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ABSTRACT: Trace element deficiency diagnosis plays a critical role in pear cultivation. However,
high-quality diagnostic models are challenging to investigate, making it difficult to collect samples.
Therefore, this manuscript developed a novel transfer learning method, named Tran_NAS, with a fine-
tuning neural network that uses a neural architecture search (NAS) to transfer learning from nitrogen
(N) and phosphorus (P) to iron (Fe) and magnesium (Mg) to diagnose pear leaf element deficiencies.
The best accuracy of the transferred NAS model is 89.12%, which is 11% more than that of the model
without the transfer of trace element-deficient samples. Meanwhile, Tran_NAS also has better
performance on source datasets after comparing with different proportions of training sets. Finally, this
manuscript summarizes the transfer model coincident characteristics, including the methods of batch
normalization (BN) and dropout layers, which make the model more generalizable. This manuscript
applies a symmetric homogeneous feature-based transfer learning method on NAS that is designed
explicitly for near-infrared (NIR) data collected from nutrient-deficient pear leaves. The novel transfer
learning method would be more effective for the micro-NIR spectrum of the nondestructive diagnosis.

1. INTRODUCTION
Pears are one of the main fruits in the world, and the
production of nutritious pears is very important. The nutrients
in a pear tree determine the quality of the pears, and the
various nutrient elements of a pear tree will affect the normal
growth of the fruit.1 Therefore, a reduction in nutrients can
reduce the yield and quality of fruit.2,3 Among them, nitrogen
(N) deficiency reduces the photosynthetic rate of pear trees,
and excess N weakens the disease resistance of pear trees.2

Phosphorus (P) deficiency can lead to slow plant growth and
poor root development, affecting the fruit quality and yield.4

An iron (Fe) deficiency impairs the photosynthetic leaf rate as
well as the transpiration rate.5 Magnesium (Mg) deficiency
affects carbohydrate production and translocation, thereby
affecting the fruit ripening process.6 For steady growth and
increased fruit production, it is necessary to know the
nutritional status of a pear tree.
Traditional pear leaf deficiency identification methods

include morphological diagnoses and physical and chemical
analyses. Morphological diagnoses are the determination of
whether the leaves are deficient in N, P, Fe, and Mg using
external morphological characteristics, such as the color and
shape of the leaves.7 This technique has low recognition
accuracy and requires skilled fruit farmers. Physicochemical
experiments can be used to diagnose deficiencies by detecting
the chemical compositions of pear leaves; however, it is costly
and has a slow result turnaround.8 Nutrient deficiencies in pear
leaves can result in different color characteristics, so RGB

cameras can be used to identify pear leaves for deficiency
diagnosis. However, the leaf surface features were almost the
same when trace element deficiency was less, and the RGB
camera could not detect pear leaf deficiency in time. Therefore,
it is of great significance to explore an accurate, rapid, cost-
efficient detection method for improving the yield and quality
of pears.
The identification of pear leaf deficiencies based on near-

infrared (NIR) spectroscopy is a nondestructive and low-cost
method and is therefore gaining increasing attention. The NIR
spectra range from 780 to 2526 nm, and the absorption
intervals can be roughly attributed to the first, second, third, or
higher octaves of molecular vibrations of the hydrogen-
containing groups, that is, C−H, N−H, O−H, S−H radicals,
and their combined frequencies.9 Because the macronutrients
and trace elements do not have these vibration modes, they
cannot be detected directly with NIR spectra. However, most
of the nutrient minerals of fruit trees are present in organic
matter and combined with one of the abovementioned
moieties, so quantitative and qualitative analyses of nutrients
can be achieved indirectly by NIR spectroscopy.10 For
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example, Whittier et al.11 used NIR spectroscopy to predict the
foliar nutrient levels of hydroponically grown teak seedlings.
Bedin et al.12 detected C, N, P, and K in poultry litter by NIR
spectroscopy via support vector machine (SVM) and achieved
good results. Jamil Maia et al.13 used NIR spectroscopy to
predict potentially toxic elements in soil and sediments from a
semiarid and coastal humid tropical transitional river basin
through the random forest (RF), and satisfactory results were
obtained. Huang et al.14 conducted nondestructive detection of
pork with NIR by Adaptive Boosting (AdaBoost) and obtained
ideal results. However, the generalization of the identify model
of NIR spectra has inferior performance by machine learning
(ML) approaches that have failing implementation on the
target dataset because of varied feature spaces and distribu-
tions.
It is desired to develop a robust transfer method to reduce

the model uncertainty and make the model more generalizable.
In recent years, some advanced ML methods, for example,
deep learning, have been quickly developed. Sathyavani et al.15

used a variant of convolutional neural networks (denseNet-
BC) to identify nutrient deficiencies in rice crops. However, a
better trained deep model requires a large sample size and high
computational cost, which makes dealing with complex
problems in real scenarios difficult. With deep learning, the
transfer learning method learns the knowledge in the target
domain using the knowledge in the source domain to solve the
learning problem when the target domain only has few samples
that cannot be accurately classified.16 In general, if one neural
network can extract features in a specific dataset, transfer
learning can strengthen its generalization to similar tasks
without requiring too much data in the other datasets. In
recent years, many researchers have studied transfer learn-
ing.17,18 Wan et al.18 developed a new transfer learning method
by coupling transfer component analysis with support vector
regression (TCA-SVR) to transfer LNC (leaf nitrogen
concentration) assessment models across different plant
species. Guerrero et al.17 used image recognition of banana
leaves using convolutional neural networks trained by transfer
learning and fine-tuning to determine the absence of nutrients
in banana leaves. The cost of obtaining a large number of
different pear leaf deficiency samples is too high, so transfer
learning is very important for modeling of pear leaf deficiency
by NIR spectroscopy. Feature transfer learning is the major

researched part of transfer learning and can be further classified
into symmetrical feature transfer learning and asymmetrical
feature transfer learning.19

The symmetric feature-based transfer learning approach
discovers potentially meaningful structures between domains
to find a common latent feature space that has predictive
qualities while reducing the marginal distribution between the
domains.20 Zhang et al. proposed a method to diagnose
susceptibility to alcoholism by extracting features using deep
learning algorithms combined with transfer learning.21 Despite
it being a popular topic, to the best of the authors’ knowledge,
there is no research on applying transfer learning to NIR based
on nutrient-deficient pear leaf samples. The application of
symmetric homogeneous feature-based transfer learning of the
nutrient-deficient pear leaf domain is novel.
In this manuscript, the cost is reduced because of the

development of a novel transfer learning Tran_NAS method in
which the neural architecture search (NAS) model of
macroelement-deficient identification is transferred to trace
element-deficient pear leaves. The current manuscript aims to
(1) establish a determination model using spectral data; (2)
propose the Tran_NAS method to explore the feasibility of
trace element transfer; and (3) explore the NAS model with
datasets of different proportions and neural architectures. This
manuscript proposes a method to identify the deficient
elements in pear leaves based on NIR spectroscopy; the
method will enable pear growers to quickly determine the
physiological condition of pear leaves, and when a problem
occurs, they can respond to it accordingly.

2. MATERIALS AND METHODS
2.1. Materials and Experiments. 2.1.1. Pear Leaf

Deficiency Samples. In this manuscript, an experiment on
elemental deficiency stress of pear trees was conducted in the
Dayangdian experimental field of Anhui Agricultural Univer-
sity, Hefei, Anhui Province, China (31°55′59.3″N,
117°11′52.7″E). Nitrogen-deficient, phosphorus-deficient,
iron-deficient, and magnesium-deficient pear trees were
cultivated separately, and healthy pear trees were set as the
control group. Pear leaf samples were collected on April 13,
April 23, and May 10, 2021. It was the growing season of the
pear trees, and they had luxuriant foliage. Under the guidance
of garden experts, a total of 1078 pear leaf samples were

Figure 1. Representative samples of pear leaves.
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collected, including 223 healthy samples, 268 N-deficient
samples, 325 P-deficient samples, 178 Fe-deficient samples,
and 84 Mg-deficient samples. On the same day, the spectral
reflectance of the pear leaf samples was collected and then sent
to professional institutions for the determination of nutrient
elements. Figure 1 shows representative samples of different
types of pear leaves. Nitrogen-deficient leaves had a yellowish-
green color, phosphorus-deficient leaves had a purplish-red
color, iron-deficient leaves had a yellowish color in the vein
part, and magnesium-deficient leaves had a yellowish color in
the flesh part.

2.1.2. Micro-NIR Experiment. In this manuscript, the NIR
reflectance data were collected using a handheld miniature
NIR spectrometer (product model: NIR-S-G1, created by
Shenzhen Puyan Internet Technology Co., LTD) with a
spectral range of 900−1700 nm, a spectral resolution of 3.89
nm, and a signal-to-noise ratio (SNR) of 5000:1, as shown in
Figure 2a. The instrument was closely fitted with the leaf
sample, as shown in Figure 2b. The light source emitted by the
instrument is reflected into the spectrometer through the leaf
surface, and the reflected light from the leaf surface is
converted into brightness values (BV) inside the spectrometer.
The NIR spectrometer was calibrated with a polytetrafluoro-
ethylene (PTFE) compound, which gives the highest
reflectance and lowest absorbance so that the device can
provide the best result with the smallest calibration error.

Before the measurement of each leaf sample, the spectrometer
was first corrected by standard white reference and dark
reference, and the BV of the white reference and dark reference
were saved. The reflection data of the pear leaf spectrum can
be obtained by calculating eq 1. I represents the BV of the
sample, B represents the BV of the dark reference, and W
represents the BV of the white reference. Then, we selected
five points on each leaf, that is, one central point and four
random points, for measurement. Each point was measured
three times, and the average spectrum was taken as the sample
spectrum for modeling. The results are shown in Figure 2b.

= ×I B
W B

Reflectance 100%
(1)

2.1.3. Chemical Diagnosis of Pear Leaf Deficiency. The
deficient leaves and normal leaves of the pear trees were
collected, and the petioles were removed for professional
treatment. After the treatment, a quantitative sample was taken
and processed in an infrared digestion oven using the H2SO4−
H2O2 decoration method. Nitrogen exists in the form of
inorganic ammonium salts, phosphorus in the form of
inorganic phosphate, and potassium in the form of ions.
Nitrogen (N) was measured using the Kjeldahl method,22

phosphorus (P) using the molybdenum−antimony anticolori-
metric method, and magnesium (Mg) and iron (Fe) using the
atomic absorption method.23 The normal range of nutrients in

Figure 2. Instruments and experimental method: (a) Handheld miniature NIR spectrometer (NIR-S-G1). (b) Experimental method. (c) Operation
interface.
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pear leaves24 is shown (Table 1). An N value that is between
2.5 and 2.7 is considered normal, and a value that is less than
2.5 is judged as deficient.

2.2. Preprocessing Methods. To improve the spectral
characteristics, correct baseline drift and spectral scattering,
and eliminate random noise to improve the SNR, Savitzky−
Golay (SG) smoothing,25 multiple scattering correction
(MSC),26 standard normal variate (SNV), first derivative
(FD), second derivative (SD), LG transform (LG: log(1/
Reflectance)), and two hybrid SG smoothing with multiple
scattering correction (SG + MSC), SG smoothing with
standard normal variate (SG + SNV) models were used to
preprocess the pear leaf spectral data. The derivatives (FD and
SD) can eliminate spectral shifts as well as baseline effects.26

SNV and MSC can reduce the scattering error caused by the
tightness of the object surface. SG can effectively eliminate
high-frequency random noise. To improve the robustness of
the model, the best preprocessing method is selected by
comprehensively evaluating the performance of each model
with different evaluation indexes.
2.3. Modeling Methods. In this manuscript, the random

forest (RF), extreme gradient boosting (XGBoost), adaptive
boosting (AdaBoost), support vector machine (SVM), multi-
layer perceptron (MLP), and neural network architecture
search (NAS) methods were used to develop models. RF is an
algorithm that combines Breiman’s idea of bagging27 and Ho’s
random subspace method.28 AdaBoost and XGBoost are two
boosting algorithms.29 SVM is a widely used supervised
classification learning algorithm30 and predictively classifies
data by finding the maximum boundary in the feature space.
SVM is based on empirical risk minimization for the prediction
of nonlinear data,31 and overfitting is prevented by setting the
penalty parameter C as well as the kernel function parameter
gamma. The MLP model32 is a neural network classifier that
maps input datasets to output datasets using a feedforward
neural network. It is designed to learn the feature space of

nonlinear spectra without considering their statistical proper-
ties.33 Because the MLP model requires the manual setting of
the hyperparameters, number of layers, and network structure,
it takes a large amount of time to reset a network in case of
failure.
NAS is an algorithm for searching the best neural

architecture. In recent years, many studies have been
conducted on this topic. Among them, Weng et al.34 used
NAS for medical image segmentation and achieved good
results, and Koh et al.35 investigated the application of NAS in
image-based plant phenotype analysis by using a drone to
photograph wheat collapse. NAS mainly includes a search
strategy and a performance evaluation strategy.36 The search
space lists all available network architectures, and the search
strategy describes how to explore the search space. The final
evaluation strategy identifies those network structures that will
produce the best results with the new data. In this manuscript,
a novel framework using Bayesian optimization guides network
morphism for efficient neural architecture search.37 NAS
automatically sets up the network architecture and its
hyperparameters, while the newly generated subnetworks can
have the advantages and weights of the previous network for
relevant training, making the whole process more efficient.
Then, NAS designs an editable neural network kernel to solve
the problem that the NAS space is not Euclidean space, and
the specific kernel function formula is shown in eq 2:

=k f f e( ) p d f f
a b

( ( ))2
a b (2)

where the function ( fa − f b) represents the editable distance
between the two neural networks and p is a mapping function
that maps the distance in the original metric space to the
corresponding distance in the new space.
The workflow of NAS is shown in the following diagram.

NAS is based on an initial network, and the search space is
constructed using subnetworks, which can be obtained by
shrinking the layers of the initial network. NAS is learned by
training a super network to jointly train all the subnetworks
with shared weights. The super network has the same
architecture as the original architecture and contains these
shared weights. The super network contains different layer
widths and blocks. An optimizer is used to find the best
performing dense architecture after training the super network.
The optimizer interactively samples the search space, generates
a set of samples, and determines the next set of samples based
on the current sample performance. This process continues

Table 1. Reference Values of the Adequate Nutrient Status
of Pear Leaves

nutrient adequate values deficiency condition

N 2.5−2.7% <2.5
P 0.14−0.20% <0.14
Mg 0.25−0.80% <0.25
Fe 100 mg/kg 21∼30

Figure 3. NAS algorithm process.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c03596
ACS Omega 2022, 7, 39727−39741

39730

https://pubs.acs.org/doi/10.1021/acsomega.2c03596?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03596?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03596?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03596?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c03596?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


until a given stopping criterion is satisfied, and then, the
discovered dense architecture is trained until it converges. As a
result of the trained super network, the accuracy of the samples
can be evaluated directly using the shared weights without
further training (Figure 3). A simulated annealing algorithm is
used to extract the optimal architecture from the trained
network state projections. The simulated annealing equation is
shown in eq 3:

=f x
f x f x

t
( ) exp

( ) ( )
fit

obj
best

obj
i

k

jjjjjjjj
y

{

zzzzzzzz (3)

where fobj(x) is the value of the objective function for each
chromosome, fobjbest is the best value of the objective function,
and t is the annealing temperature.
2.4. Transfer Learning Methods. In this manuscript, a

novel Tran_NAS method based on the NAS algorithm is used
for transfer learning from source domain datasets to target
domain datasets. Transfer learning is an important research
problem in ML and is the adaptation of prior learning
experiences to new learning to improve the learning efficiency
of new data.38 The workflow of this Tran_NAS method is
shown in the following:
First, using source domain data to develop a model, different

blocks (preprocessing, dropout, softmax, etc.) are selected
from the network state projections to form a network that has
the best performance evaluation, and processing is repeated
with a prespecified number of iterations. The final selected
neural network structure is used as the transfer model. Second,
the feature layer of the NAS model is frozen and transferred.
Third, the last set of fully connected layers of the model is cut
off and replaced with a new set of fully connected layers with
random initialization. The weights of the frozen layer are not
updated.
Next, we train the neural network in the target domain with

a very small learning rate. Then, the rest of the network is
thawed sequentially, and the optimal results are saved. Finally,
the optimal classification results are obtained by comparison.
The process is shown in Figure 4.
2.5. Transfer Experiments with Nutrient-Deficient

Pear Leaves. To prove the feasibility of transfer learning,
four experiments were designed, in which the data of healthy,
N-deficient, and P-deficient pear leaves were set as the source

domain, and the data of healthy, Fe-deficient, and Mg-deficient
pear leaves were set as the target domain. The source domain
datasets are used to train the transferable model, and the target
domain datasets are used to evaluate the model performance.
SNV was selected for preprocessing, and NAS was selected as
the modeling method. Experiments (1)−(4) were designed
based on this, and the four experiments are as follows:
(1) The NAS model was trained on the target domain

datasets and was tested on the target domain datasets. It
was used to determine whether a good prediction model
can be built under the condition of a small sample size.

(2) The NAS model was trained on the source domain
datasets and was tested on the target domain datasets. It
was used to investigate whether the model can be used
directly in the target domain.

(3) The NAS model was trained on mixed data from the
target domain and source domain datasets and was
tested on the target domain datasets. It was used to
determine whether the prediction accuracy of the model
can be improved.

(4) The NAS model was trained on the source domain
datasets and was transferred by Tran_NAS to fine-tune
part of the target domain data, and the model was tested
on the target domain datasets. It was used to determine
whether the transfer learning model can significantly
improve the prediction accuracy.

The accuracy of the transfer model is affected by many
factors; therefore, this manuscript discusses it from the
following two directions. First, the size of a sample from the
mixed source and target domain dataset was investigated.
Second, the structural difference was investigated. Different
neural network architectures are obtained, and then, the
transfer effects of different network structures are studied.
For an analysis of the performance of different models,

evaluation metrics, including accuracy, confidence, precision
(P) (eq 4), recall (R) (eq 5), and F1 value (F1) (eq 6), it is
assumed that the sample has N labels, where xi, j(i, j = 1,2, ...,
N) indicates the number of samples, in which label is i and the
prediction is j. For neural networks, a reliable and practical
measure to predict the confidence lever is essential. The most
commonly used evaluation metric in classification modeling is
accuracy, but for models with uneven data distributions, the F1
value is better than accuracy for evaluating the goodness of fit

Figure 4. Tran_NAS algorithm process.
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of the model. However, in general, when evaluating good and
bad models, both accuracy and the F1 values are considered to
ensure accuracy.
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In this chapter, a brief description of the methods used is
provided. In Section 3, the results and discussion of
preprocessing, modeling, and transferring are mainly described.

3. RESULTS AND DISCUSSION
3.1. Analysis of Pear Leaf Samples. A total of 1078 fresh

leaf samples were collected in this experiment; 223 samples
were healthy, 268 samples were mainly N-deficient, 325
samples were mainly P-deficient, 178 samples were mainly Fe-
deficient, and 84 samples were mainly Mg-deficient, and they
accounted for 20, 24, 30, 17, and 9% of the total number of
samples, respectively. For researching the transfer learning
experiment, the training set and test set are set to 3:7 and
shown below (Figure 5).

Then, the spectral data were preprocessed by the first-order
derivatives (FD), second-order derivatives (SD), Savitzky−
Golay (SG) smoothing, multiple scattering correction (MSC),
standard normal variate (SNV), LG transform (LG), SG
smoothing with multiple scattering correction (SG + MSC),
and SG smoothing with standard normal variate (SG + SNV)
because they are susceptible to interference from background,
noise, and external environmental factors during measurement.
To prevent visualizing the differences in the sample data after
correction using different preprocessing methods, the trans-
formed spectra were compared, and the results are shown in
the following figures.
The spectral range of the leaves measured in this manuscript

was 900−1700 nm (228 bands in total), where the average
spectral reflectance of the samples in different categories is
represented in Figure 6a, and its overall trend showed a
consistent state. Figure 6b shows the raw spectra of 1078

samples, and the appearance of absorption bands in the NIR
spectra is related to functional groups associated with water,
proteins, and carbohydrates. There are four distinct peaks and
valleys in the original spectrum, and the absorption at these
wavelengths corresponds to O−H, C−H, N−H stretch first
and second overtones, and combination bands that could be
attributed to water absorption and protein changes.39 N, P, and
K are important components of organic and inorganic matter
in plants. They are important element in the synthesis of
proteins, amino acids, and carbohydrates. N and P are both
components of organic matter and are important components
of chlorophyll and protein, which can be detected by NIR due
to the C−H bond in chlorophyll and the C−H and N−H
bonds in proteins. The NIR regions had considerable influence
on the spectra due to the strong relationship between trace
minerals and other constituents, mainly with O−H tones
(water) and with C−H combination tones (organic functional
groups).40Figure 6c shows the log-transformed spectrum,
which shows an opposite trend to the original spectrum due
to the conversion of the reflectance to the absorbance. Figure
6d,e shows the spectra after FD and SD transformations,
respectively, compared with the original spectra, and the
difference in the spectra after the derivative transformations is
more obvious. The reason is that derivatives can effectively
eliminate baseline drift. Figure 6f shows that the spectra
processed by SG are smoother than the original spectrum
because SG effectively reduces the noise in the spectrum.
Figure 6g,h shows that the spectra processed by multiple
scattering correction (MSC) and standard normal variate
(SNV) are more compact compared with the original
spectrum. The effect of the two pretreatment methods on
eliminating the uneven particle distribution is caused by the
rough surface of pear leaves. The data after the hybrid SG
smoothing with multiple scattering correction (SG + MSC),
and SG smoothing with standard normal variate (SG + SNV)
processing methods are shown in Figure 6i,j. Both figures
contain the preprocessing results of SG, which are compared to
the original spectrum; SG removes part of the noise and makes
the results more compact as a whole.
Prior to modeling, the dataset was divided into a training set

and a test set according to the Kennard−Stone algorithm41 to
show the classification ability of the model. To assess the
relative robustness of the various preprocessing methods,
modeling is performed next, and the modeling results are
presented and analyzed in Section 3.2.
3.2. Evaluating Nutrient-Deficient Pear Leaves with

Different Models. To further analyze the type of pear leaf
deficiency, six modeling methods�the RF, XGBoost,
AdaBoost, SVM, MLP, and NAS�were selected to build 54
prediction models with five-fold cross-validation training and
different preprocessing methods. The evaluation analysis of
each model is shown in Figure 7.
From the above figures, each model has poor classification

ability on the data after the spectra were processed by SD,
while other preprocessing methods improved the accuracy on
the original data. This indicates that the spectra processed by
SD still contain noise. The optimal preprocessing method is
SNV, and the optimal value is 0.74 in the NAS model. The
classification accuracy of SNV-processed spectral data with the
RF, XGBoost, SVM, MLP, and NAS is better than the accuracy
with other preprocessing methods (Table 2). The accuracy of
most of the data processed using other preprocessing methods
after AdaBoost modeling was less than 50%, but the

Figure 5. Sample statistics.
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classification accuracy of the data modeled after SNV
processing reached 50%. This shows that preprocessing
removes the main noise and background interference and
improves the prediction precision and stability of the model. In
summary, SNV was determined to be the best preprocessing
method for this experiment. The classification effects of
different modeling methods are shown in the following table.

The original data set was divided into the training set and
the test set in a ratio of 3:7. The training set was then trained
in a cross-validation under each model, and the test set was
predicted. In order to ensure the stability of the model, this
experiment chose the method of 5-fold cross-validation. In 5-
fold cross-validation, the training set was divided into five
subsets of equal size. Sequentially, one subset was tested using

Figure 6. Preprocessed spectral curves. (a) average spectral reflectance; (b) raw spectrum; (c) spectrum with the LG; (d) spectrum with the FD
method; (e) spectrum with the SD method; (f) spectrum with the SG method; (g) spectrum with the MSC method; (h) spectrum with the SNV
method; (i) spectrum with the SGM + MSC method; (j) spectrum with the SG + SNV method.
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the classifier trained on the remaining four subsets. This
process was repeated for each one of the subsets. Then, the
average of the five cross-validation results is taken as the final
result. After cross-validation, SNV combined with NAS
modeling achieves the best result of 74.34%. Therefore, the
modeling is all processed using cross-validation. The following
analysis is specific to each model.
The kernel of SVM modeling is polynomial(poly), and C

and gamma are hyperparameters. The C parameter adds a

penalty for each error, gamma affects the kernel function, and
this manuscript uses a grid search to optimize the hyper-
parameters. The best classification accuracy of SVM is 74.34%.
RF is based on a decision tree-based learner with the addition
of random attribute selection. The depth (d) and the number
of decision trees (ndt) are hyperparameters. The larger d is, the
better the fit. The greater ndt is, the lower the generalization
error. The best classification accuracy of RF is 65.21%, and the
prediction is relatively good. The results show that the

Figure 7. Performance of different models with different preprocessing methods.

Table 2. SVM, RF, MLP, XGBoost, AdaBoost, and NAS Classification Performance of the Training Set and Test Set in the
Full-Band NIR Spectruma

modeling method parameter

training set test set

Pb (%) Rb (%) F1b (%) accuracyb (%) P (%) R (%) F1 (%) accuracyb (%)

SNV-NAS mls = 50, epochs = 300 96.94 95.72 96.27 96.59 73.01 72.11 72.49 74.34
SG + SNV-SVM C = 610, gamma = 0.1 86.23 85.33 85.38 84.52 73.19 72.41 72.68 73.15
SNV-MLP hidden_layer_sizes = [50,50] 76.44 77.23 76.48 76.47 70.86 69.93 70.13 70.50
SNV-RF ndt = 390, d = 15 86.00 83.13 84.29 85.14 64.84 64.59 64.46 65.21
SNV-XGBoost nwl = 220, learning rate = 0.03 98.69 97.41 98.00 98.14 61.50 60.96 61.06 61.77
SG + MSC-AdaBoost nwl = 290, learning rate = 0.5 71.54 69.78 70.31 70.28 57.84 52.57 54.44 54.37

aSNV−NAS: The data are preprocessed by SNV and then modeled by NAS. All the methods in the above table include the modeling method on
the left and the preprocessing method on the right. bThe results of the five-fold cross validation.
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precision, recall, accuracy and F1 scores of RF are all smaller
than those of SVM. In addition, the modeling accuracy of SVM
is close to the prediction accuracy, indicating that the SVM
model has strong generalization ability and stability.
XGBoost and AdaBoost are two kinds of integrated

algorithms; the learning rate and the number of weak learners
(nwl) are hyperparameters, and the learning rate and nwl
determine the fit of the algorithm at the same time. The
integrated algorithm performed poorly because of the
unbalanced distribution of the pear leaf deficiency datasets.
Among them, the classification effect of AdaBoost is 54.37%,
and the classification accuracy of XGBoost is 61.77%. The
classification effect of XGBoost is relatively better compared
with that of AdaBoost because XGBoost adds regularization on
top of it to improve the generalization ability of the model, and
finally, its results are relatively better.
MLP and NAS are both neural network algorithms. MLP

needs to set the number of neurons in the hidden layer and the
number of layers (hidden_layer_sizes), both of which affect
the complexity of the model and are crucial to the neural
network. The MLP effect is better, and the accuracy can reach
up to 70.50%. NAS is an automatic search, and the initial
number of models (mls) and the number of iterations
(epochs) are set in this experiment. The classification accuracy
of NAS reaches 74.34%. Because MLP is a traditional neural
network, it requires the manual setting of parameters, such as
the number of layers and number of neurons, which requires
much empirical knowledge, while NAS uses automatic
exploration to find optimal parameters, which can eventually
lead to better classification results.
The above figure also shows that the best modeling method

is NAS, and the highest classification accuracy is achieved by
using SNV preprocessed data to classify the samples obtained
after NAS modeling. The NAS architectures employed are very
suited for modeling NIR spectra. The current structure of the
NAS architecture fosters the modeling of the spectra as
continuous data series. These models are particularly suitable
for NIR spectra, which are typically smooth functions with
broad features. NAS selects the parameters by itself and
remembers the advantages of the trained model during
modeling, so it can inherit these advantages in the next
training phase, and the final classification results obtained by
NAS are the best (Figure 8).
However, its accuracy only reached 74.34%. To explore the

reason, the classification results of various categories in NAS
and the results are shown in Table 3. The confidence level of
identifying healthy individuals in the best model is 0.15, the
confidence level of identifying an N deficiency is 0.15, the
confidence level of identifying a P deficiency is 0.28, the
confidence level of identifying Fe deficiency is 0.10, and the
confidence level of identifying an Mg deficiency is 0.05.
The confidence levels for the Fe deficiency and Mg

deficiency were the lowest. It is possible that the number of
samples is too low, resulting in a lower identification accuracy
for both. The model developed by NAS predicts the NIR
spectra, which is feasible for improving the accuracy of Fe- and
Mg-deficient identification single classes and building a model
with trace element data.
3.3. Transfer Experiment from N- and P- to Fe- and

Mg-Deficient Pear Leaves. In the previous subsection, it
was found that the confidence levels of Fe and Mg were low in
the model trained on the five types of data. Then, it is
significant for exploring to improve the confidence of Fe and

Mg deficiency by building model with trace element deficiency.
Therefore, the trace element data were processed by SNV, and
the model was built by NAS. This experiment analysis sets the
trace element training set and the test set ratio to 3:7. The
detailed results are shown in the following table (Table 4);
hopefully, the single class confidence level will improve with a
small amount of data.

From the above table, the confidence level of Fe and Mg
deficiencies improved by using the NAS method. However, the
overall accuracy only reached 78.53%. Overall, F1 only reached
77.57%. To improve the accuracy and confidence of trace
elements, transfer learning training is carried out in this
manuscript.
Although the confidence of a single class was improved after

the modeling of trace elements, the overall classification
accuracy showed a decreasing trend. The data were partitioned
into source domain data (src), which included N deficiency

Figure 8. SVM, RF, MLP, XGBoost, AdaBoost, and NAS
classification performance.

Table 3. SNV-NAS Classification Performance for Each
Deficiency Type

modeling
method type

test set

P R F1 confidence

SNV-NAS healthy 76.00% 70.81% 73.31% 15.07%
N
deficiency

64.86% 64.17% 64.52% 15.87%

P deficiency 88.70% 95.93% 92.17% 28.04%
Fe
deficiency

58.14% 57.69% 57.92% 9.92%

Mg
deficiency

77.36% 71.93% 74.55% 5.42%

Table 4. Analyzing the Performance of the SNV-NAS Model
on the Target Domain Dataset

modeling
method

deficiency
type

test set

P R F1 confidence

3/10tar →
Direct 7/
10tar SNV-
NAS

healthy 81.08% 77.42% 79.21% 35.29%
Fe
deficiency

78.91% 82.11% 80.48% 29.10%

Mg
deficiency

71.88% 74.19% 73.02% 13.53%
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data, P deficiency data, healthy data, and target domain data
(tar), which included Fe deficiency data, Mg deficiency data,
and healthy data. In the procedure, four experiments are
designed to verify the feasibility of transfer learning. The
following table shows the experimental results of the five
experiments. From Table 6, the accuracy of experiment (1) is
only 78.53%, indicating that the modeling accuracy when there
are few data is worse. The accuracy of experiment (2) is only
60%, indicating that the source domain model cannot be
directly applied to the target domain. The classification result
of experiment (3) is 76.34% and experiment (4) is 63.29%,
while the classification accuracy of experiment (5) is 89.12%,
and it is the best (Table 5).

Experiment (2) shows that model failure will occur.
Although NAS learns the same spectral characteristics, the
model cannot learn the relevant characteristics of trace
elements, resulting in the model being trained with source
domain data that cannot be applied directly to the target
domain. Experiment (3) shows a decreasing trend in accuracy.
This is because the training data that include the source
domain are too large, which leads to model bias and makes the
final classification effect not very good. The accuracy of
experiment (5) is significantly improved compared with those
of the previous experiments. The prediction accuracy of
experiment (1) was also significantly lower than that of
experiment (5). The model developed with macroelements
based on Tran_NAS can be used to predict trace elements.
The spectral bands at 1100−1250 and 1650−1700 nm to
identify the lack of N, P, Fe, and Mg are coincident in NIR
spectroscopy (Figure 6.). Sharing layers with the source task
reduces overfitting and promotes better reuse of features
extracted from the source task. Then, the rest of the full model
is fine-tuned by using the best hyperparameters. Therefore, the
classification performance of experiment (5) was significantly
improved. As a transfer learning algorithm for feature
transformation, TCA was performed on the NIR feature
matrixes of the source domain and target domain. Then, NAS
algorithm was used to construct transfer learning models using
the transformed features of the source domain. The accuracy of
TCA_NAS models was 63.29%, and the results are much
lower than Tran_NAS. The reason is that fine-tuning can
better overcome the variability between different datasets.42 In
summary, the model developed by Tran_NAS is feasible for
pear leaf trace element deficiency. The confidence results for
the single class are shown in Table 6.

In Figure 9, the confidence level of identifying healthy
individuals is 0.42, the confidence level of identifying an Fe

deficiency is 0.32, and the confidence level of identifying an
Mg deficiency is 0.14. The level for Fe improved by 3.25%, the
level for Mg improved by 1.18%, and the overall accuracy
improved by 10.59% compared with those values before the
transfer. The shared features of this section are selected by
NAS to develop the model. Quick learning of relevant features
is performed by transfer learning. The specific trend is shown
in the following chart.
In Figure 9, fully element deficiency experiment stands for

the model developed by NAS with five types of element
deficiencies, trace element deficiency experiment stands for the
model developed by NAS only with trace element deficiencies,
and transfed experiment stands for the model developed by
Tran_NAS with trace element deficiencies.
The results show that the confidence of the model

developed by Tran_NAS with trace element deficiencies is
improved compared with the model developed by NAS with
five types of element deficiencies and trace element
deficiencies. The experiment shows that transfer learning
approaches perform better than ML models for target domain
datasets. Compared with training from scratch, fine-tuning a
pretrained neural network on a target dataset can significantly
improve performance while reducing the target labeled data
requirements.
In this manuscript, the source domain training set and the

test set are divided in a ratio of 3:7, and the initial
hyperparameters (max_trials = 50 and epochs = 500) are
set. The top ten neural network structures in terms of accuracy

Table 5. Comparison of the Performance of Transfer
Learning Models

experiment

number of
samples evaluation indicator

training
set

test
set F1 (%)

accuracy
(%)a

① 3/10tar →direct 7/10tar 146 339 77.57 78.53
② 3/10src →direct 7/10tar 247 339 45.20 60.00
③ 3/10src + 3/10tar →direct 7/
10tar

392 339 71.94 76.34

④ 3/10src + 3/10tar →TCA_NAS
7/10tar

392 339 63.18 63.29

⑤ 3/10src + 3/10tar →Tran_NAS
7/10tar

392 339 87.35 89.12

aThe results of the five-fold cross validation

Table 6. Performance of Trace Element Deficiency Types by
Tran_NAS

modeling
method

deficiency
type

test set

P R F1 confidence

3/10src + 3/
10tar →
Tran_NAS
7/10tar
SNV-NAS

healthy 92.26% 92.26% 92.26% 42.06%
Fe
deficiency

90.16% 89.43% 89.80% 32.35%

Mg
deficiency

79.37% 80.65% 80.00% 14.71%

Figure 9. Confidence levels of trace element deficiency under three
experiments.
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ranking are identified as the subnet architecture. The target
domain is divided into a training set and a test set at a ratio of
3:7. The pretrained model is retrained on the target domain
dataset, and the weight values of the model are updated
according to a new task. A fine-tuning process occurs on the
network using backpropagation with labels. Finally, the
nutrient deficiency type of pear leaves was determined. The
fine-tuning operation is made by removing the last two layers
and replacing them with new layers. These layers are fully
connected softmax layers. The number of outputs of a fully
connected layer should be equal to the number of classes
counts in the training dataset. The softmax layer is the same as
the previous layers. The NAS model with new layers is trained
and updated according to the target domain dataset. The next
layer is unfrozen when the neural network is trained to
convergence until an optimal result is found, as shown in the
figure below.
Figure 10 shows that when the number of iterations reaches

300, the neural network starts to converge. The changes in the
loss values of the training set and test set tend to be consistent,
and the model has relatively better generalization ability. In
this section, the model developed with macroelements based
on Tran_NAS can be used to predict trace element
deficiencies. The architecture of the neural network also
plays a role in the recognition accuracy, which is further
discussed in Section 3.4.
3.4. Further Discussion of the Tran_NAS Method. In

this manuscript, we further discuss the proposed method from
the following two directions. First, the size of the sample,
which is a mixture of the source and target domain datasets, is
discussed. Second, the structural difference is discussed. The
source domain is divided into training and test sets using a
ratio of 3:7, and the target domain was divided into training
and test sets using ratios of 5:5, 4:6, 3:7, 2:8, and 1:9 for the
experimental comparison (Table 7).
The result shows that all accuracy exceeds 70%. The results

are 71.40 and 81.70% when the dataset is divided with 1:9 and
2:8 ratios, respectively. However, the prediction accuracy of
the model developed with the target domain data is 78.53%,
and the accuracy of the model developed with data divided
with 1:9 and 2:8 ratios is not meaningful. The accuracy of the
model developed with data divided with a 3:7 ratio is 89.12%.
The results are 90.72 and 92.59% when the dataset is divided

with 4:6 and 5:5 ratios, respectively. The results show that the
larger the data are, the better the modeling effect. However, it
is very difficult to obtain a large amount of trace element
deficiency samples and its cost is high. Therefore, the accuracy
of the model developed with target domain datasets divided
into a ratio of 3:7 is better. Using a small amount of data to
build the model will result in low costs.
In this manuscript, based on the model developed with the

target domain dataset, which is divided into a 3:7 ratio,
different kinds of neural architectures are explored to find a
more suitable transfer of pear leaf deficiency data.
The structure of the neural network has a few changes every

search iteration, and the purpose of this manuscript is to
explore the model best suited for transfer learning. The
difference in the optimizer, preprocessing, and other modules
in the neural network leads to differences in accuracy. The
following table shows the specific components of the neural
architecture of each model (Table 8):
By comparing the accuracy and F1 values of the above 10

models, the NAS_Model_1 model has good performance with
an accuracy of 89.12% and an F1 value of 87.35%. The network
structure consists of three layers: the first layer is the input
layer, which contains data input and data preprocessing layers;
the second layer is the dense layer, which includes batch
normalization (BN), rule, and dropout layers; and the last layer
is the output layer, which is composed of dense and softmax
layers.
In this manuscript, the modules owned by each of the ten

models in the tree search space are shown (Figure 11).

Figure 10. Plot showing loss in the training and test datasets.

Table 7. Dataset Division and Performance of the Target
Domaina

experiment

sample number
evaluation
indicator

training
set

test
set

proportion
(a:b) F1 (%)

accuracy
(%)

3/10src + a/10tar →
Tran_NAS b/10tar

296 436 1:9 66.69 71.40
344 388 2:8 79.85 81.70
392 339 3:7 87.35 89.12
194 291 4:6 89.40 90.72
242 243 5:5 90.90 92.59

aIn the table, a represents the size of the training set in the target
domain, and b represents the size of the test set in the target domain.
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The result shows that the search space of the tree includes
three-layer, four-layer, and five-layer structures, and most of the
better models use the four-level structure and a few use the
three-level structure. Most NAS methods are based on the a
priori knowledge of human experts.43 Considering the model
of the architecture as a fixed element, the depth and width of
the architecture usually affect the performance of the
architecture. To obtain an architecture with better trans-
mission performance, the size of the architecture is searched by
manipulating the width factor. By comparing the different
preprocessing, optimizer, and number of network layer
options, the result shows which kind of neural network
architecture can obtain the most stable transfer results.
The result shows that the optimal classification model has a

three-layer structure, and the others have four-layer structures
(Figure 12). Although the number of models in the three-layer

category is less, its classification effect on transfer learning is
relatively strong. The four-layer structure contains poorly
performing models. Among them, NAS_Model_1 is the same
as NAS_Model_3 except for the different number of layers,
but the NAS_Model_1 classification results are higher than
those of NAS_Model_3. For neural networks, the bottom layer
of the network learns some general features, the middle and
top layers of the network learn abstract high-level semantic
features, and the transfer ability of features decreases as the
number of layers increases.42 In summary, a three-layer
architecture is the most suitable neural network architecture
for the Tran_NAS method with the spectra dataset of pear
leaves.
The results of the analysis of BN are shown in Figure 13.

The better models of NAS_Model_1 to NAS_Model_6 have
BN, while the models of NAS_Model_7 to NAS_Model_10
with relatively poor prediction results do not have BN. BN
ensures the expressiveness of the input data to some extent,
and BN results in a more stable distribution of the input data at
each layer and has some regularization effect.44 In summary,
batch processing is necessary in neural networks.

Table 8. Performance of Different Neural Network
Architectures

neural networks layer dropout
batch
normalization

evaluation indicators

F1 accuracy

NAS_Model_1
(model 1)

3 1 layer 1 layer 87.35% 89.12%

NAS_Model_2
(model 2)

4 none 2 layers 84.54% 86.47%

NAS_Model_3
(model 3)

4 1 layer 2 layers 85.00% 85.59%

NAS_Model_4
(model 4)

3 none 1 layer 82.54% 85.00%

NAS_Model_5
(model 5)

4 2 layers 2 layers 81.64% 84.41%

NAS_Model_6
(model 6)

5 3 layers 3 layers 80.25% 83.53%

NAS_Model_7
(model 7)

4 1 layer None 81.49% 83.52%

NAS_Model_8
(model 8)

5 4 layers 3 layers 80.15% 82.35%

NAS_Model_9
(model 9)

5 3 layers 2 layers 72.64% 80.58%

NAS_Model_10
(model 10)

4 2 layers none 70.01% 77.65%

Figure 11. Tree search space of the NAS model. Orange graphs 1−5 represent better models and blue graphs 6−10 represent less accurate models.

Figure 12. NAS model performance with different layers.
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Finally, the dropout layers in the neural network are
compared (Figure 14). NAS_Model_2 and NAS_Model_4 do

not have dropout layers; the rest of the models have dropout
layers. The above table shows that NAS_Model_2 and
NAS_Model_4 have relatively good prediction results, which
means that the dropout layer has little effect on the structure.
However, NAS_Model_8 has a dropout layer, and the results
are still poor because too much regularization has a negative
impact on the training dynamics, especially in the early stage.45

In summary, data preprocessing is crucial in neural networks,46

and the correct preprocessing approach usually contributes to
the results.
In summary, this manuscript analyses the number of layers,

normalization approach, and dropout layers. The neural
structure is related to the number of parameters, and the
number of parameters varies with the neurons.47 However, too
many neurons can lead to an overfitting situation; in contrast,
too few neurons can limit the ability of the neural network to
model the mechanism, leading to over generalization.48 Finally,
the most suitable modeling features for transfer learning are
derived by comparison (Figure 15).
From what has been discussed above, the Tran_NAS model

is feasible for identifying pear leaves with Fe and Mg
deficiency. However, using Tran_NAS to identify other trace

element deficiencies requires the following three consider-
ations. First, it can be seen from Table 7 that the sample size is
larger, the transfer effect is better. Therefore, for other trace
elements, such as Cu, Zn, and Mn, at least the same sample
size in this manuscript should be achieved when the
Tran_NAS method is used to fit the normal effect. Second,
in this manuscript, the micro NIR spectrometer is small and
portable, but its resolution is low. The higher content of
nutrient elements in leaves can be better identified. For trace
elements with low content, the spectral recognition effect is
poor, so the transfer effect of NAS will also be reduced.
Higher-resolution spectroscopic instruments can be used when
identifying nutrients at lower levels, and their transfer
identification may be more satisfactory. Finally, the results in
Table 8 show that the depth and width of the architecture
usually affect the performance of the architecture. For the
transfer of other trace elements, the time of model training can
be extended so that NAS can fully search for the most suitable
framework for transfer. This will also help obtain the desired
recognition results. In the future, we will explore further the
transfer of other elements.

4. CONCLUSIONS
This manuscript investigates that diagnosing the N, P, Fe, and
Mg deficiencies of pear tree leaves based on NIR reflectance
spectra is feasible. The relevant results show that the
confidence of trace element deficiencies is relatively poor
because of the lack of samples. In this research, a feature-based
homogenous transfer learning approach named Tran_NAS was
explored for the classification domain to improve the
identification accuracy of trace element deficiencies by the
advantage of NAS and fine-tuning methods. The relevant
results show that the novel learned Tran_NAS model
(89.12%) outperformed the traditional NAS model (78.53%)
by 10.59%. To evaluate the influence of different searching
neural networks, the characteristics of efficient architecture
searches are explored for ten different neural network models.
The results show that a three-layer neural network with a
preprocessing layer, BN layer, and dropout layer is optimal. In
the future, the Tran_NAS method may be used for the fast
transfer of structured data with a small spectral dataset, and it
can effectively improve the classification performance.
However, it is also noted that transfer learning still depends

Figure 13. NAS model performance of the batch normalization layer.

Figure 14. NAS model performance of the dropout layer.

Figure 15. Optimal neural network structure.
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on people’s empirical knowledge, and we leave this research
thread for future work.
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