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An oleaginous yeast Rhodosporidium toruloides is a promising host for converting
lignocellulosic biomass to bioproducts and biofuels. In this work, we performed multi-
omics analysis of lignocellulosic carbon utilization in R. toruloides and reconstructed
the genome-scale metabolic network of R. toruloides. High-quality metabolic network
models for model organisms and orthologous protein mapping were used to build a
draft metabolic network reconstruction. The reconstruction was manually curated to
build a metabolic model using functional annotation and multi-omics data including
transcriptomics, proteomics, metabolomics, and RB-TDNA sequencing. The multi-
omics data and metabolic model were used to investigate R. toruloides metabolism
including lipid accumulation and lignocellulosic carbon utilization. The developed
metabolic model was validated against high-throughput growth phenotyping and gene
fitness data, and further refined to resolve the inconsistencies between prediction and
data. We believe that this is the most complete and accurate metabolic network model
available for R. toruloides to date.

Keywords: Rhodosporidium toruloides, multi-omics, metabolic networks, genome-scale models, lignocellulosic
biomass

INTRODUCTION

An oleaginous yeast Rhodosporidium toruloides is a non-model basidiomycete fungus known for
its ability to produce carotenoids and accumulate lipids. The high flux in lipid and carotenoid
biosynthetic pathways makes R. toruloides a promising host organism for producing biofuels
and value-added bioproducts from carbon sources derived from lignocellulosic biomass (Wiebe
et al., 2012; Fei et al., 2016; Yaegashi et al., 2017; Park et al., 2018; Zhuang et al., 2019). It is
also known for the tolerance of inhibitory compounds in lignocellulosic biomass hydrolyzate
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as well as the ability to consume aromatic compounds
related to lignin degradation products (Yaegashi et al., 2017;
Sundstrom et al., 2018). For example, R. toruloides can utilize
hexoses, pentoses, and aromatic compounds that are found
in lignocellulosic biomass hydrolyzate such as glucose, xylose,
and p-coumaric acid, and produce bisabolene or amorphadiene
(Yaegashi et al., 2017). Genome sequence and annotation
are available for several R. toruloides strains and efficient
transformation methods have been developed (Zhu et al., 2012;
Zhang et al., 2016; Liu et al., 2017; Coradetti et al., 2018). More
advanced genetic tools and parts to engineer R. toruloides have
been recently developed including RB-TDNAseq, CRISPR/Cas9
editing, RNA interference, and promoter libraries (Coradetti
et al., 2018; Liu et al., 2019; Nora et al., 2019; Otoupal et al., 2019).

Previous studies of R. toruloides metabolism primarily focused
on the lipid production and carotenoid production and several
multi-omics studies have been performed to date (Zhu et al.,
2012; Lee et al., 2014; Bommareddy et al., 2017; Coradetti
et al., 2018). However, it is still not fully clear how different
carbon sources present in lignocellulosic biomass hydrolyzate are
utilized. There are multiple reports indicating that R. toruloides’s
metabolism of glucose, xylose, or glycerol is different from
Saccharomyces cerevisiae’s. For example, R. toruloides is an
oleaginous yeast and generates cytosolic acetyl-CoA from
citrate using ATP-citrate lyase whereas S. cerevisiae does not
have ATP-citrate lyase and uses the pyruvate dehydrogenase
bypass (Rodriguez et al., 2016). When grown on D-xylose,
R. toruloides transiently accumulates D-arabinitol (or D-arabitol)
while S. cerevisiae accumulates xylitol (Jagtap and Rao, 2018). The
regulation of genes involved in glycerol metabolism including
glycerol kinase and glycerol 3–phosphate dehydrogenase was also
found to be different between R. toruloides and S. cerevisiae
(Bommareddy et al., 2017). Fatty acids are degraded by
peroxisomal β-oxidation in S. cerevisiae, but both mitochondrial
and peroxisomal β-oxidation pathways are shown to be present
and necessary for efficient fatty acid degradation in R. toruloides.
The growth of S. cerevisiae is known to be inhibited by
some phenolic compounds that are found in lignocellulosic
biomass hydrolyzate including p-coumaric acid, ferulic acid,
and coniferyl aldehyde, and S. cerevisiae can convert them to
less inhibitory products, but it is unable to grow on them as
sole carbon sources (Adeboye et al., 2015). On the other hand,
R. toruloides grows on p-coumaric acid, ferulic acid, vanillic
acid, p-hydroxybenzoic acid, and benzoic acid (Yaegashi et al.,
2017), but the catabolism of aromatic compounds related to
lignin is not well studied in fungi yet. Therefore, there is a
need for a metabolic network model to systematically investigate
the metabolism of non-model oleaginous basidiomycete yeast,
R. toruloides. In this work, we reconstruct the genome-
scale metabolic network of R. toruloides using high-quality
published models and perform manual curation using functional
annotation and multi-omics data in a fully reproducible manner.
Every step of the reconstruction and curation was written
in electronic notebooks starting from the reconstruction of
a draft metabolic network to the evaluation of the resulting
metabolic model. The developed metabolic model and multi-
omics data were used to study the utilization of carbon

sources that are present in lignocellulosic biomass hydrolyzate in
R. toruloides.

MATERIALS AND METHODS

Metabolic Network Reconstruction
The R. toruloides IFO0880 genome sequence, gene models, and
gene annotation from a previous study (Coradetti et al., 2018) was
used for the metabolic network reconstruction. The same study
identified R. toruloides proteins that have orthologous proteins
in several different eukaryotic organisms using OrthoMCL (Li
et al., 2003). To this list we further added orthologous proteins in
Escherichia coli K-12 MG1655 and Pseudomonas putida KT2440,
identified with a separate OrthoMCL analysis including proteins
from R. toruloides NP11, Saccharomyces cerevisiae, Lipomyces
starkeyi, and Yarrowia lipolytica. The list of orthologous proteins
was used to gather metabolic reactions from BiGG Models
(King et al., 2016), a repository containing high-quality manually
curated genome-scale metabolic models. Among the models
available in BiGG Models, genome-scale metabolic models of
S. cerevisiae (Mo et al., 2009), Chlamydomonas reinhardtii
(Chang et al., 2011), human (Duarte et al., 2007), mouse
(Sigurdsson et al., 2010), E. coli (Monk et al., 2017), and
P. putida (Nogales et al., 2008) were used for reconstruction
since these models covered most of the orthologous proteins
found in R. toruloides. In addition, a genome-scale metabolic
model of another oleaginous yeast Y. lipolytica CLIB122 (Wei
et al., 2017) was included. For each protein in R. toruloides,
metabolic reactions from other metabolic models were added
to the R. toruloides metabolic network if orthologous proteins
were associated with the reactions, and their gene association was
updated with the R. toruloides protein identifiers. The function
and localization of proteins was determined by Joint Genome
Institute’s annotation on MycoCosm (Grigoriev et al., 2014),
WoLF PSORT (Horton et al., 2007) prediction, and the presence
of peroxisomal targeting sequences PTS1 and PTS2 predicted by
FIMO (Grant et al., 2011) using MEME (Bailey and Elkan, 1994)
motifs from known peroxisomal protein sequences.

Metabolic Network Modeling
COBRApy (Ebrahim et al., 2013) was used for curation,
evaluation, and modeling of the reconstructed metabolic
network. Metabolic models were imported from either the BiGG
Models directly or a JSON file constructed from supplemental
files from publications. Lieven et al. (2014) was also used to
track the development and evaluate the quality of the metabolic
model. Escher (King et al., 2015) was used to build metabolic
pathway maps and visualize omics data. BOFdat (Lachance
et al., 2019) was used to update the biomass composition from
experimental data.

Phenotype Microarrays
Phenotype microarray plates and standard components for yeast
phenotypic analysis were obtained from Biolog Inc. (Hayward,
CA). Wild type R. toruloides IFO0880 was precultured to log
phase in LB broth at 30◦C, 200 RPM in 10 mL culture tubes.
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Cells were centrifuged 5 min at 3000 RCF, 22◦C, washed twice
in sterile water, then resuspended OD 600 of 0.005 in Biolog
inoculation fluid IFY-0 with 1 µM nicotinic acid (Sigma, N4126),
1 µM myo-inositol (Sigma, I5125), 1 µM thiamine HCl (Sigma,
T1270), 1 µM p-aminobenzoic acid (Sigma, A9878), and 1 µM
calcium pantothenate (Sigma, 21210) plus Biolog dye mix E
(a proprietary, tetrazolium-based dye) and 1 µM menadione
sodium bisulfite (Sigma, M5750). For nitrogen, phosphorous, and
sulfur sources 100 mM glucose was added to the inoculation fluid.
Hundred microliters of the cell suspension was added to each
well in plates PM1, PM2, PM3, and PM4. Plates were sealed with
clear sealing film (Axygen, CTP-103) and incubated for 120 h
at 30◦C in the dark. Respiration in each condition was detected
by measuring reduction of the dye by comparing absorbance at
590 nm to absorbance at 750 nm.

Fitness Analysis With RB-TDNAseq
Fitness analysis was performed as described in a previous study
(Coradetti et al., 2018). Briefly, the three aliquots of the random
insertion mutant pool were thawed on ice and recovered in
100 mL YPD (BD Difco, 242820) for two generations (OD
0.2 to OD 0.8). A 10 mL of each starter culture was pelleted
and frozen as an initial “time 0” sample. The remaining cells
were pelleted 5 min at 4000 RCF, 22◦C, washed twice with
sterile water and inoculated at OD 0.1 in 50 mL SD media
plus 76 mM KH2PO4 (Sigma, P9791), 24 mM K2HPO4 (Sigma,
P3786), and 100 nM FeSO4 (Sigma, 215422) with 1% w/v
carbon source. Cultures were grown to OD 600 = 5–10 (20–
50 h depending on carbon source) at 30◦C, 200 RPM in
baffled flasks (25630-250, DWK Life Sciences). Ten milliliters
mL samples were pelleted and frozen for DNA extraction. DNA
extraction, barcode amplification, and sequencing was performed
as described in Coradetti et al. (2018), except that we used
primers including dual indexes to prevent “index swapping” on
the HiSeq 4000 instrument (Costello et al., 2018) and different
lengths of random bases for improved phasing (Price et al., 2019).
Fitness analysis was performed with the RBseq software package
version 1.0.6, an updated implementation of the algorithms
(available at https://github.com/stcoradetti/RBseq). Raw barcode
sequencing data are available at the NCBI Sequence Read
Archive (PRJNA595384). Fitness scores are available at the fungal
fitness browser.1

Lipid Content by Fatty Acid Methyl-Ester
Analysis
Twenty milligrams of lyophilized cell mass was suspended
in 750 µl 3N methanolic HCl (Sigma, 40104-U) and 50 µl
chloroform (Sigma, CX1050-1). A total of 100 µl of 10 mg/mL
tridecanoic acid methyl ester (Sigma, T0627) in methanol
(Sigma, 34860) was added as an internal standard and all the
resuspended cell mass was transferred to bead-bug screw-top
tubes with glass beads. Tubes were shaken vigorously in a
Retsch Tissue Lyser at 30 cycles/second for 5 min to break
up cell aggregates and disrupt cell walls, then incubated in an
80◦C water bath for 2 h with occasional vortexing. fatty acid

1http://fungalfit.genomics.lbl.gov

methyl-esters (FAMEs) were extracted with 500 µl n-hexane
(Sigma, 650552), and diluted 1:10 in hexane. Methyl esters
of palmitic, palmitoleic, heptadecanoic, stearic, oleic, linoleic,
alpha linoleic, arachidic, behenic, and lignoceric acid were
separated in a DB-wax column (Agilent, 123-7012) on a Thermo
Scientific Focus gas chromatograph (AS 3000 II) with a flame
ionization detector. Standard curves of ratios of peak areas from
standards of those FAMEs (Sigma) to tridecanoic acid methyl
ester (internal standard) were established. FAME concentrations
were determined by comparing ratios of peak areas of FAMEs to
the internal standard in the samples.

Media and Growth Conditions for
Multi-Omics Experiment
Wild type R. toruloides IFO0880 was grown in synthetic defined
(SD) medium supplemented with different carbon sources
(1% glucose, 1% glucose + 1% D-xylose, 1% D-xylose, 1%
L-arabinose, or 1% p-coumarate). The SD medium was made
with Difco yeast nitrogen base without amino acids (Becton,
Dickinson & Co., Sparks, MD) and complete supplemental
mixture (Sunrise Science Products, San Diego, CA). Cells were
pre-cultured in LB media, and pelleted and washed once with
sterile ddH2O before inoculation. Initial pH was adjusted to 7.4
with NaOH, and cells were inoculated to 30 mL of medium
with a starting optical density at 600 nm of 0.1. Cultures
were grown at 30◦C and shaken at 200 rpm. Samples were
taken in triplicates at 24 and 48 h in SD glucose, at 24, 66,
and 90 h in SD glucose + D-xylose, at 66 and 90 h in SD
D-xylose, at 40 and 66 h in SD L-arabinose, and at 40 and
90 h in SD p-coumarate. RNA extraction was performed on
Promega’s Maxwell RSC machine using Plant RNA extraction
kit (Promega Corporation, Madison, WI). For proteomics and
metabolomics, cells were pelleted and washed twice with 100 mM
NH4HCO3 at pH 7.8, and spent media was filtered through a
0.45 µ m filter.

RNA Sequencing and Analysis
RNA samples were sequenced and processed at Joint Genome
Institute (SRP143805, SRP143806, SRP143807, SRP143808,
SRP143809, SRP143810, SRP143811, SRP143812, SRP143813,
SRP143814, SRP143815, SRP143816, SRP143817, SRP143818,
SRP143819, SRP143820, SRP143821, SRP143822, SRP143823,
SRP143824, SRP143825, SRP143826, SRP143827, SRP143828,
SRP143829, SRP143830, SRP143831, SRP143832, SRP143833,
SRP143834, SRP143835, SRP143836, and SRP143838). Raw read
counts were used to perform differential gene expression analysis
using DESeq2 (Love et al., 2014).

Metabolite Extraction
Metabolites were extracted from the cell pellets using MPLEx
method (Nakayasu et al., 2016; Kim and Heyman, 2018).
Briefly, the cell pellets were extracted with a solvent mixture
of four volumes of a chloroform and methanol mix (2:1)
with a volume of nanopure water. Strong vortexing and ice-
cold temperature were also used in the protocol to aid the
disruption of the cells. After centrifugation, the aqueous layer
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and half of the organic layer (containing polar and non-polar
metabolites, respectively) were combined for GC-MS analysis.
The remaining volume of the organic layer was kept for
lipidomics analysis. Collected liquid fractions were transferred
to new clean vials and subsequently dried in a speed-vacuum
concentrator. The denatured protein disk, located between the
aqueous and organic layers during the MPLEx protocol, were
separately stored for proteomics analysis. All the samples were
dried completely and stored in the −80◦C freezer until the
instrumental analysis.

Metabolomics Analysis
The stored metabolite extracts were completely dried under
speed-vacuum to remove moisture and chemically derivatized
as previously reported (Kim et al., 2015). Briefly, the extracted
metabolites were derivatized by methoxyamination and
trimethylsilyation (TMS), then the samples were analyzed
by GC-MS. GC-MS raw data files were processed using
the Metabolite Detector software, version 2.5 beta (Hiller
et al., 2009). Retention indices (RI) of detected metabolites
were calculated based on the analysis of a FAMEs mixture,
followed by their chromatographic alignment across all
analyses after deconvolution. Metabolites were initially
identified by matching experimental spectra to a PNNL
augmented version of Agilent GC-MS metabolomics Library,
containing spectra and validated RI for over 850 metabolites.
Then, the unknown peaks were additionally matched
with the NIST17/Wiley11 GC-MS library. All metabolite
identifications and quantification ions were validated and
confirmed to reduce deconvolution errors during automated
data-processing and to eliminate false identifications. All
metabolomics raw data files are available at OSF data depository
https://osf.io/tnqwx/.

Lipidomics
The lipid samples were analyzed using liquid chromatography
tandem mass spectrometry (LC-MS/MS) as outlined before
(Kyle et al., 2017). Briefly, lipid fractions were re-dried in
vacuo to remove moisture and reconstituted in 50 µl methanol,
10 µl of which was injected onto a reversed phase Waters
CSH column (3.0 mm × 150 mm × 1.7 µm particle
size) connected to a Waters Acquity UPLC H class system
interfaced with a Velos-ETD Orbitrap mass spectrometer. Lipid
molecular species were separated over a 34 min gradient
[mobile phase A: acetonitrile/water (40:60) containing 10 mM
ammonium acetate; mobile phase B: acetonitrile/isopropanol
(10:90) containing 10 mM ammonium acetate] at a flow rate
of 250 µl/min. Samples were analyzed in both positive and
negative ionization using higher-energy collision dissociation
and collision-induced dissociation to obtain high coverage of
the lipidome. Confident lipid identifications were made using
in-house developed identification software LIQUID (Kyle et al.,
2017) where the tandem mass spectrum was examined for
diagnostic ion fragments along with associated hydrocarbon
chain fragment information. To facilitate quantification of
lipids, a reference database for lipids identified from the
MS/MS data was created and features from each analysis

were then aligned to the reference database based on their
identification, m/z and retention time using MZmine 2 (Pluskal
et al., 2010). Aligned features were manually curated and
peak apex intensity values were generated for subsequent
statistical analysis.

Proteomics
The protein disks were dissolved in 100 mM NH4HCO3
containing 8 M urea and the protein concentration was
measured by BCA assay. Disulfide bonds were reduced by
adding dithiothreitol to a final concentration of 5 mM and
incubating at 60◦C for 30 min. Samples were alkylated with
a final concentration of 40 mM iodoacetamide for 1 h at
37◦C. The reaction was then diluted 10-fold with 100 mM
NH4HCO3 followed by the addition of CaCl2 to 1 mM final
concentration. Digestion was carried out for 3 h at 37◦C with
1:50 (weight:weight) trypsin-to-protein ratio. Salts and reagents
were removed by solid-phase extraction using C18 cartridges
according to the manufacturer instructions and the resulting
peptides were dried in a vacuum centrifuge. The peptides were
then resuspended in milliQ water and 500 ng of material was
loaded onto in-house packed reversed-phase capillary columns
(70-cm × 75 µm i.d.) with 3-µm Jupiter C18. The separation
was carried out using a nanoAcquity HPLC system (Waters
Corporation) at room temperature. The mobile phase A is 0.1%
formic acid in water while mobile phase B is 0.1% formic acid
in acetonitrile. The elution was carried out at 300 nL/min with
the following gradient: 0–2 min 1% B; 2–20 min 8% B; 20–
75 min 12% B; 75–97 min 30% B; 97–100 min 45% B; 100–
105 min 95% B; 105–110 min 95% B; 110–140 min 1% B. MS
analysis was carried out using a Q Exactive HF (Thermo Fisher
Scientific) in data dependent mode. Mass spectrometer settings
were as following: full MS (AGC, 1 × 106; resolution, 30,000;
m/z range, 350–2000; maximum ion time, 20 ms); MS/MS (AGC,
1 × 105; resolution, 15,000; m/z range, 200–2000; maximum ion
time, 200 ms; minimum signal threshold, 2.5 × 104; isolation
width, 2 Da; dynamic exclusion time setting, 45 s; collision
energy, NCE 30).

All mass spectrometry data were searched using MS-GF+
(Kim and Pevzner, 2014) and MASIC (Monroe et al., 2008)
software. MS-GF+ software was used to identify peptides by
scoring MS/MS spectra against peptides derived from the whole
protein sequence database. MASIC software was used to generate
the selected ion chromatographs (SICs) of all the precursors in
MSMS datasets and calculate their peak areas as abundance.
MASICResultsMerger2 was used to append the relevant MASIC
stats for each peptide hit result in MS-GF+. The MS-GF+ data
were then filtered based on 1% false discovery rate (FDR) and
less than 5-ppm mass accuracy to generate a list of qualified
peptide hit results. The abundances of peptides were determined
as the highest peak area identified for the peptide within a sample.
RRollup algorithm in InfernoRDN software (Polpitiya et al.,
2008) was used to calculate the final protein abundance based on
peptide abundance.

2https://omics.pnl.gov/software/masic-results-merger
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FIGURE 1 | A workflow to develop the metabolic network model of R. toruloides.

RESULTS

Metabolic Network Reconstruction
Workflow
We documented every step of the metabolic network
reconstruction process (Figure 1) using Jupyter Notebooks3

to keep records of changes in metabolic network content
and the rationale behind them. We divided the process in
multiple notebooks for each stage of reconstruction process
(Supplementary File 1).

Genome Annotation and Draft Metabolic
Network Reconstruction
First, we used orthologous protein groups from OrthoMCL and
published metabolic models to build a draft metabolic network
reconstruction. Metabolic reactions were taken from published

3https://jupyter.org

models when any orthologous protein was found in gene-
reaction association information. OrthoMCL orthologous groups
consist of orthologs and recent paralogs (i.e., gene duplication
after speciation and likely to retain similar function) from at
least two species (Li et al., 2003). It is generally thought that
gene function is more conserved among orthologous genes
than between-species paralogs. Recent studies of gene function
versus evolutionary history have demonstrated that paralogs can
provide more information that previously thought (Stamboulian
et al., 2020) but that this added value comes mostly from
within species paralogs in taxa with a large corpus of extant
biochemical data. Thus, to build our initial metabolic network
we transferred functions from orthologous protein groups only.
However, during our manual refinement, in rare cases where
we had functional data from R. toruloides or for filling gaps
in pathways for which we have high confidence to exist in R.
toruloides, we transferred functional prediction from paralogs
in other species.

The initial draft reconstruction of R. toruloides metabolic
network consisted of 1596 proteins, 3804 reactions, and 3589
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metabolites. Among the 1596 proteins, 1137 proteins had
orthologous R. toruloides proteins, but 459 were not yet mapped
to R. toruloides proteins. Manual investigation of functional
annotation and BLAST search were used to determine whether
the unmapped proteins were present or absent in R. toruloides.
For the reactions associated with a protein absent in R. toruloides,
the absent protein was removed from the gene association if there
were isozymes and at least one mapped isozyme was present.
A reaction was removed from the metabolic network if the
absent protein was a subunit of an enzyme complex and no
other isozyme was present. One of the reasons why the number
of reactions and metabolites in the initial reconstruction was
very large was that protein localization was not yet considered,
and same reactions in multiple compartments were present
including compartments that are present in other organisms
but absent in R. toruloides. These reactions were examined and
either removed or assigned to appropriate compartments based
on the localization prediction and the presence of a signal peptide
sequence. It was also found that, although reconstructed from
published metabolic models, the initial reconstruction contained
many erroneous reactions and metabolites including duplicate
reactions or metabolites with different names as well as mass or
charge imbalanced reactions.

Manual Curation of the Draft Metabolic
Network Reconstruction
Manual curation of the metabolic network reconstruction was
performed to first identify and remove duplicate metabolites and
reactions. As duplicate or incorrect metabolites and reactions
were found, thorough inspection of the metabolic pathway
involving them was performed. Functional annotation and
localization of each gene in the pathway was confirmed,
duplicate or erroneous metabolites and reactions were removed
or corrected, and missing metabolites and reactions were either
created based on literature and metabolic pathway database
or added from other metabolic models in BiGG database.
For example, metabolic pathways involving ferricytochrome c
were first investigated since duplicate metabolite identifiers exist
in BiGG database (ficytc/focytc versus ficytC/focytC). Lactate
dehydrogenase and related enzymes involving cytochrome c
had many duplicated reactions and incorrect compartment
assignments. Cytochrome c oxidase, peroxidase, reductase,
NADH:ubiquinone reductase and other mitochondrial electron
transport chain reactions were curated. R. toruloides is known
to have coenzyme Q9 (ubiquinone-9) with nine isoprenyl units
(Yamada and Kondo, 1973), and our lipidomics analysis also
detected coenzyme Q9. The ubiquinone synthesis reactions from
other existing models were modified to include 9 isoprenyl units.
Heme biosynthesis reactions were also manually curated since
heme O and heme A synthesis reactions in BiGG database had
incorrect stoichiometries.

There were many incorrect reactions involved in fatty acid
biosynthesis and beta-oxidation, especially for unsaturated fatty
acids. Impossible lumped reactions were removed considering
the cis and trans configuration of fatty acids, and irrelevant
fatty acid reactions (bacteria or plant specific unsaturated fatty

acids) were removed. Long-chain fatty acid biosynthesis and
fatty acid desaturase reactions were moved from cytosol to
endoplasmic reticulum, and short-chain peroxisomal fatty acid
beta-oxidation reactions were moved to mitochondria since
R. toruloides possesses both mitochondrial and peroxisomal
beta-oxidation enzymes. Sphingolipid metabolism was extended
to include sphingolipid desaturase, methyltransferase, and
fungal ceramide biosynthesis and the reactions were placed in
endoplasmic reticulum. Localization of reactions involved in
phospholipid biosynthesis and remodeling, and triacylglycerol
were also updated.

Rhodosporidium toruloides naturally produces and
accumulates carotenoids that are derived from mevalonate
pathway products. Metabolic reactions and genes in mevalonate
pathway and sterol biosynthesis were inspected, and it was
found that an ERG27 ortholog is missing in R. toruloides.
A previous phylogenomics study of sterol synthesis found
that a 3-ketosteroid reductase exists in vertebrates and fungi
(HSD17B7 in vertebrates and ERG27 in S. cerevisiae) but is
missing in land plants and other eukaryotic phyla (Desmond
and Gribaldo, 2009). More recent studies have suggested that
enzymes that oxidizes the C-3 hydroxyl group of sterols to a
ketone also reduces the C-3 ketone in tomato (Lee et al., 2019) or
sterol-producing bacteria (Lee et al., 2018). On the other hand, in
human aldo-keto reductases of the 1C subfamily are involved in
3-ketosteroid reduction and known to be promiscuous (Penning
et al., 2015). We found three aldo-keto reductase family proteins
in R. toruloides (protein ID 13153, 14209, and 14213) that are
homologous to human aldo-keto reductases 1C. One of the
aldo-keto reductases (14213) had a predicted signal peptide by
SignalP and predicted localization in endoplasmic reticulum
by WoLF PSORT, and was assigned to reactions catalyzed
by the 3-ketosteroid reductase. Carotenoid biosynthesis in
endoplasmic reticulum and accumulation in lipid droplets were
added based on previous studies (Sun et al., 2017; Ma et al., 2019;
Rabeharindranto et al., 2019).

The reactions and genes in the central metabolic pathways
were manually checked for their co-factor usage and localization.
Reactions in the compartments that are present in other
organisms but irrelevant in R. toruloides were either moved
to appropriate compartments or removed from the model
if redundant. Reactions with incomplete gene-to-protein-to-
reaction association (e.g., missing subunits) were either removed
from the model or updated with corresponding genes if found.
Reactions were checked for mass and charge balance, and
chemical formula and charge information was updated for all
metabolites. When needed, chemical equations were modified
based on metabolic databases or new evidence in literature. The
curated metabolic reconstruction consisted of 1106 genes, 1934
reactions, and 2010 metabolites (1246 unique metabolites) in
nine compartments.

Metabolic Network Modeling and Growth
Simulation
A biomass reaction from the S. cerevisiae metabolic model
and exchange reactions for external metabolites were added
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to the metabolic network reconstruction to develop a draft
metabolic model that can be used to make growth and flux
predictions. In addition, transport reactions for water, carbon
dioxide, and oxygen in different compartments were added. We
first examined whether each biomass precursor in the biomass
reaction can be synthesized in an aerobic glucose minimal
medium. A flux balance analysis (FBA) problem maximizing
the biomass production was solved, and the shadow prices
of metabolites were examined to identify biomass components
that could not be synthesized. The cytosolic components in
S. cerevisiae biomass reaction whose biosynthesis reactions
were moved to endoplasmic reticulum were replaced with the
respective metabolites in endoplasmic reticulum, and transport
reactions for fatty acids, phospholipids, and sterols were added
to allow lipid production. In addition, mitochondrial transport
reactions for several amino acids and their precursors were
added and incorrect reactions in lysine biosynthesis were
manually curated to allow synthesis of all components in
S. cerevisiae biomass reaction. Several reactions generating a
free proton gradient across mitochondrial membrane via a loop
were identified by mixed-integer programming and removed to
prevent unrealistic ATP production.

We used multi-omics and other experimental measurement
to update the biomass reaction. The DNA composition was
updated using the genome sequence, RNA composition was
updated using transcriptomics data, amino acid composition
was updated using proteomics data, and lipid composition
was updated using fatty acid methyl ester analysis. For lipid
composition, we measured fatty acid profiles in multiple media
conditions to cover from low lipid to high lipid production
states (Figure 2A). We observed that the weight percentages
of a subset of individual fatty acids linearly increased from a
low lipid condition (e.g., YPD) to a high lipid condition (e.g.,
YNB CN120) whereas the weight percentages of the other fatty
acids remained relatively constant. We assumed those fatty acids
that were linearly increasing to be the major components in the
lipid body, and used segmented linear regression to estimate the
fatty acid composition in “lean” cell mass where the majority
of lipids are phospholipids, and the fatty acid composition
in lipid body where the majority of lipids are triacylglycerols
and sterol esters (Figure 2B). The fatty acid composition in
“lean” cell mass was estimated from the y-intercepts and used
in the biomass equation, and the fatty acid composition in
lipid body was estimated from the slopes and used in demand
reactions for triacylglycerols and sterol esters accumulation in
lipid droplet. This allows for the simulation of cell growth and
lipid accumulation in lipid body separately, and also enables
the simulation of lipid mobilization using sink reactions for
triacylglycerol and sterol esters in lipid droplet. Next, we
added commonly known trace elements including cofactors and
vitamins to the biomass equation and examined using FBA
whether they could be synthesized. The reactions involved in
folate, thiamine pyrophosphate, quinone, and biotin biosynthesis
were manually curated to enable their biosynthesis. It was
necessary to add demand reactions for 8-amino-7-oxononanoate
and lipoate since we were not able to find all the required enzymes
for their synthesis.

We tested the model’s capability to predict growth on carbon
sources that can be often found in lignocellulosic biomass
hydrolyzate – glucose, D-xylose, L-arabinose, and p-coumarate.
The initial metabolic model was able to predict growth on
glucose, but not on D-xylose, L-arabinose, and p-coumarate.
We examined the existing reactions in the model to identify
the missing links within known catabolic pathways. In order
to predict growth on D-xylose, the xylose reductase reaction
was needed. Two potential xylose reductase encoding genes
were found in R. toruloides with sequences that are similar to
larA and xyrA in Aspergillus niger. For growth on L-arabinose,
the L-arabinose transporter, L-arabinitol 4-dehydrogenase, and
L-xylulose reductase reactions were needed but BLAST of known
genes for these reactions resulted in multiple hits with moderate
scores. For p-coumarate utilization, four reactions in the known
p-coumarate degradation pathway in bacteria were present in
the model. We identified genes that could potentially catalyze
the missing reactions in the known p-coumarate degradation
pathway using functional annotation and BLAST searches.
However, additional experimental data was still needed to
identify which of these candidates are actually responsible for
the missing or added metabolic functions in the D-xylose,
L-arabinose, and p-coumarate utilization pathways. We therefore
performed multi-omics experiments for R. toruloides grown
in these carbon sources to elucidate the genes and reactions
necessary for their utilization.

Multi-Omics Analysis of Lignocellulosic
Carbon Utilization in R. toruloides
We performed transcriptomics, proteomics, and metabolomics
analysis to investigate genes involved in carbon utilization
pathways in R. toruloides. Cells were grown with glucose,
glucose + D-xylose, D-xylose, L-arabinose, or p-coumarate as
carbon source, and samples were taken during exponential
growth phase and stationary phase. An additional sample was
taken between exponential and stationary phase for cells grown
with glucose + D-xylose to study the co-utilization pattern. Gene
expression profiles in cells grown on D-xylose, L-arabinose, or
p-coumarate was compared to glucose in order to identify genes
specifically upregulated or downregulated by each carbon source.
RB-TDNA sequencing was also performed in glucose, D-xylose,
L-arabinose, p-coumarate and other related metabolites. RB-
TDNA sequencing uses sequence barcoded random insertions
throughout the genome to identify genes required for growth in a
given condition. A mixed population of hundreds of thousands of
different mutant strains, each bearing an insertion at a different
genomic location, is cultured in the condition of interest. The
relative abundances of all barcoded strains in the population
are simultaneously measured from a single sample by high
throughput sequencing. For the more than 6000 genes with three
or more independently tracked insertions within their coding
sequence, those abundances are aggregated into a single “fitness
score” for mutations in each gene in the tested condition. Genes
with an essential function in a given condition (e.g., an enzymatic
reaction in catabolic pathway) will have negative fitness scores in
that condition. Transcriptomics, proteomics, and fitness scores
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FIGURE 2 | Fatty acid composition of R. toruloides in different media conditions and segmented linear regression. (A) Fatty acid composition by fatty acid methyl
ester analysis in M9, YNB with C to N ratio of 120, YPD, and SD media. Colors indicate different fatty acid species and shapes indicate different media.
(B) Estimation of fatty acid content in “lean” cell mass and fatty acid content in lipid body using segmented linear regression. Dashed lines are segmented linear
regression for each fatty acid k using the equation yk = mk (x–x0) + bk . The inset shows the slope mk in a black dashed line, the x-intercept x0 in a red dotted line,
and the y-intercept bk in a blue dotted line for fatty acid k.

were used to assign genes to reactions when annotations were
ambiguous or multiple isozymes with substrate promiscuity were
present. Metabolomics data was used to identify intermediates
in utilization pathways to provide additional support for the
proposed pathways.

We first investigated the metabolic pathways and associated
genes involved in D-xylose and L-arabinose utilization using
the multi-omics data. The functional annotation and multi-
omics data suggested that R. toruloides uses an alternative
pathway involving D-arabinitol and D-ribulose forming ribulose-
5-phosphate instead of the known fungal xylose pathway
forming D-xylulose-5-phosphate (Figure 3 and Table 1). Two
genes in R. toruloides NP11 were annotated as D-arabinitol
dehydrogenase, RHTO_07702 and RHTO_07844, and used to
identify potential arabinitol dehydrogenases in strain IFO0880.
Protein ID 9990 was identified as an ortholog of RHTO_07844 by
OrthoMCL, and a BLAST search found matches to D-arabinitol
2-dehydrogenases (converting D-arabinitol to D-ribulose) with
relatively high identity (over 50%). Consistent with this
annotation, Protein ID 9990 had significant fitness defects
in many pentose sugars and alcohols including D-xylose,
xylitol, D-xylulose, D-arabinitol, L-arabinose, L-lyxose, and
L-arabinitol, but not in D-ribulose. Protein ID 9837 was
identified as an ortholog of RHTO_07702 by OrthoMCL, and
a BLAST search found matches to D-arabinitol dehydrogenase
(NADP+), D-arabinitol 2-dehydrogenases, and D-arabinitol 4-
dehydrogenase (converting D-xylulose to D-arabinitol) with
lower identity (less than 40%). BLAST analysis of Aspergillus
niger D-arabinitol 4-dehydrogenase (An04g09410) against the
R. toruloides genome found several hits including protein ID 9837
suggesting its role as D-arabinitol 4-dehydrogenase. However,
protein ID 9837 had a weaker fitness defect suggesting that
other enzymes participate in the conversion of D-xylulose to
D-arabinitol. Among other BLAST hits, protein ID 8905 was
upregulated in D-xylose and L-arabinose and had some fitness
defect during growth on pentose sugars and alcohols. Therefore,
the weak fitness defects for either protein ID 9837 and protein
ID 8905 are consistent with genetic redundancy at this step

in the xylose utilization pathway. The proposed alternative
pathway is supported by our observation that the D-xylulose
kinase (protein ID 16850) had very low RNA abundance and
no detectable peptides in every condition we tested, and that
mutants for protein ID 16850 had no significant fitness defect
in any condition tested. Another supporting observation is
that the D-ribulose kinase (protein ID 14368) had significant
fitness defects in all pentose sugar and alcohol media conditions
tested. This pathway is also consistent with recent observations
that R. toruloides grown on D-xylose transiently accumulates
D-arabinitol in the culture media (Jagtap and Rao, 2018). In
summary, our omics and genetic data supports an alternative
D-xylose and L-arabinose utilization pathway involving a
D-ribulose-5-phosphate intermediate rather than a D-xylulose-
5-phosphate intermediate (Figure 3).

Next, we propose that R. toruloides metabolizes p-coumarate
to protocatechuate by a beta-oxidation-like pathway in
the peroxisome (Figure 4 and Table 2). Previously known
p-coumarate utilization pathway in bacteria such as P. putida
contains p-coumaroyl-CoA hydratase/aldolase or feruloyl-CoA
hydratase/lyase that hydrolyzes p-coumaroyl-CoA to 3S-(4-
hydroxyphenyl)-3-hydroxy-propanoyl-CoA and subsequently
produces 4-hydroxybenzoyl-CoA and acetyl-CoA. We found
that, in R. toruloides grown in p-coumarate media, enzymes
that are similar to peroxisomal fatty acid beta-oxidation
enzymes ACSL (long-chain acyl-CoA synthetase), FOX2
(multifunctional enzyme, 3-hydroxyacyl-CoA dehydrogenase,
and enoyl-CoA dehydratase), and POT1 (3-ketoacyl-CoA
thiolase) were upregulated. Our fitness data from RB-TDNAseq
on p-coumarate and previously published RB-TDNAseq data on
oleic and ricinoleic acid (Coradetti et al., 2018) shows that these
enzymes are distinct from the mitochondrial or peroxisomal
fatty acid beta-oxidation enzymes (Figure 5 and Table 3) since
they did not have a fitness defect in oleic or ricinoleic acid
media. Mitochondrial or peroxisomal fatty acid beta-oxidation
genes did not have significant fitness defect in p-coumarate
or ferulate media (Figure 5 and Table 3). The predicted
localization of the enzymes involved in p-coumarate indicates
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FIGURE 3 | Pentose utilization pathway in R. toruloides. (A) Pentose sugars and alcohols are converted to D-ribulose-5-phosphate via D-arabinitol dehydrogenases
before entering the pentose phosphate pathway. (B) Gene expression, protein expression, and fitness scores for pentose utilization pathway genes (exp, exponential
phase; trans, transition phase; stat, stationary phase).

TABLE 1 | Genes involved in pentose sugar and alcohol utilization.

Protein ID Annotation S. cerevisiae
best hit

Human best hit

9774 Alcohol dehydrogenase
(NADP+)

YPR1 AKR1A

11882 Glycerol 2-dehydrogenase
(NADP+)

YPR1 AKR1A

13562 Alcohol dehydrogenase
(NADP+)

ADH7

12974 Zinc-binding alcohol
dehydrogenases

SOR1 SORD

12977 L-iditol 2-dehydrogenase XYL2 SORD

16452 D-xylulose reductase SOR1 SORD

8988 Sorbose reductase DHRS4

16850 Xylulokinase XKS1 XYLB

8905 Reductases with broad range
of substrate specificities

IRC24 DHRS4

9837 D-arabinitol dehydrogenase

9990 D-arabinitol 2-dehydrogenase SPS19 CBR4

14368 Ribulose kinase and related
carbohydrate kinases

YDR109C FGGY

12976 Predicted transporter (major
facilitator superfamily)

STL1 SLC2A

10452 Predicted transporter (major
facilitator superfamily)

RGT2 SLC2A

12978 Fungal specific transcription
factor Zn(2)-Cys(6) binuclear
cluster domain

10174 Related to C2H2 zinc finger
protein

SDD4

that p-coumarate is first degraded to protocatechuate in the
peroxisome, and protocatechuate is transported to the cytosol for
further degradation via the 3-oxoadipate pathway. Degradation
of p-coumarate and ferulate via a beta-oxidation like pathway
would result in 4-hydroxybenzoate and vanillate, respectively.

Protocatechuate and 4-hydroxybenzoate were detected in the
intracellular and extracellular metabolomics of cells grown on
p-coumarate (Figure 4C). An enzyme similar to kynurenine
3-monooxygenase BNA4 showed fitness defect in p-coumarate,
but not in ferulate, which indicates it is likely to be a 3-
hydroxybenzoate 4-monooxygenase producing protocatechuate
from 4-hydroxybenzoate. 4-hydroxybenzoate may also be
transported to mitochondria for quinone biosynthesis.
A fitness defect in mitochondrial oxoadipate carrier ODC2
suggests that 3-oxoadipate is transported from cytosol to
mitochondria for the final steps in the beta-ketoadipate pathway
generating succinyl-CoA and acetyl-CoA which can feed
into the TCA cycle. Interestingly, several genes involved in
aromatic amino acid metabolism showed a significant fitness
defect in p-coumarate, although they showed some degree of
fitness defect in other media conditions. For example, four
genes in the tryptophan degradation pathway to 2-amino-3-
carboxymuconate semialdehyde via kynurenine (BNA1, BNA2,
BNA4, and BNA5) as well as cytosolic aspartate aminotransferase
AAT2 had pronounced fitness defects in p-coumarate and
ferulate (Figure 5 and Table 3). Since p-coumarate and 4-
hydroxybenzoate are known to be ubiquinone precursors
and they are synthesized from aromatic amino acids, it is
possible that high concentration of these compounds affects
the regulation of aromatic amino acid pathway genes and
fitness defect becomes more pronounced. Taken together,
the omics and genetic data support a proposed p-coumarate
utilization pathway that involves formation of protocatechuate
in the peroxisome, followed by ortho-cleavage in the cytosol,
and then 3-oxoadipate degradation in the mitochondria
(Figure 4). Multi-omics analysis and manual curation improved
the metabolic model, but their scope was still limited to
lignocellulosic carbon utilization pathways. In the next section,
we performed a genome-scale evaluation and iteratively
improved the model using high-throughput growth phenotyping
and functional genomics.
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FIGURE 4 | p-Coumarate utilization pathway in R. toruloides. (A) p-Coumarate degradation to protocatechuate by a beta-oxidation like pathway in peroxisome,
protocatechuate degradation to 3-oxoadipate by the ortho-cleavage pathway in cytosol, and 3-oxoadipate degradation in mitochondria. (B) Gene expression,
protein expression, and fitness scores for p-coumarate utilization pathway genes (exp, exponential phase; stat, stationary phase). (C) Intracellular and extracellular
measurement of p-coumarate and intermediates in p-coumarate condition (not detected in glucose, glucose + D-xylose, D-xylose, and L-arabinose conditions).

TABLE 2 | Genes involved in p-coumarate utilization.

Protein ID Annotation S. cerevisiae
best hit

P. putida best hit PTS2 (N-terminal) PTS1 (C-terminal) Pathway

12555 Long-chain acyl-CoA synthetase FAA2 AKL* Peroxisomal p-coumarate
degradation to
protocatechuate

16635 Long-chain acyl-CoA synthetase PCS60 AKL*

16515 Enoyl-CoA hydratase/isomerase family ARL*

9469 Peroxisomal dehydratase FOX2 SKL*

10551 3-oxoacyl-(acyl-carrier protein)
reductase

FOX2 6-RLQQVQGQL-14

10558 3-oxoacyl-(acyl-carrier protein)
reductase

FOX2 7-RLSAVSGQL-15

9065 3-oxoacyl CoA thiolase POT1

14934 Alpha/beta hydrolase family ARL*

12923 Monooxygenase involved in coenzyme
Q (ubiquinone) biosynthesis

pobA ASL*

12623 Dioxygenase pcaH Protocatechuate
degradation via
3-oxoadipate

12622 Lactonase pcaB

12620 Carboxymuconolactone decarboxylase
family

pcaCD

13090 3-oxoacid CoA-transferase pcaIJ

15228 Acetyl-CoA acyltransferase 1 pcaF

10635 Mitochondrial 2-oxodicarboxylate
transporter

ODC2

8936 Aspartate aminotransferase,
cytoplasmic

AAT2

12950 Vanillin dehydrogenase UGA2 ALDH9

16323 Aldehyde dehydrogenase (NAD+) HFD1 ALDH3

13229 Unknown transmembrane protein

15306 long-chain acyl-CoA synthetase

16462 Phenylalanine/tyrosine ammonia-lyase

10304 Cytochrome P450, family 3, subfamily A

PTS, peroxisomal targeting sequence.
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FIGURE 5 | Gene expression, protein expression, and fitness scores for fatty acid beta-oxidation and NAD biosynthesis pathway genes (exp, exponential phase;
stat, stationary phase).

TABLE 3 | Genes involved in fatty acid beta-oxidation and NAD biosynthesis.

Protein ID Annotation S. cerevisiae best hit Human best hit Pathway

14070 Short/branched chain acyl-CoA dehydrogenase ACADS Fatty acid beta-oxidation

12570 Acyl-CoA dehydrogenase ACADM

14805 Enoyl-CoA hydratase EHD3 ECHS1

11203 3-hydroxyacyl-CoA dehydrogenase HADH

8885 Acetyl-CoA acyltransferase 2 ERG10 ACAA2

12555 Long-chain acyl-CoA synthetase FAA2 ACSL1

12742 Acyl-CoA oxidase POX1 ACOX1

12752 Acyl-CoA oxidase POX1 ACOX1

9700 Acyl-CoA oxidase POX1 ACOX1

11362 Multifunctional beta-oxidation protein FOX2 HSD17

13813 Acetyl-CoA acyltransferase 1 POT1 ACAA1

15923 Indoleamine 2,3-dioxygenase BNA2 IDO1 NAD biosynthesis

8540 Kynurenine aminotransferase BNA3 KYAT3

9267 Kynurenine 3-monooxygenase BNA4 KMO

8725 Kynureninase BNA5 KYNU

8602 3-hydroxyanthranilate 3,4-dioxygenase BNA1 HAAO

10331 Nicotinate-nucleotide pyrophosphorylase (carboxylating) BNA6 QPRT

Validation and Reconciliation of Growth
Phenotype and Gene Essentiality
Predictions
We tested the developed metabolic model’s capability to predict
growth on different carbon, nitrogen, sulfur, and phosphate
sources. Growth phenotype data from Biolog Phenotype

MicroArrays were used to evaluate the model predictions
(Figure 6). Among 384 conditions in Biolog plates (PM1, PM2,
PM3B, and PM4A), 116 conditions could be simulated with
the model since not all the metabolites were present in the
metabolic network. Of these 116 conditions, the model correctly
predicted 76 positive and 12 negative growth phenotypes, and
incorrectly predicted 6 false positive and 22 false negative growth
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FIGURE 6 | Model evaluation using high-throughput growth phenotype data. (A) Biolog phenotype microarray data (white indicates low growth and red indicates
high growth). Comparison of model predicted growth and experimental data (B) before and (C) after manual curation to include more metabolites.

phenotypes. The overall accuracy was 75.9%, comparable to
previously published metabolic models of other organisms [e.g.,
E. coli iAF1260 model (Feist et al., 2007) with 75.9% accuracy
in 170 conditions]. We then manually refined the model to
include more metabolites found in Biolog plates and reconcile
the inconsistencies. The updated model was able to simulate 213
conditions in Biolog plates with 78.4% accuracy and Matthew’s
correlation coefficient of 0.493.

We used the fitness scores from RB-TDNAseq to evaluate
the model’s capability to predict conditionally essential genes in
different growth conditions (Figure 7). Genes were considered
essential if they were classified as essential in our previous
RB-TDNAseq study (Coradetti et al., 2018) or fitness score
was less than a cut-off value. There were 1147 genes in the
model, but 15 genes were mitochondrial and excluded from this
analysis since their essentiality was not available from the RB-
TDNAseq data. The model predicted gene essentiality for 1132
genes in 27 different growth conditions with 72.7% accuracy
and Matthew’s correlation coefficient of 0.388. The model was
further refined to resolve the inconsistencies and several genes
with erroneous ortholog mapping were removed from the
model. The refined model had 1142 genes, 2398 reactions, and
2051 metabolites (1205 unique metabolites), and predicted gene
essentiality for 1127 non-mitochondrial genes in 27 conditions
with 78.6% accuracy and Matthew’s correlation coefficient of
0.406 [see Supplementary File 5 for a comparison with a
previously published model (Dinh et al., 2019)]. Among these
1127 genes, 281 genes were essential across all conditions, 772

genes were not essential under any conditions, and 74 genes were
essential under only certain conditions. For these 74 conditionally
essential genes, the refined model predicted gene essentiality with
78.7% accuracy.

DISCUSSION

In this work, we have developed a genome-scale metabolic
network model of R. toruloides and utilized the model to study
the metabolic pathways for utilizing carbon sources derived
from lignocellulosic biomass. The initial metabolic network was
reconstructed from high-quality published metabolic network
models of other organisms using orthologous protein mapping.
There is some risk of incorrect reaction identification from the
false positives in ortholog identification due to horizontal gene
transfer (HGT), and there are many examples that highlight
the importance of HGT in ascomycete yeasts (Goncalves et al.,
2018; Shen et al., 2018; Kominek et al., 2019; Devia et al., 2020).
However, ortholog identification continues to be a standard
practice for the initial reconstruction of genome-scale metabolic
networks for non-model organisms and currently we do not
have evidence of large scale HGT in R. toruloides. As with any
model, our model will need to be improved and re-evaluated
over time in cases of HGT and as new metabolic pathways
are characterized. The developed model contains 1141 genes,
2398 reactions, and 2051 metabolites (1205 unique metabolites)
in nine compartments. The lipid body was separated from
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FIGURE 7 | Model evaluation using high-throughput gene essentiality data. (A) RB-TDNA sequencing fitness score data for all genes in the model. Comparison of
model predicted gene essentiality and experimental data for (B) all model genes and (C) conditionally essential genes in experiment.

the biomass equation allowing the independent simulation of
lipid accumulation or mobilization in oleaginous yeasts. The
separation of the lipid body from biomass eliminated the
need for more than one biomass equation depending on the
growth condition or lipid content. Multi-omics analysis and
metabolic network reconstruction identified unique reactions
and enzymes as well as their localization for unique pentose
and aromatic compound utilization pathways in R. toruloides.
The pentose and aromatic compound utilization pathways
proposed in this study have not been suggested in previously
published multi-omics studies or genome-scale metabolic models
of R. toruloides (Bommareddy et al., 2015; Dinh et al., 2019;
Tiukova et al., 2019a,b; Lopes et al., 2020; Pinheiro et al., 2020).
The first genome-scale metabolic model for R. toruloides was
recently built for strain NP11 (Tiukova et al., 2019b), and a
proteomics study of xylose metabolism was conducted by the
same research group (Tiukova et al., 2019a). Another genome-
scale metabolic model was shortly after published for strain
IFO0880 utilizing the functional genomics data (Coradetti et al.,
2018). More recent studies utilized these models to study the
utilization of different carbon sources, but their focus was
primarily on lipid production (Lopes et al., 2020; Pinheiro et al.,
2020).The metabolic network model developed in this study was
reconstructed and manually curated reproducibly using multi-
omics data and electronic notebooks, and validated against high-
throughput growth phenotypes in 213 growth conditions and
conditional gene essentiality in 27 growth conditions with high
prediction accuracies, significantly expanding the breadth and
depth of metabolic coverage from previously published models
(Dinh et al., 2019; Tiukova et al., 2019b). We believe that the
developed metabolic network for R. toruloides is most complete

and accurate to date, and the multi-omics data and metabolic
model presented in this study will be useful for studying and
engineering R. toruloides for lignocellulosic biomass conversion.
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