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Precipitation is predicted to become more intense in Southern China in the context of
climate change; however, the responses of microbial communities to variations in soil
moisture have not been well documented for karst areas. The climate is typically in a
subtropical monsoon category with two different seasons: a dry season (December–
May) and a wet season (June–November). Based on a randomized complete block
design (RCBD), a water addition experiment (0, +20, +40, and +60% relative to
local precipitation) was established in April 2017, with five replicates, in a degraded
grass-shrub community. Sampling was performed in May and at the end of August
of 2017. Macroelements (C, H, N, P, K, Ca, Mg, and S), microelements (Mn, Fe, Zn,
and Cu), and non-essential elements (Na, Al, and Si) were quantified in the soil. The
total DNA of the soil samples was analyzed through 16S rRNA amplicon by Illumina
Miseq. Subsequent to the addition of water during both the dry and wet seasons,
the concentrations of non-metal elements (C, H, N, S, and P, except for Si) in the soil
remained relatively stable; however, metal elements (K, Na, Fe, and Mg, along with Si)
increased significantly, whereas Zn and Ca decreased. During the dry season, fungal
and bacterial communities were significantly distinct from those during the wet season
along the PC axis 1 (p < 0.001). Water addition did not alter the compositions of
bacterial or fungal communities during the dry season. However, during the wet season,
water addition altered the compositions of bacterial rather than fungal community
based on principal component analysis. At the phylum level, the relative abundance of
Actinobacteria increased with water addition and had a significantly positive correlation
with K+ (r2 = 0.70, p < 0.001) and Na+ (r2 = 0.36, p < 0.01) contents, whereas
that of Acidobacteria, Planctomycetes, and Verrucomicrobia decreased and showed
negative correlation with soil K and Na content, and no changes were observed for
the fungal phyla. This suggests that the karst bacterial communities can be influenced
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by the addition of water during the wet season likely linked to changes in soil K and
Na contents. These findings implied that increased rainfall might alter the elemental
compositions of karst soils, and bacterial communities are likely to be more sensitive to
variations in soil moisture in contrast to their fungal counterparts.

Keywords: climate change, karst regions, watering treatment, soil elements, soil microbial communities

INTRODUCTION

Global climate change may have considerable impacts on
hydrological cycles worldwide, which may result in increased
precipitation, higher evaporation rates, and the uneven
distribution of rainfall (Nijssen et al., 2001; Lian et al.,
2015). Some regions of the globe may witness significant
changes in the timing of dry and wet seasons, which might
trigger increases in both droughts and floods (Su et al., 2005;
Zhang et al., 2013; Lian et al., 2015). Global warming poses
serious threats to agricultural and natural systems, partly
through its capacity to alter soil microbial communities
and ecological processes due to variations in the content of
soil moisture (Li et al., 2017). Specifically, climate changes
influence the compositions of plant and soil communities;
thus, they impact the functionality and services of natural
ecosystems (Cregger et al., 2012; Anderson-Teixeira et al.,
2013). Moreover, global warming poses a severe threat to
karst hydrogeology and affects the magnitude of soil microbial
biomass carbon in the karst areas of Southwestern China (Piao
et al., 2000). In fact, immense diversity of microorganisms
that live belowground contributes significantly to shaping
aboveground biodiversity and the functioning of terrestrial
ecosystems (Bardgett and Putten, 2014). However, it is
essential to accurately elucidate the impacts of higher
precipitation on microbial communities, as well as key ecological
processes in soils.

In Southwestern China, the karst area of Yunnan Province
covers 33.3 thousand km2, about 8.6% of the total area of
the Province (Jiang et al., 2014). In Jianshui, a typical karst
area located in Yunnan province, anthropogenic disturbances,
e.g., forest clear cutting, grazing, and tilling, have pushed
primary forests to the KRD shrubs during 1960s–1990s.
A large portion of the degraded karst lands that exist in
Southwestern China is the result of geo-ecological destruction
in conjunction with significant anthropogenic disturbances
such as agricultural expansion, urban sprawl, livestock grazing,
and firewood production. Extensive land degradation and the
deterioration of vegetation in these karst regions set the stage
for extreme soil erosion, which create rocky landscapes. Fragile
karst topographies/environments are formed through irrational
and intensive land-use practices that result in their geo-ecological
destruction (Wang et al., 2004; Yan and Cai, 2015). The fragility
of these areas is based on the following facts: (i) Rocky
karst substrates (e.g., carbonate rocks) are created in marine
ecosystems, whose major elements are Mg, Ca, O, and C, while
soils are comprised primarily of Al, Fe, and Si (Li and Cao, 2015).
(ii) As Ca-rich carbonate rocks are soluble, their dissolution rates

are one to two times higher than that of silicate mineral rocks, and
the pH values of limestone soil range from 6.22 to 7.63 (Jianhua
et al., 2015). (iii) Water shortages and the porosity of soils in
karst ecosystems are not suitable for the survival of plants and
soil organisms, which translates to the reduction in aboveground
and belowground biomass (Daoxian, 2001; Jianhua et al., 2015;
Li and Cao, 2015).

Most studies on karst rocky desertification have shown that
land degradation reduced the plant diversity and soil quality
(Qi et al., 2017; Dai et al., 2018). However, much less attention
has been paid to the effects of climate change on soil microbes
of karst areas, which are essential for the maintenance of
vegetation and environmental restoration. Soil microbes are
considered as one of the key regulators of soil ecosystems (Young
and Crawford, 2004). They are the critical drivers of nutrient
cycling in natural environments and rely on soil moisture to
complete their activities and life spans (Vos et al., 2013; Meisner
et al., 2018). Notably, soil microbial communities primarily
account for nutrient mineralization and the decomposition of
organic substances in ambient environments (Schimel, 1995;
Cregger et al., 2012). Moreover, the compositions, structures,
abundance, and activities of microbial communities are directly
impacted by climatic factors (Williams and Rice, 2007; Stres
et al., 2008; Cruz-Martínez et al., 2012). In fact, fluctuations in
rainfall regimes can shift soil microbial communities by altering
their structures and compositions through the regional loss of
specific operational taxonomic units (OTUs; Fierer et al., 2003;
Clark et al., 2009).

Seasonal changes in precipitation may have significant
effects on the diversity, abundance, and composition of soil
microbial communities in natural ecosystems (Schadt et al.,
2003; Lipson and Schmidt, 2004; Hullar et al., 2006). Moreover,
soil microbial communities structure and composition are more
responsive to seasonal fluctuations in rainfall than precipitation
treatments (Cregger et al., 2012). Seasonal rainfall cycles alter
the moisture content of soils and, consequently, modify systemic
water distribution, which may augment the impacts of altered
precipitation on soil dwelling microbial communities (Hawkes
et al., 2011; Yan et al., 2015). Multiple studies have reported
that during the dry season, soil-residing microbial communities
are active but gradually modify their compositions during the
rainy season (Kavamura et al., 2013; Barnard et al., 2015;
Taketani et al., 2017). Moreover, the responses of microbial
communities to drying and rewetting periods vary with soil
structures due to changes in moisture, chemical composition,
and the bioavailability of organic matter in soils (Anderson and
Ingram, 1994). However, the effects of drying and rewetting on
soil microbial processes may directly influence nutrient cycling
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and the decomposition of soil organic matter (Fierer and Schimel,
2003; Schimel et al., 2007).

Soil pH, total organic carbon, and potassium and sodium
concentrations are major factors correlating with soil microbial
communities in karst ecosystems (Yun et al., 2016; Qi et al.,
2018). Potassium and sodium, which can affect the transporter’s
functions through controlling and cytoplasmic rehydration and
ionic strength (Wood, 1999; Saxena et al., 2015), can also affect
soil microbial community composition and diversity (Andronov
et al., 2012; Pereira et al., 2014; Li et al., 2015). Such chemical
components played a major role in determining the shape of
the microbial community in natural ecosystems (Pereira et al.,
2014). The addition of Na and K increased the mass production
of the cellulase enzymes that are required to break down C-rich
macromolecules by microorganisms (Kaspari et al., 2008; Kaspari
et al., 2009). Moreover, the resilience, functions, and stability of
ecosystems are determined by the interaction of soil microbial
community and soil characteristics. However, these relations are
largely unclear in karst ecosystems.

Bacteria and fungi are the most dominant in the soil
inhabitants and also known to improve soil structure by
promoting the formation of soil aggregates and nutrients
bioavailability (Degens, 1997; Rashid et al., 2016). Specifically,
soil moisture is a prominent indicator of fungal and bacterial
community structures (Li et al., 2017), which directly influences
microbial activities (Meisner et al., 2015). Changes in soil
moisture due to fluctuations in rainfall alter the conditions for
soil biota, which cause shifts in the structural diversity and
functionality of soil-resident microbial communities (Fierer and
Jackson, 2006; Kim et al., 2008). Based on multiple studies, the
net annual precipitation in Southwestern China is anticipated
to increase (Piao et al., 2010; Qin et al., 2015), which is
likely to have significant impacts on the soil moisture of this
region. Indeed, soil moisture is positively linked to the number
of bacterial species in the soil, which is a good indicator of
changes in the relative frequencies of species between soils
(Dennis et al., 2019). Such information is particularly important
for the regeneration of the degraded karst ecosystems, as
the high bacterial diversity in the moist soil can significantly
benefit the development and growth of tree seedlings (Santoyo
et al., 2016). Research taking a more systematic approach to
quantifying the impact of increasing precipitation on bacterial
and fungal communities in degraded karst environments is also
urgently required.

For this study, we conducted a controlled precipitation
experiment in a degraded shrub- and grass-dominated
community in a typical karst area of Southwestern China
to mimic expected global warming-induced precipitation
scenarios. The main aim of this study is to determine the
effects of increased precipitation on soil characteristics and
microbial communities in degraded karst ecosystems during
both the dry and wet seasons. We hypothesized that (i) soil
microbial community composition differs between watering
treatments, which is directly affected by the variations in
moisture content, and (ii) increased precipitation affects the
interactions between soil microbial community composition and
the soil characteristics.

MATERIALS AND METHODS

Description of Study Area
This study was based on a field experiment that was conducted in
a degraded shrub- and grass-dominated community at the Karst
Ecosystem Research Station (KERS) of Jianshui City (23◦59′N,
102◦93′E) in Southwestern China. The climate of this area may
be categorized as having two seasons: the wet season (June–
November) with 85% annual precipitation and the dry season
(December–May) with 15% annual precipitation. The annual
average precipitation ranges 500–1,300 mm in Southwestern
China during the time series from 1958 to 1988 (Prieler, 2005).
During the period of 1981–2010, the average annual rainfall
of this area is 770 mm1, with the highest annual precipitation
of 1,096 mm in 1999. Annual precipitation showed slightly
and statistically insignificant increasing trend, but statistically
significant increasing trend has been detected in wet season (Qin
et al., 2010). The median annual temperature is 20◦C, with an
average minimum of 14.6◦C and average maximum of 24.6◦C
(Supplementary Figure 1), while the typical relative humidity
is 71.8% (2010–2017). The average pH of the surface soil is 6.29
(1 M KCl; Umair et al., 2019, 2020).

Experimental Design
A controlled precipitation experiment using a randomized
complete block design (RCBD), which included five subblocks,
was conducted in 20 sample plots (3 × 3 m in size) from the
beginning of April in 2017 (Supplementary Figure 2). Each
plot was separated from its neighboring plot by a distance
of 3 m. Zhang et al. (2019), who designed the experiment
for examining the impacts of increased precipitation on soil
ecosystems, described the appropriate methods for measuring
precipitation. Accordingly, we designed a four-level watering
treatment regime CK (0%; control), T1 (+20%), T2 (+40%),
and T3 (+60%), relative to the average monthly rainfall. The
average monthly rainfall and temperature was measured on
the basis of 2010–2017 climatic data, which was collected
at a nearby meteorological station. The ambient rainfall was
143 mm for the dry season and 445 mm for the wet season in
2017. The daily variations in air temperature and precipitation
were obtained by referencing nearby meteorological observation
stations (Supplementary Figures 3, 4).

The watering treatments were set up through the addition of
natural precipitation in April 2017, where the exact values of
artificial rainfalls during the dry and wet seasons were 172 and
534 mm for T1, 200 and 623 mm for T2, and 228 and 712 mm
for T3. The control (CK) plots received ambient rainfall only.
The irrigation water was manually sprayed onto the water-treated
plots three times each month, in the mornings of days 10, 20, and
30. The water was slowly and evenly sprayed over each plot such
that run-off from the plot was avoided.

Soil Sampling
Soil samples were collected after the water addition events during
both the dry and wet seasons to observe seasonal trends in the

1http://data.cma.cn/en/?r=data/weatherBk
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compositions and diversity of soil microbial communities due to
increased precipitation. Combined with the watering treatments,
the wet season demonstrated evolved compositional changes in
the microbial communities. It has been found that soil microbes
are biologically more active in wet soil (Curiel Yuste et al.,
2007). The soil was sampled using a soil corer (Ø2.5 cm × 0–
10 cm deep, excluding the litter layer) in May (dry season) and
August (wet season) of 2017, from near the trunks of trees/shrubs
in each treatment plot. The soil samples for microbial analysis
were loaded into polyethylene bags on dry ice in the field, until
frozen at −20◦C in the laboratory. Meanwhile, additional soil
samples were collected and sealed in aluminum tins for chemical
composition measurements. All of the soil samples were packed
and transported to the experimental center of Shanghai Jiao Tong
University, China. The soil was sieved to remove roots, stones,
and large particles and stored in the laboratory at 25◦C.

Elemental Analysis
The concentrations of C, N, H, and S were determined
from 25 mg of each sample using a powerful stable isotope
ratio mass spectrometer (Vario EL III Element Analyzer;
Elementar, Germany).

To quantify the concentrations of Fe, P, K, Mn, Mg, Ca,
Na, Al, Cu, and Si, the samples were digested in a microwave
reaction chamber under high temperature. The soil samples
were placed in an oven at 105◦C for 15 min and then dried
at 60◦C for 48 h. Then, all the samples were machine ground
into powder. The soil samples passed through a 60-mesh sieve
and were used for the determination of the total amount of soil
elements. A 250-mg volume of sample powder was transferred
to a 50-ml Teflon tube with 2 ml of HNO3 and 1 ml of H2O2.
The mixture was heated at 105◦C for 2 h with a Digiprep-MS
digestion block (SCP Science, Champlain, NY, United States).
The digested samples in 50-ml flasks were refilled with distilled
water to a 40-ml volume. The elemental concentrations were
quantified using an inductively coupled plasma-optical emission
spectrometer (ICP-OES; Thermo Jarrell Ash IRIS Advantage
1000, Franklin, MA, United States) at the Shanghai Jiao Tong
University Testing Center, China.

DNA Extraction, Amplification, and
Sequencing
The total DNA was extracted from approximately 0.5 g of
soil using the Fast DNA SPIN extraction kit (MP Biomedicals,
Santa Ana, CA, United States) according to the manufacturer’s
protocol. The DNA yield was visualized via 1.0% agarose
gel electrophoresis [1× Tris–acetate–ethylenediaminetetraacetic
acid (TAE) electrophoresis buffer run at 120 V for 1 h]
with ethidium bromide (EtBr). The quality and quantity of
extracted DNA was quantified using a Nano-Drop ND-1000
spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
United States). The extracted DNA was stored at −20◦C prior to
PCR amplification.

The PCR amplification of the V3–V4 region of the bacterial
16S rRNA genes was performed using the forward primer
338F (5′-ACTCCTACGGGAGGCAGCA-3′) and the reverse

primer 806R (5′-GGACTACHVGGGTWTCTAAT-3′). For
fungal internal transcribed spacer (ITS) amplification, a
similar approach was employed using the forward primers
fITS7 5′-GTGARTCATCGAATCTTTG-3′ and the reverse
primer ITS4 5′-TCCTCCGCTTATTGATATGC-3′. Sample-
specific 7-bp barcodes were incorporated into the primers for
multiplex sequencing.

The PCR reactions were performed as described by Koskinen
et al. (2011). The amplicons of the PCR were cleansed
with Agencourt AMPure XP Beads (Beckman Coulter Inc.,
Indianapolis, IN, United States) and measured using the
PicoGreen dsDNA Quantitation Assay (Molecular Probes-
Invitrogen, Carlsbad, CA, United States). The amplicons of
PCR were paired for equivalency following the quantification
analysis of an individual. The libraries were sequenced using
the Illumina MiSeq platform with MiSeq Reagent Kit v3
at the Shanghai Personal Biotechnology Co., Ltd (Shanghai,
China), which produced pair-end 2 × 300-bp reads. The paired
fastq files are available in the Sequence Read Archive at the
National Center for Biotechnology Information2 under accession
numbers SAMN14986759–SAMN14986778 for bacteria and
SRR11826156–SRR11826157 for fungi, respectively.

Bioinformatics
Paired end sequence data (.fastq) were processed using
mothur version 1.38.1 (Schloss et al., 2009). Both fungal and
bacterial.fastq data files were contiged, and any sequences with
ambiguous bases, more than one mismatch with the primers,
homopolymers longer than 8 bp (bacteria) and 13 bp (fungi), or
any without a minimum overlap of 50 bp were removed.

Bacterial sequences were aligned against a SILVA reference,
preclustered to remove erroneous reads (Huse et al., 2010),
screened for chimeras with the Vsearch algorithm (Rognes et al.,
2016). Non-chimeric sequences were assigned to taxa using the
Naive Bayesian Classifier (Wang et al., 2007) against the RDP
training set (version 10). Non-target sequences (mitochondria,
chloroplast, and Archaea) were removed. Sequences were
clustered to OTUs at 97% similarity using the nearest neighbor
(single-linkage) joining.

Fungal sequences were screened using the Vsearch algorithm,
and putative chimeras were removed. To permit the pairwise
alignment of fungal ITS sequences to calculate a pairwise distance
matrix, we omitted all fungal ITS sequences that were <300 bp
in length and truncated the remaining sequences to the first
300 bp. These fungal sequences were assigned to taxa using the
Naive Bayesian Classifier and the UNITE-curated International
Nucleotide Sequence Database reference database (Abarenkov
et al., 2010). Any sequences not assigned to Kingdom Fungi
were removed. Unique sequences were pairwise aligned and the
resultant distance matrix clustered to OTUs at a 97% threshold
using nearest neighbor joining as described for bacteria. Fungal
OTUs were assigned to the functional guild using the FUNGuild
database (Nguyen et al., 2016).

In both bacterial and fungal datasets, relatively low-abundance
OTUs were deleted (≤10 sequences across all experimental units),

2www.ncbi.nlm.nih.gov
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as they may be sequencing or PCR artifacts (Tedersoo et al.,
2010; Brown et al., 2015; Oliver et al., 2015). We calculated
diversity and richness metrics for both bacterial and fungal
communities in mothur. The observed OTU richness (Sobs),
the complement of Simpson’s diversity index (1/D: 1/6pi

2),
Simpson’s evenness index (ED: 1/6pi

2/S), and Shannon’s
diversity index (H′:6pilnpi), with pi representing the frequency
of each OTU within a sample, were iteratively calculated and
rarefied at 19,322 sequences for bacteria and 18,981 for fungi.

Soil pH and Soil Water Content
Measurement
A digital pH meter was used to measure the soil pH in 1:5 soil/1
M KCl solutions (Mettler Toledo FE20/El20, Shanghai, China).
The soil water content (SWC) was calculated by using the oven-
drying method. Soil samples were oven dried for 48 h at 105◦C.
The SWC (%) was calculated by using the following formula:

SWC (%) =
W1 − W2
W2 − W3

× 100

where W1 is the weight of wet soil plus box, W2 represents the
weight of dry soil plus box, and W3 represents box weight.

HOBO R© Micro Station Data Loggers (H21-002) were
installed to check the soil temperature (◦C) and volumetric
soil moisture content (m3/m3) during the study period. Soil
moisture conditions were monitored using an automatic soil
moisture smart sensor (HOBO Micro Station #H21-002 Data
Logger; Onset Computer Corp., Bourne, MA, United States;
#S-SMx-M005; Supplementary Figure 5). To measure the
soil temperature, HOBO 12-bit temperature smart sensors
(S-TMB-M0xx) were connected to HOBO Micro Station data
loggers. Automatic measurements were obtained every 10 s
(Supplementary Figures 6, 7). All measurements were recorded
using the HOBO R© Micro Station Data Logger.

Data Analysis
A two-way ANOVA analysis was used with an RCBD design
to analyze the main effects of the watering treatments and the
seasonal and combined effects of both the watering treatments
and seasons on SWC, soil pH, soil elemental composition,
and the composition of fungal and bacterial communities.
As multivariate analysis takes all microbial community
variables into consideration, we employed multivariate
PCA ordination analysis to discriminate the patterns of the
water-treated samples in the microbial community variables
during both seasons.

The significance of PCA scores was confirmed by two-way
PERMANOVA using the Euclidean distance, to learn the analytic
differences between the water treatment groups (CK, T1, T2,
and T3). Pearson correlation analysis was performed to find the
correlations between microbial phyla and soil chemical variables.
Canonical correspondence analysis (CCA) was performed to
analyze the correlations between the microbial characteristics and
soil chemical variables of two seasons.

Indicator species analysis (ISA) was conducted with R
software using the IndVal script in the labdsv package (Roberts,

2016) and employed to identify microbial taxa that existed in
the majority of groups of one season but were absent in the
majority of groups of the other season. ISA calculates an indicator
value (IV, %) as mentioned in Dufrêne and Legendre (1997).
The IV is a key measure of the relative average abundance
of a species or OTUs in a cluster. The maximum IV is 100
when an OTU is present in all samples of one season group
or one water treatment group. To verify the significance test of
the IV, the p values were measured with 100 iterations, where
the different group samples were arbitrarily marked and an IV
calculated in each iteration. The p values for the IV measurement
were selected for multiple comparisons using the false discovery
rate correction.

A one-way ANOVA was performed using SAS version
9.0 and determined the effect of water-addition treatments
using five replications and four treatments. We employed
Duncan’s multiple range test (MRT) with least significant
difference (LSD; p < 0.05) to identify the significant difference
for mean comparison. All numerical and graphical data
were analyzed using SPSS version 19.0 (SPSS Inc., Chicago,
IL, United States), Microsoft Excel 2007 (Microsoft Press,
Redmond, WA, United States), Sigma Plot version 10.0 (Systat
software, Inc., Richmond, CA, United States), and PAST 4.03
(Hammer et al., 2001).

RESULTS

Effects of Water Addition on Elemental
Compositions of Soils
It can be seen that SWC revealed an increasing trend with the
further addition of water for both seasons (Figure 1). During
the wet season, the SWC was 1.7-fold higher than that in the
dry season (F = 6.92; p < 0.01; Table 1). Compared to the CK,
the soil pH during the wet season increased significantly in the
water-treated plots, whereas no significant changes were observed
during the dry season (F = 8.31; p < 0.01; Table 1).

The addition of water significantly altered the elemental
compositions of the karst soils during both the dry and
wet seasons (p < 0.05). Between the 15 elements, the soil
concentrations of K, Ca, Mg, Na, Fe, Al, Zn, and Si varied
considerably across the water treatment plots (p < 0.05), while
no significant changes were observed for the other elements
(Figure 1). The non-metal soil elements (C, H, N, S, and P, except
for Si) were relatively constant with water addition; however, the
metal elements (Al, Na, Mg, Fe, and K, along with Si) increased
significantly, whereas Zn and Ca decreased (Table 1).

There were seasonal changes in the elemental composition
of the treated soils. During the wet season, the H concentration
of the soil was approximately 5.2% higher than during the dry
season (Table 1). For both seasons, the soil Na and K in the
water-treated plots increased significantly in contrast to that in
the CK (Figure 1). Compared to the CK, the soil Ca decreased
significantly in the water-treated plots during the dry and wet
season (Table 1).

Based on PCA, both water treatments and seasons had
considerable interactive effects on the SWC, pH, and elemental
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FIGURE 1 | Soil water content (SWC), soil pH, and soil elements C, H, N, S, P, K, Ca, Mg, Na, Al, Fe, Mn, Zn, Cu, and Si concentrations (mg g−1) of 20 plots during
the dry (white bars) and wet (gray bars) seasons under 0% (CK), +20% (T1), +40% (T2), and +60% (T3) watering treatments. The different letters (a, b and c)
indicated significant difference between watering treatments detected by Duncan’s multiple range test (p < 0.05).
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TABLE 1 | Watering treatments had significant effects on the soil pH, soil water
content, and soil elemental composition during the dry and wet seasons.

Soil variables F and p values

Dry season Wet season

pH 1.42 (0.27) 8.31 (<0.01)

SWC 3.93 (0.03) 6.92 (<0.01)

N 0.10 (0.96) 4.62 (0.02)

C 0.43 (0.73) 0.70 (0.57)

H 1.21 (0.34) 0.95 (0.44)

S 1.20 (0.34) 1.20 (0.34)

Fe 4.59 (0.02) 5.91 (0.01)

P 0.37 (0.78) 0.96 (0.44)

K 3.74 (0.03) 9.16 (<0.01)

Ca 3.26 (0.05) 6.21 (0.01)

Mg 4.22 (0.02) 3.79 (0.03)

Mn 0.58 (0.64) 0.65 (0.6)

Zn 5.03 (0.01) 5.57 (0.01)

Cu 2.19 (0.13) 0.93 (0.45)

Na 3.77 (0.03) 14.24 (<0.01)

Al 3.31 (0.05) 1.24 (0.33)

Si 8.68 (<0.01) 5.53 (0.01)

The values in bold indicate statistical significance at p < 0.05 in one-way ANOVAs.

concentrations (Figure 2). The PCA scores showed that the
elemental variables in the soil differed significantly, contingent
on the watering treatment at axis 1 (explaining 34.4% variation;
pseudo-F = 19.6; p < 0.001) and season at axis 3 (explaining 14.9%
variation; pseudo-F = 95.9; p < 0.001). Axis 2 was discounted for
the differences of watering samples and results were confirmed
by two-way PEMANOVA analysis (Supplementary Table 1 and
Supplementary Figure 8). This indicated that the watering
treatment was the primary factor, while the season was secondary
in terms of affecting the elemental composition of the soil.

For both seasons, the elemental composition of the soil in
the water-treated plots differed from the CK plots (Figure 2A).
Season also played a substantial role in the compositional
variation of soil elements (p < 0.01). The elemental variables of
the soil during the dry season, with relatively low moisture, were
quite distinct from those under high moisture during the wet
season, along axis 3 (Figure 2B).

Effects of Water Addition on Microbial
Diversity
Compared to the CK, the bacterial OTUs (F = 7.51; p < 0.01)
during the wet season were significantly decreased in the water-
treated plots, whereas no significant changes were observed
during the dry season (Table 2). Conversely, the fungal evenness
during the dry season was higher in the water-treated plots during
the dry season, whereas no changes were observed during the wet
season (Figure 3).

The values of specific OTUs and diversity indices [Shannon
(H′), Simpson (1/D), Evenness, and Chao 1 estimator] of
the bacterial communities were all considerably higher during
the wet season than during the dry season (Figure 3A).
However, the Chao 1 estimator of fungal communities was

significantly higher during the dry season than during the wet
season (Figure 3B).

Effect of Water Addition on Microbial
Community Composition
During the dry season, the microbial phyla did not show
any significant changes in response to the addition of water
(Supplementary Table 2). However, during the wet season,
the relative abundance of Acidobacteria, Planctomycetes, and
Verrucomicrobia decreased by 1.25, 5.88, and 64.7% at T1;
22.5, 17.6, and 35.3% at T2; and 29.6, 52.9, and 82.4% at T3,
respectively, compared with the CK (Table 3 and Supplementary
Table 2). In contrast to the CK, the relative abundance of
Actinobacteria increased significantly by 27.9, 11.5, and 21.0% at
T1, T2, and T3, respectively.

The seasons had significant impacts on the average
relative abundance of bacterial and fungal communities
(Table 3). Compared to the dry season, the average relative
abundance of Proteobacteria, Acidobacteria, Chloroflexi,
Nitrospirae, Bacteroidetes, Firmicutes, and Verrucomicrobia
were considerably higher during the wet season (Figure 4A).
In contrast, Actinobacteria and Planctomycetes exhibited
a higher average relative abundance during the dry season
(p < 0.05). The average relative abundance of some fungal phyla
was considerably higher during the wet season as compared
to the dry season, i.e., Basidiomycota, Chytridiomycota, and
Mortierellomycota (Figure 4B). On the contrary, the average
relative abundance of phylum Ascomycota was significantly
higher during the dry season (Figure 4).

Based on ISA, we discovered that Actinobacteria,
Proteobacteria, Bacteroidetes, and Ascomycota were the
dominant microbial phyla during the dry season (Tables 4, 5).
The IV of Phytohabitans, Pilimelia, Arthrobacter, and Non-
omuraea (Actinobacteria), Inquilinus and Rhodovastum
(Proteobacteria), Sediminibacterium (Bacteroidetes),
and Leptogium, Cladosporium, Neodevriesia, Toninia,
Catenulostroma, Phyllosticta, Paraconiothyrium, Beauveria,
Medicopsis, Cyberlindnera, Thaxteriellopsis, and Monilinia
(Ascomycota) were >70% (Tables 4, 5). Compared to the CK,
only one fungal genus, i.e., Thaxteriellopsis, of the microbial
community was significantly changed in all water-treated
groups (T1, T2, and T3) with an IV of 89.4% (Supplementary
Tables 3, 4).

During the wet season, Actinobacteria, Proteobacteria,
Acidobacteria, Chloroflexi, Planctomycetes, Firmicutes,
Verrucomicrobia, Ascomycota, Basidiomycota, Chlorophyta,
and Chytridiomycota were the key microbial phyla across all
plots. The genera Micromonospora, Kibdelosporangium, and
Iamia (Actinobacteria), Roseiflexus (Chloroflexi), Paenibacillus
(Firmicutes), Bradyrhizobium, Craurococcus, Bosea, Phaselicystis,
Acinetobacter, Ensifer, Pseudomonas, Cupriavidus, Dokdonella,
Burkholderia, Aquicella, Haliangium, and Chthoniobacter
(Proteobacteria), and Trebouxia (Chlorophyta) had IV
of more than 80%.

The IV of Novosphingobium (Proteobacteria), Quadrisphaera
and Sphaerisporangium (Actinobacteria), Petrakia (Ascomycota),
and Trebouxia (Chlorophyta) was 88.4, 85.6, 84.4, 85.6, and
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FIGURE 2 | Principal component analysis demonstrated the soil elemental variables of two seasons under 0% (CK), +20% (T1), +40% (T2), and +60% (T3) watering
treatments. The elemental variables of soils were compositionally distinct between (A) watering treatments along axis 3 and (B) seasons along axis 1. The watering
treatments are indicated by different colors and geometric shapes (white circles, CK; white squares, T1; white triangles, T2; and black circles, T3), whereas the
seasons are indicated by different colors (white circles, CK; black circles, T3).

TABLE 2 | Watering treatment had significant effects on the microbial community
richness and diversity indices during the dry and wet seasons.

Microbial community Community richness
and diversity indices

F and p values

Dry season Wet season

Bacterial community OTUs 1.07 (0.39) 7.51 (<0.01)

Chao 1.98 (0.16) 2.87 (0.07)

Shannon (H) 0.11 (0.95) 1.48 (0.26)

Evenness 0.88 (0.47) 0.19 (0.90)

Simpson (I/D) 0.28 (0.84) 0.66 (0.59)

Fungal community OTUs 1.48 (0.26) 2.47 (0.10)

Chao 0.08 (0.97) 0.64 (0.60)

Shannon (H) 1.63 (0.22) 1.07 (0.39)

Evenness 1.88 (0.17) 1.80 (0.19)

Simpson (I/D) 2.09 (0.14) 0.69 (0.57)

The values in bold indicate statistical significance at p < 0.05 in one-way ANOVAs.

98.8% in all water-treated samples (T1, T2, and T3), respectively
(Supplementary Tables 3, 4).

The PCA results revealed that the watering treatments had
potent effects on the composition of fungal and bacterial
communities. The composition of fungal communities in the
water-treated samples was significantly different from that in the
CK samples along axis 2 (Figure 5A; pseudo-F = 51.2; p < 0.001).
Likewise, the composition of bacterial communities in the water-
treated samples was significantly distinct from that in the CK
samples along axis 2 (Figure 5B; pseudo-F = 22.8; p < 0.001).

During the wet season, compositions of bacterial and fungal
communities in the water-treated samples were quite distinct

from those in the CK samples along axis 2; however, this was not
the case during the dry season (p < 0.001).

Seasonal conditions also played specific roles in the
modification of microbial community compositions in this
karst habitat. During the dry season, fungal communities were
significantly distinct from those during the wet season along axis
1 (Figure 6A; pseudo-F = 102.62; p < 0.001). This pattern also
held for the composition of bacterial communities, which varied
between the dry and wet seasons along axis 1 (pseudo-F = 674.7;
p < 0.001; Figure 6B).

Relationship Between Microbial
Community Structures and Elemental
Concentrations in Soils
Only the phylum Chlorflexi exhibited a significantly positive
correlation with pH and a negative correlation with Si during
the dry season (Figure 7A), whereas the relative abundance of
the phylum Basidiomycota had a significantly positive correlation
with Mn. Between all of the soil elements, C, H, S, and Fe did not
show any significant correlation with microbial phyla during the
wet season (Figure 7B).

The CCA of both seasonal studies explained the composition
of soil microbial communities on the basis of multielement
composition under different water treatment regimens.
During the wet season, the composition of microbial
communities in the water-treated samples was appreciably
distinct from that in the CK samples along axis 2 but not during
the dry season (Figure 8A). The CCA results revealed that the
CK samples were clearly distinct from water-treated samples
during the wet season, along axis 2 (pseudo-F = 3.91; p = 0.02;
Figure 8B). The first two axes, axes 1 and 2, explained the
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FIGURE 3 | Means ± SE of (A) bacterial and (B) fungal community richness
and diversity indices during the dry (white bars) and wet (gray bars) seasons
under 0% (CK), +20% (T1), +40% (T2), and +60% (T3) watering treatments.
The different letters (a, b and c) indicated significant difference between
watering treatments detected by Duncan’s multiple range test (p < 0.05).

majority of variation in the elemental composition among the
microbial phyla (Figure 9 and Supplementary Table 5).

The segregation of the microbial phyla is represented
graphically in the biplots of axes 1 and 2. Axis-2 of CCA
(explaining 7.98% of the variation) was primarily loaded with soil
microbial phyla and soil multielement variables and significant

TABLE 3 | Watering treatments had significant effects on the average relative
abundance of microbial phyla during the dry and wet seasons.

Main phyla of microbial community F and p values

Dry season Wet season

Actinobacteria 0.33 (0.81) 6.03 (0.01)

Proteobacteria 2.36 (0.11) 3.02 (0.06)

Acidobacteria 0.14 (0.93) 3.44 (0.04)

Chloroflexi 1.55 (0.24) 1.55 (0.24)

Planctomycetes 0.08 (0.97) 3.39 (0.04)

Nitrospirae 0.02 (0.99) 1.10 (0.38)

Bacteroidetes 0.23 (0.88) 1.88 (0.17)

Firmicutes 0.51 (0.68) 0.42 (0.74)

Verrucomicrobia 0.12 (0.95) 6.98 (<0.01)

Ascomycota 0.41 (0.75) 0.45 (0.72)

Basidiomycota 0.11 (0.95) 1.28 (0.31)

Mortierellomycota 1.85 (0.18) 0.64 (0.60)

Chytridiomycota 1.96 (0.16) 0.48 (0.70)

Glomeromycota 1.62 (0.22) 0.99 (0.42)

The values in bold indicate statistical significance at p < 0.05 in one-way ANOVAs.

negatively correlated with soil K and Na (p < 0.05; Figure 9A).
As canonical correlations with axis 2 were significantly correlated
with K and Na across microbial communities, K and Na
were the most effective in distinguishing between microbial
phyla (Figure 9B).

DISCUSSION

Changes in precipitation due to climate change, initiate shifts in
the compositions, and diversity of soil microbial communities
have been widely reported (Cregger et al., 2012; Zhang et al.,
2016). To the best of our knowledge, our study is the first
effort to characterize the influence of water addition on the
diversity and community composition of microbes in soil and
its elemental composition in a karst ecosystem. In the context
of climate change, our findings have significant implications for
understanding the consequences of altering the structure and
diversity of microbial communities and elemental compositions
of soils due to increased precipitation in such karst ecosystems.

Water Addition Altered Elemental
Concentrations of Karst Soils During
Both Dry and Wet Seasons
Our results clearly indicated that the addition of water had
a significant effect on the elemental concentrations of soils
during both the dry and wet seasons in a degraded karst
community. Further, the elemental concentrations of soils
differed considerably between the two seasons (Table 1).
Interestingly, for both seasons, the non-metal soil elements (C,
H, N, S, and P, except for Si) were relatively stable with water
addition; however, the metal elements (Al, Na, Mg, Fe, Cu,
and K, along with Si) increased significantly, whereas Zn and
Ca decreased. This was consistent with a study of Wang et al.
(2016), which reported that water addition led to decreased
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FIGURE 4 | Bar charts showing the average relative abundance (%) of important (A) bacterial and (B) fungal phyla of the two seasons (dry, white bars; wet, gray
bars) under 0% (CK), +20% (T1), +40% (T2), and +60% (T3) watering treatments. The different letters (a, b) indicated significant difference between watering
treatments detected by Duncan’s multiple range test (p < 0.05).
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TABLE 4 | Indicator species analysis showing that bacterial genera are
significantly associated with dry and wet seasons in a degraded karst area of
Southwestern China.

Bacterial phyla Bacterial genera Indicator value (%) p value

Dry season

Actinobacteria Phytohabitans 99.3 0.001***

Pilimelia 98.8 0.001***

Arthrobacter 91.3 0.001***

Non-omuraea 91.3 0.001***

Proteobacteria Inquilinus 91.2 0.001***

Rhodovastum 84.2 0.001***

Bacteroidetes Sediminibacterium 77.9 0.001***

Rhodocytophaga 59.3 0.026*

Wet season

Acidobacteria Terriglobus 58.9 0.012*

Actinobacteria Micromonospora 99.5 0.001***

Kibdelosporangium 98.3 0.001***

Iamia 96.4 0.001***

Chloroflexi Roseiflexus 99.9 0.001***

Firmicutes Paenibacillus 80.7 0.003**

Planctomycetes Isosphaera 79.1 0.001***

Proteobacteria Bradyrhizobium 99.7 0.001***

Craurococcus 99.4 0.001***

Bosea 96.3 0.001***

Phaselicystis 90.9 0.001***

Acinetobacter 90.7 0.038*

Ensifer 89.9 0.001***

Pseudomonas 88.1 0.001***

Cupriavidus 86.2 0.001***

Dokdonella 85.9 0.001***

Burkholderia 83.2 0.006**

Aquicella 82.9 0.001***

Novosphingobium 76.7 0.001***

Rickettsiella 65.2 0.009**

Haliangium 98.8 0.001***

Verrucomicrobia Chthoniobacter 88.0 0.001***

*Indicates significance (p < 0.05). **Indicates high significance (p < 0.01).
***Indicates very high significance (p < 0.001).

concentrations of most elements (e.g., Ca+2, Mg+2, SO+2, and
HCO3

−, with the exception of K+ and Na+) in the karst areas
of Southwestern China. Such patterns in elemental variations
might characterize the chemical weathering of karst silicate rocks
(granites and metamorphic rocks) due to water addition, whereby
one of the key natural processes is the release of K+ and Na+ into
the ambient environment (Lyu et al., 2018). Similarly, such water
addition and elemental concentration patterns in karst soils have
been observed in other geologically derived soils. In estuarine
wetland ecosystems, soil C, N, and P had no obvious change
with flooding intensity but differed significantly with soil depth
(Wang et al., 2018). Under 2 years of watering treatments, no
significant effects were observed for soil extractable N and P in
tropical forests (Wang et al., 2019). However, in a greenhouse
experiment, Misra and Tyler (1999) reported that with increased
soil moisture, soil P, Mn, and K increased along with pH and
HCO3

−, while Ca, Mg, and Zn decreased.

TABLE 5 | Indicator species analysis showing that fungal genera are significantly
associated with dry and wet seasons in a degraded karst area of
Southwestern China.

Fungal phyla Fungal genera Indicator value (%) p value

Dry season

Ascomycota Leptogium 94.0 0.003**

Cladosporium 92.8 0.001***

Neodevriesia 91.3 0.002**

Toninia 83.7 0.001***

Catenulostroma 82.1 0.009**

Phyllosticta 79.8 0.005**

Paraconiothyrium 78.0 0.011*

Beauveria 75.7 0.001***

Medicopsis 75.6 0.014*

Cyberlindnera 71.8 0.010**

Thaxteriellopsis 71.7 0.005**

Monilinia 71.4 0.010**

Arthropsis 68.2 0.009**

Magnaporthiopsis 62.8 0.013*

Heterodermia 62.6 0.028*

Pseudocercospora 60.6 0.013*

Pyrenula 59.4 0.014*

Satchmopsis 52.4 0.030*

Wet season

Ascomycota Dialonectria 61.6 0.014*

Verruconis 57.1 0.042*

Vermiconia 54.7 0.031*

Basidiomycota Geminibasidium 79.2 0.013*

Entoloma 62.1 0.012*

Chlorophyta Trebouxia 91.3 0.031*

Chytridiomycota Spizellomyces 74.2 0.022*

*Indicates significance (p < 0.05). **Indicates high significance (p < 0.01).
***Indicates very high significance (p < 0.001).

In terms of mechanisms, variations in the elemental
concentrations of soils are instigated by multiple factors, with
the predominant one being soil moisture in karst soils. In this
context, the key processes involved in the release and fixation of
soil elements include precipitation–dissolution and desorption–
adsorption (Singh and Schulze, 2015). The elements of soil
resident solutions are partially altered against the changes in
soil moisture by the precipitated, exchangeable, or adsorbed
zones in the solid phases of the soil (Wolt, 1994). Increases in
soil moisture were observed to alter their ionic concentrations,
distribution, and formation of complex structures (Fotovat and
Naidu, 1998). Karst soils are rich in Ca and Mg due to the
presence of carbonate rocks such as calcite and dolomite (Yuan
et al., 2017), where their concentrations are interactive (Li
et al., 2005). Verily, soil-resident Ca in karst areas is typically
regulated by precipitation and calcite dissolution (Buhmann and
Dreybrodt, 1985). However, these authors do not consider the
dissolution of CaCO3 in high moisture calcareous soils as a key
factor in determining HCO3

−, which is clearly evident from the
decline in Ca concentrations in the soil solution (Misra and Tyler,
1999; Misra, 2003). As a consequence, low concentrations of Zn
are found in the soil solution when the moisture is increased,
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FIGURE 5 | Microbial communities were significantly distinct between watering treatments. Principal component analysis demonstrated the (A) fungal and (B)
bacterial community compositions in response to increased precipitation. The watering treatments are indicated by different colors and geometric shapes (white
circles, CK; white squares, T1; white triangles, T2; and black circles, T3). Each point represents a specific community in one of the treatment plots or control plots.
Points that are close together are more similar to one another than points that are far apart.

FIGURE 6 | Microbial communities were significantly distinct during the dry and wet seasons across all treatments. Principal component analysis demonstrated
(A) fungal and (B) bacterial community compositions during the dry (black circles) and wet (white circles) seasons. Each point represents a specific community
during either the dry or wet season. Points that are close together are more similar to one another than points that are far apart.

which results in the lower availability of Zn by precipitation
of franklinite-like solid material (Sajwan and Lindsay, 1986).
Actually, the concentration of Zn in the soil solution depends
on factors such as concentrations of HCO3

− and macronutrients
(Misra and Tyler, 1999; Misra, 2003). In fact, decreases in the
concentrations of karst rock-derived nutrients in soils, due to
water addition, suggest that the effects of increased precipitation
on leaching exceed its impacts on weathering and deposition at
wetter sites. It has been well documented in previous studies
that the availability of K in soil increases with higher soil

moisture (Misra and Tyler, 1999; Zeng and Brown, 2000;
Singh and Singh, 2004).

Water Addition Alters Soil Microbial
Community Structures Through Changes
in Soil Conditions
Our results clearly revealed that the relative abundance
of Acidobacteria, Plantomycetes, and Verrucomicrobia were
negatively correlated with soil K and Na content, while
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FIGURE 7 | Pearson correlation coefficients between important soil microbial phyla and soil environmental variables of the two seasons, (A) dry season and (B) wet
season across all the treatments. Blue indicates a positive correlation, and red refers to a negative correlation. The statistically significant values are boxed (p < 0.05).

FIGURE 8 | Canonical correspondence analysis (CCA) demonstrated the soil microbial phyla and soil multielement variables of the two seasons, (A) dry season and
(B) wet season under 0% (CK), +20% (T1), +40% (T2), and +60% (T3) watering treatments. The watering treatments are indicated by different colors and geometric
shapes (white circles, CK; white squares, T1; white triangles, T2; and black circles, T3). Each point represents a specific community in one of the water treatment or
control plots. Points that are close together are more similar to one another than points that are far apart.

Actinobacteria had a significantly positive correlation with K+
(r2 = 0.70, p < 0.001) and Na+ (r2 = 0.36, p < 0.01) contents
(Supplementary Table 6) during the wet season, and the addition

of water did not influence fungal phyla. This suggests that the
karst bacterial communities can be influenced by the addition
of water during the wet season likely linked to changes in soil K

Frontiers in Microbiology | www.frontiersin.org 13 November 2020 | Volume 11 | Article 562546

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-562546 November 3, 2020 Time: 21:34 # 14

Umair et al. Bacteria Are Sensitive to Increasing Rainfall

FIGURE 9 | (A) Soil microbial phyla defined by the two variables (axes 1 and 2) extracted from canonical correspondence analysis (CCA), based on multielement
composition during the wet season. Solid symbols represent the mean of each phylum. The position of blue circles in a plot relative to the direction of green lines
approximates correlations between microbial phyla and the gradient of element concentrations. The lengths of green lines indicate the overall contribution of the
element to the analysis. The directions of the green lines indicate the element correlation with each axis (vector lines parallel to an axis are highly correlated with that
axis). Angles between the vector lines show correlations between elements. (B) Correlation coefficients of soil microbial phyla and soil variables with canonical axes
(axes 1 and 2). Blue indicates a positive correlation, and red refers to a negative correlation. The statistical significant values are boxed (p < 0.05).

and Na contents. A similar phenomenon was observed in karst
farmland soils in Central China (Yun et al., 2016). Results showed
that the relative abundance of Actinobacteria had significant
positive correlation with soil K+ content (r2 = 0.28, p < 0.01).
In fact, the effects of K and Na on soil microbes were widely
observed in previous studies. For instance, the addition of K and
Na enhanced the mass production of the cellulase enzymes that
are required to break down C-rich macromolecules by microbes
(Kaspari et al., 2008, 2009). In fact, the availability of K was
positively associated with litter decomposition in ecosystems
(Tripathi, 1992; Laskowski et al., 1995; Pandey et al., 2007), and
Na benefitted plant consumer metabolism in both herbivores
and decomposers (Frausto da Silva and Williams, 2001;
Kaspari et al., 2009).

It is well recognized that high concentrations of soluble salts
(particularly K+ and Na+) affect microbes via osmotic effects.
Various studies have reported that bacterial osmoregulation
processes are controlled by transporters, enzymes, and channels
that mediate solute accumulation and release (Wood, 2011,
2015). Bacteria are externally enclosed by selectively permeable
cytoplasmic membranes, which often include aquaporins
(Figure 10). They respond to changes in external osmotic
pressure by releasing or accumulating solutes (often K+),
thereby transducing water fluxes. Under extreme conditions,
some halotolerant species increase KCl concentrations within
cells, and their proteins work only in high saline conditions
(Wood, 2015). In fact, these species have adapted to tolerate high

osmoregulatory solute accumulation. Osmoregulatory solutes
accumulate through active transport or synthesis when the
osmotic pressure increases and releases via mechanosensitive
channels, when the osmotic pressure decreases (Wood, 2011,
2015). Moreover, osmoregulatory systems are transcriptionally
controlled and mediated by small regulatory RNA (a key
determinant of cell walls), which may affect osmoregulatory
systems (Altendorf et al., 2009; Krämer, 2010). According
to Wood (2015), the accumulation of soluble solutes in cells
strongly activate the growth of bacteria at high external osmotic
pressures and solute-releasing channels discharge solutes to
survive osmotic down-shocks. As a result, the growth rate
of bacterial populations is directly proportional to cellular
hydration, where this accumulation of soluble solutes influences
population growth and cytoplasmic rehydration.

Additionally, we used ISA to identify specific members
linked to dominant phyla, such as Actinbacteria, Acidobacteria,
Planctomycetes, and Verrucomicrobia, which showed a
significant correlation with content of Na+ and K+. The
main drivers for the reduction or abundance of these
phyla were Micromonospora, Kibdelosporangium, and Iamia
(Actinobacteria), Terriglobus (Acidobacteria), Isosphaera
(Planctomycetes), and Chthoniobacter (Verrucomicrobia;
Table 4). In our study, an increase in relative abundance
of dominant Actinobacteria (Gram-positive bacteria) was
primarily associated with the presence of halo-tolerant
bacteria, such as Micromonspora (Ballav et al., 2015),
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FIGURE 10 | Mechanisms of osmoregulation and energy generation in bacteria modified from Wood (2015). Under high osmotic pressure, solutes transport from the
soil solution and accumulate in bacteria. K+ –H + symporter P type ATPase Kdp (Los and Murata, 2000) and TrkAG/H SapD (Harms et al., 2001) stimulate the
uptake of K+. K + diffusion suppresses the effect of 19. ProP is a proton symporter and a member of the major facilitator superfamily. ProP releases H+ in the
cytoplasm of bacterial cell, leading to the acidification of the cytoplasm. ProU generates ATP and is utilized for protein synthesis and other functions. ProP and ProU
are similarly broad in substrate specificity (Wood, 2015). The Na+/H+ antiporter NaPA mediates Na+ uptake under acidic conditions (Uzdavinys et al., 2017).
Mechanosensitive channels, including MscL and MscS, relay solutes from the cytoplasm of osmotically down-shocked bacteria. Aqps suppresses the effect of
osmotic pressure (π) by accelerating the transmembrane water flux.

Iamia (Plotnikova et al., 2011; Ma and Gong, 2013), and
Kibdelosporangium (Qin et al., 2018). Abdulla (2009) found that
Kibdelosporangium and Nocardioides were potential members of
Actinomycetes, which played multiple roles in rock weathering,
such as metal leaching, acid production, and the solubilization of
phosphate and sulfate.

Moreover, Gram-positive bacteria and archaea can better
tolerate high matric potential than Gram-negative bacteria due
to their stronger cell walls (Fierer et al., 2003; Ma et al.,
2015). Additionally, Gram-positive bacteria can accumulate
compatible solutes to assist in maintaining high turgor, which
requires an adjustment in the regulation of osmoprotectant
uptake and integration of different systems in cells. Likewise,
archaea, which are often found in high-salt as well as high-
temperature environments, use the same general strategies for
osmoadaptation as eubacterial and eukaryotic organisms. Under
optimal growth conditions, most of the archaea examined have
high intracellular concentrations of inorganic cations, mainly K+.
To cope with the high intracellular concentrations of K+, many
archaea have evolved proteins that are exceedingly rich in acidic
amino acids (glutamic acid and aspartic acid) compared to basic
amino acid (arginine and lysine) residues (Jarrell et al., 1984). In
addition to these large excess of negatively charged amino acid
residues, the hydrophobicity of the proteins of halophilic archaea
is reduced. This in turn reduces the salting-out effects of K+
and helps the protein to maintain its strength under high saline
conditions (Martin et al., 1999).

Seasonal Variations in Microbial
Composition and Diversity
In regions with two distinct seasons, the composition of
soil microbial communities varied substantially across seasons

(Waldrop and Firestone, 2006; Cregger et al., 2012; Taketani et al.,
2017). Our results highlighted variations in the composition and
diversity of soil microbial communities in degraded karst areas
between two distinct seasons.

First, based on our PCA results, during the dry season,
bacterial and fungal communities were clearly distinct from
the communities during the wet season (Figure 6). It was
shown that soil microbial communities that live in dry soils
become active and successively shift their compositions during
the wet season in the Mediterranean and semiarid ecosystems
(Kavamura et al., 2013; Barnard et al., 2015; Taketani et al.,
2017). Seasonal variations in rainfall play a considerable role
in determining the composition of microbial communities
in a semiarid woodland ecosystems (Cregger et al., 2012).
Furthermore, Bell et al. (2014) suggested that a 25% increase in
seasonal rainfall in a desert grassland may alter the microbial
community structure.

Second, our results clearly revealed that OTUs and diversity
indices in bacterial communities during the wet season were
significantly higher than those during the dry season; however,
this was not the case for fungi (Figure 2). Similar reports were
previously published for the bacterial communities of soils in
Caatinga, Brazil (Kavamura et al., 2013; Taketani et al., 2017),
and Californian grasslands (Barnard et al., 2013, 2015). In fact,
the decrease in moisture triggered several changes within the soil
that directly affected its bacterial community diversity, such as the
decreased availability of nutrients (Placella et al., 2012), low pore
connectivity (Carson et al., 2010), and increased O2 availability
(Silver et al., 1999).

These changes resulted in a higher bacterial abundance and
diversity during the wet season due to improved access to
available nutrients (Hu et al., 2001) and the stimulation of
bacterial migration (Taketani et al., 2017). In contrast to the
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bacterial community, the fungal community diversity and species
richness remained constant under increasing precipitation
(Supplementary Tables 7, 8). This confirmed the hypothesis of
Barnard et al. (2013) that soil fungal communities were unaltered
by multiple dry–wet periods, which exhibited a clear resistance
to variations in the soil moisture content. These distinct fungal
and bacterial responses explained the disparities between bacteria
and fungi in ambient ecological environments (Boer et al., 2005),
which showed that karst ecosystems contain various types of
water-related niches.

CONCLUSION

The karst regions of Southwestern China are undergoing climate-
induced changes, including increased precipitation and higher
soil moisture, which are likely to intensify in the near future. Our
results clearly revealed the differential effects of water addition on
bacterial and fungal communities during the dry and wet seasons.
First, water addition could result in the significant alterations in
elemental concentrations and the pH of soils in karst areas across
both seasons. Second, during the dry season, water addition
did not cause any significant changes in the compositions
of neither bacterial nor fungal communities. However, during
the wet season, water addition caused a significant variation
in the relative abundance of some bacterial phyla but not
for fungal phyla. This overstates differential responses from
bacteria and fungi to increasing rainfall. Third, during the wet
season, the structure and diversity of bacterial communities were
positively associated with soil K and Na, which was increased
with water addition. These findings suggested that increasing
precipitation might cause multifaceted effects on microbial
populations and associated biogeochemistry in karst areas, which
should be taken into consideration toward coping with climate
change in this region.

Changes in rainfall regimes that are predicted to have a
significant impact on degraded karst ecosystems may alter the
living history of soil organisms, which in turn may have an effect
on microbial population and its characteristics, with potentially
large-scale impacts on nutrient cycling and carbon budgets.
Such information is extremely important for the restoration of
the degraded karst ecosystems, as the rich bacterial diversity
during the wet season can greatly support tree seedlings and

their growth. Hence, there is a great need for studies taking a
more whole systems approach to quantifying effects of increased
precipitation in degraded karst ecosystems.
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