culture, the germination number for each line was counted. The shortest protruding part of seed radicle was the same as the length of seed, which was regarded as normal germination. The seedling length (SL), root length (RL), and seedling weight (SW) of each line were measured on the seventh day of culture.

Calculation of wheat seed vigor related traits:

```
Germination percentage (GP) = (n_7/100) \times 100\%

Germination energy(GE) = (n_3/100) \times 100\%

Germination index (GI) = \SigmaGt / Dt

Vigor index (VI) = GI \times SL

Simple vigor index (SVI) = GP \times SL
```

In the formula above, n_3 is the number of germinated seeds on the 3rd day of culture, n_7 is the number of germinated seeds on the 7th day of culture, Gt is the daily germination number, Dt is the corresponding germination days of Gt.

Data analysis. Relevant t-test and analysis of variance (ANOVA) were carried out by the statistical software package SPSS 16.0, frequency distribution map was carried out by Excel 2007, phenotypic correlation analysis map and phylogenetic clustering map were created in the R-package corrplot (version 0.84)⁴² and clusterProfiler (version 3.16)⁴³, respectively. The heritability of the traits was analyzed by analysis of variance. The formula of heritability is: $H_B{}^2 = \sigma_g{}^2/(\sigma_g{}^2 + \sigma_e{}^2/r) \times 100\%$, in which $\sigma_g{}^2$ is the genetic variance, $\sigma_e{}^2$ is the random error variance, and r is the number of trials repeated.

QTL mapping. The genetic map of the DH population was constructed by Jing Ruilian's team at the Institute of Crop Science, Chinese Academy of Agricultural Sciences. The map was created by integrating the same genetic position with SNP markers and SSR markers. The final number of markers was 1854, of which there were 1630 660 K SNP markers. There were 224 SSR markers, the total length was 4082.44 cM, and the average distance between the markers was 2.20 cM, including 30 linkage groups.

In recent years, the statistical methods commonly used in QTL mapping are mainly MCIM, ICIM and GCIM⁴⁴. In this study, QTL analysis was analyzed by IciMapping software for seed vigor-related traits after artificial aging treatment, with inclusive composite interval mapping (ICIM)⁴⁵. The average value of the three repeated measurements of seed vigor-related traits in the DH population was used as the phenotypic value. The walking speed for all QTL detections was chosen at 1.0 centimorgans (cM), with P = 0.001 in stepwise regression. Based on 2000 permutations at a probability of 0.01, the significant QTL threshold was obtained. Combined with this genetic map, a main-effect and epistatic QTL mapping were performed. At the same time, QTL IciMapping software was used to map the distribution of QTL loci on wheat chromosomes. The QTLs are named after "Q + trait name + processing time + chromosome". The GCIM method in the software QTL.gCIMapping from the R website (https://cran.r-project.org/web/packages/QTL.gCIMapping/index.html) was also used to identify QTLs for the above traits, with the purpose of identifying the results from the ICIM method; the critical LOD scores for a significant QTL was also set at 2.5, and the walking speed for the genome-wide scan was set at 1 cM.

The GO and KEGG analyses. The online prediction website (https://geneontology.org/) was used to perform GO (Gene Ontology) enrichment analysis on candidate genes. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis was performed on candidate genes using the KEGG analysis website (https://www.kegg.jp/keg/kegg1.html))^{46,47}.

Conclusion

A total of 49 additive QTLs of wheat seed vigor-related traits were detected and distributed on 12 chromosomes including 1B, 2D, 3A, 3B, 3D, 4A, 4D, 5A, 5B, 5D, 6D, and 7A. The chromosomes with more QTL loci were 5D, 5B, and 5A. Three hotspots of additive QTLs were detected on chromosomes 5A, 5B, and 5D. Seven genes related to seed vigor traits were screened from the hot spots on chromosome 5B, which were *TRAESCS5B01G564900*, *TRAESCS5B01G564200*, *TRAESCS5B01G564900*, *TRAESCS5B01G564900*, *TRAESCS5B01G564400*, and *TRAESCS5B01G562100*. These genes may be involved in the regulation of several processes including carbohydrate and lipid metabolism, transcription, and cell division, during the germination of aging seeds. These newly detected QTLs, SNP markers, and related candidate genes provide valuable information for molecular marker-assisted selective breeding of high-vigor wheat seeds.

Data availability

The experimental materials and relevant data involved in this paper can be used publicly.

Received: 14 February 2020; Accepted: 15 October 2020

Published online: 16 December 2020

References

- 1. Chen, L. T. et al. Seed vigor evaluation based on adversity resistance index of wheat seed germination under stress conditions. Chin. J. Appl. Ecol. 27, 2968–2974 (2016).
- 2. Han, Z. et al. QTLs for seed vigor-related traits identified in maize seeds germinated under artificial aging conditions. PLoS ONE 9, e92535 (2014).
- 3. Cao, L. Y., Zhu, J., Ren, L. F., Zhao, S. T. & Yan, Q. C. Mapping QTLs and epistasis for seedling vigor in rice (*Oryza sativa* L). Acta Agron. Sin. 28, 809–815 (2002).
- 4. Brits, G. J., Brown, N. A. C., Calitz, F. J. & Van Staden, J. Effects of storage under low temperature, room temperature and in the soil on viability and vigour of *Leucospermum cordifolium*(Proteaceae)seeds. S. Afr. J. Bot. 97, 1–8 (2015).
- 5. Ventura, L. et al. Understanding the molecular pathways associated with seed vigor. Plant Physiol. Biochem. 60, 196–2068 (2012).
- Wang, X. F. & Cong, Z. J. The biological basis of seed vigor and the research progress of improving and maintaining seed vigor. Seed 1(16), 36–39 (1997).
- 7. Zheng, Y. L. et al. Comparative study on determination methods of wheat seed vigor. J. Jiangsu Agric. Sci. 45, 61-64 (2017).
- 8. Sun, Q., Wang, J. H. & Sun, B. Q. Advances on seed vigor physiological and genetic mechanisms. Sci. Agric. Sin. 6, 1060-1066 (2007)
- 9. Gao, H. Y. et al. Effects of elevated atmospheric CO₂ and temperature on seed vigor of rice under open-air field conditions. Chin. J. Rice Sci. 30, 371–379 (2016).
- Catusse, J., Job, C. & Job, D. Transcriptome-and proteome-wide analyses of seed germination. Comptes Rendus Biol. 331, 815–822 (2008).
- 11. Li, T. et al. Regulation of seed vigor by manipulation of raffinose family oligosaccharides (RFOs) in maize and Arabidopsis. Mol. Plant. 10, 1540–1555 (2017).
- Cheng, X. Y. et al. A rice lectin receptor-like kinase that is involved in innate immune responses also contributes to seed germination. Plant J. 76, 687–698 (2013).
- 13. Kaur, H. et al. Differentially expressed seed aging responsive heat shock protein OsHSP18.2 implicates in seed vigor, longevity and improves germination and seedling establishment under biotic stress. Front. Plant Sci. 6, 713–725 (2015).
- 14. Chatelain, E. *et al.* Evidence for participation of the methionine sulfoxide reductase repair system in plant seed longevity. *Proc. Natl. Acad. Sci. USA* **110**, 3633–3638 (2013).
- 15. Wei, Y. D. *et al.* Protein repair L-isoaspartylmethyltransferase1 (PIMT1) in rice improves seed longevity by preserving embryo vigor and viability. *Plant Mol. Biol.* **89**, 475–492 (2015).
- Petla, B. P. et al. Rice PROTEIN I-ISOASPARTYL METHYLTRANSFERASE isoforms differentially accumulate during seed maturation to restrict deleterious isoAsp and reactive oxygen species accumulation and are implicated in seed vigor and longevity. New Phytol. 211, 627–645 (2016).
- 17. Sun, Y. L., Liu, H. M. & Xu, Q. G. Effects of cadmium stress on rice seed germination characteristics. *Chin. J. Rice Sci.* 31, 425–431 (2017).
- 18. Zhang, A. P., Qian, Q. & Gao, Z. Y. Research advances on rice seed vigor. Chin. J. Rice Sci. 32, 296-303 (2018).
- Miura, K., Lin, Y., Yano, M. & Nagamine, T. Mapping quantitative trait loci controlling seed longevity in rice (*Oryza sativa* L.). Theor. Appl. Genet. 104, 981–986 (2002).
- 20. Clerkx, E., Vries, H., Ruys, G., Groot, S. & Koornneef, M. Genetic differences in seed longevity of various *Arabidopsis* mutants. *Physiol. Plant.* 121, 448–461 (2004).
- 21. Nagel, M. et al. Seed longevity in oilseed rape (Brassica napus L.)—genetic variation and QTL mapping. Plant Genet. Resour. C 9, 260–263 (2011).
- 22. Nagel, M. et al. Barley seed aging: Genetics behind the dry elevated pressure of oxygen aging and moist controlled deterioration. Front. Plant Sci. 7, 388 (2016).
- 23. Arif, M. A. R., Nagel, M., Lohwasser, U. & Börner, A. Genetic architecture of seed longevity in bread wheat (*Triticum aestivum* L.). *J. Biosci.* (*Bangalore*) 42, 81–89 (2017).
- 24. Xie, L. X. et al. Identification and fine mapping of quantitative trait loci for seed vigor in germination and seedling establishment in rice. J. Integr. Plant Biol. 56, 749–759 (2014).
- 25. Li, C. S. et al. QTL identification and fine mapping for seed storability in rice (Oryza sativa L.). Euphytica 213, 127–138 (2017).
- Abe, A. et al. OsGA20ox1, a candidate gene for a major QTL controlling seedling vigor in rice. Theor. Appl. Genet. 125, 647–657 (2012).
- 27. Ye, S. Q. Effects of high temperature on germination rate of rice seed. Chi. Rice. 23, 47-52 (2017).
- 28. Shi, Y. et al. Genetic dissection of seed vigour traits in maize (Zea mays L.) under low-temperature conditions. J. Genet. 95, 1017–1022 (2016).
- 29. Misheva, S., Lohwasser, U. & Börner, A. Genetic mapping within the wheat D genome reveals QTL for germination, seed vigour and longevity, and early seedling growth. *Euphytica* 171, 129–143 (2010).
- 30. Zuo, J. H. et al. Genome-wide linkage mapping reveals QTLs for seed vigor-related traits under artificial aging in common wheat (*Triticum aestivum*). Front. Plant Sci. 9, 1101 (2018).
- 31. Hothorn, M., Wolf, S., Aloy, P., Greiner, S. & Scheffzek, K. Structural insights into the target specificity of plant invertase and pectin methylesterase inhibitory proteins. *Plant Cell.* **16**, 3437–3447 (2005).
- 32. Yu, H. F. et al. Sequence analysis of GDSL esterase/lipase genes in Helianthus annuus L. J. China Agric. Univ. 23, 18-28 (2018).

- 33. Ling, H. et al. Isolation and characterization of a homologous to lipase gene from Brassica napus. Russ. J. Plant Physiol. 53, 366–372 (2006)
- 34. Tzafrir, I. et al. Identification of genes required for embryo development in Arabidopsis. Plant Physiol. 135, 1206-1220 (2004).
- 35. Yu, C. et al. A Trihelix family gene, mediates cold and drought tolerance by interacting with SnRK1 in tomato. Plant Sci. 270, 140–149 (2018).
- 36. Jameson, P. & Song, J. Cytokinin: a key driver of seed yield. J. Exp. Bot. 67, 593-606 (2015).
- 37. Jameson, P., Dhandapani, P., Novak, Ó. & Song, J. Cytokinins and expression of SWEET, SUT, CWINV and AAP genes increase as pea seeds germinate. *Int. J. Mol. Sci.* 17, 2013 (2016).
- 38. Mudgil, Y. et al. Photosynthate regulation of the root system architecture mediated by the heterotrimeric G protein complex in arabidopsis. Front. Plant Sci. 7, 1255 (2016).
- Xu, P. et al. Phytochrome B and AGB1 coordinately regulate photomorphogenesis by antagonistically modulating PIF3 stability in arabidopsis. Mol. Plant. 12, 229–247 (2019).
- 40. Gachomo, E. W., Jimenez-Lopez, J. C., Baptiste, L. J. & Kotchoni, S. O. GIGANTUS1 (GTS1), a member of Transducin/WD40 protein superfamily, controls seed germination, growth and biomass accumulation through ribosome-biogenesis protein interactions in *Arabidopsis thaliana*. *BMC Plant Biol.* 14, 37 (2014).
- 41. Mishra, A., Puranik, S., Bahadur, R. & Prasad, M. The DNA-binding activity of an AP2 protein is involved in transcriptional regulation of a stress-responsive gene, Si WD40, in foxtail millet. *Genomics* **100**, 252–263 (2012).
- 42. Wei, T. Y. & Simko, V. corrplot: visualization of a correlation matrix. MMWR Morbid. Mortal. Week. 52(12), 145-151 (2013).
- 43 Yu, G., Wang, L. G., Han, Y. & He, Q. Y. Clusterprofiler: an r package for comparing biological themes among gene clusters. *Omics* 16(5), 284–287 (2012).
- Wen, Y. J. et al. An efficient multi-locus mixed model framework for the detection of small and linked QTLs in F₂. Briefings Bioinform. 20, 1913–1924 (2019).
- Li, H. H., Ye, G. Y. & Wang, J. K. A modified algorithm for the improvement of composite interval mapping. Genetics 175, 361–374 (2007).
- 46. Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y. & Hattori, M. The KEGG resource for deciphering the genome. *Nucleic Acids Res.* 32, D277-280 (2004).
- 47. Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27-30 (2000).

Author contributions

D.S. and R.J. designed the experiment. H.S., W.G., S.W. and Y.S. carried out the experiment and wrote the paper. J.Y., W.C., W.Z. and H.F. helped with the data analysis.

Funding

This work was supported by National Key R&D Program of China (2017YFD0300202), and Key R&D Program Projects in Shanxi (201803D221008-3, 201803D221018-1), and Natural Science Foundation of Shanxi (201901D111228), and Innovation Project of Postgraduate Education in Shanxi (J202082042).

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-75778-z.

Correspondence and requests for materials should be addressed to D.S. or R.J.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020