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The hypothalamic-pituitary-adrenal axis is a complex system of neuroendocrine
pathways and feedback loops that function to maintain physiological homeostasis.
Abnormal development of the hypothalamic-pituitary-adrenal (HPA) axis can further result
in long-term alterations in neuropeptide and neurotransmitter synthesis in the central
nervous system, as well as glucocorticoid hormone synthesis in the periphery. Together,
these changes can potentially lead to a disruption in neuroendocrine, behavioral,
autonomic, and metabolic functions in adulthood. In this review, we will discuss the
regulation of the HPA axis and its development. We will also examine the maternal-fetal
hypothalamic-pituitary-adrenal axis and disruption of the normal fetal environment which
becomes a major risk factor for many neurodevelopmental pathologies in adulthood,
such as major depressive disorder, anxiety, schizophrenia, and others.
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Abbreviations: 11β-HSD2, 11-β hydroxysteroid dehydrogenase type 2; 5-HT, Serotonin; ACTH, Adrenocorticotropic
hormone; AMY, Amygdala; ANS, Autonomic nervous system; AR, Androgen receptor; ARC, Arcuate n.; ARNT2, Aryl
hydrocarbon receptor nuclear translocator 2; AVP, Arginine Vasopressin; BNST, Bed n. of the stria terminalis; CAH,
Congenital Adrenal Hyperplasia; cAMP, cyclic adenosine monophosphate; CBG, Corticosteroid-binding globulin; CeA,
Central n. of the amygdala; CNS, Central nervous system; CRH, Corticotropin releasing hormone; CRH-BP, Corticotropin
releasing hormone binding protein; DEX, Dexamethasone; DHEA, Dehydroepiandrosterone; DOHaD, Developmental
Origins of Health and Disease; ER, Estrogen Receptor; ERE, Estrogen response element; ERα, Estrogen receptor alpha; ERβ,
Estrogen receptor beta; FSH, Follicle stimulating hormone; GC, Glucocorticoid; GH, Growth hormone; GR, Glucocorticoid
receptor; GnRH, Gonadotropin-Releasing Hormone; HC, Hippocampus; HPA, Hypothalamic-pituitary-adrenal; HPG,
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nucleus; TRH, Thyrotropin releasing hormone; TSH, Thyroid stimulating hormone; VMN, Ventromedial n.
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INTRODUCTION

Humans and animals respond to environmental perturbations
with a stress response that allows physiological adaptation to
the stressor to maintain homeostasis. A major component of
the homeostatic response is the hypothalamic-pituitary-adrenal
(HPA) axis, an intricate, yet robust, neuroendocrine mechanism
that mediates the effects of stressors by regulating numerous
physiological processes, such as metabolism, immune responses,
and the autonomic nervous system (ANS). TheHPA axis consists
of a cascade of endocrine pathways that respond to specific
negative feedback loops involving the hypothalamus, anterior
pituitary gland, and adrenal gland.

There are several critical developmental stages must be
attained to ensure proper functionality of the HPA axis and
appropriate behavioral and physiological stress-responses in
adulthood. The HPA axis begins to develop as early as fetal
life and becomes sexually dimorphic during puberty due to
differing levels of gonadal hormones. Early life exposure of
the offspring to excess fetal glucocorticoid (GC) hormones or
environmental perturbations, such as maternal stressors, can
alter normal neuropeptide synthesis and lead to a disruption
in the development of the HPA axis. This may become
detrimental to the fetus later in life as it leads to abnormal
physiological function in adulthood, thereby increasing the risk
for adult disease.

In this review, we discuss the HPA axis as the central
regulator of various physiological responses to stressors. We
also examine the activational and organizational effects of
hormones during critical periods of development that result in
the sexually dimorphic responses of the HPA axis in adults. The
effect of environmental perturbations, such as prenatal stress or
prenatal exposure to synthetic GC hormones, and the associated
susceptibility to stress-related neuropathologies in adulthood are
also addressed.

COMPONENTS OF THE HPA AXIS

Morphology and Development of the
Paraventricular Nucleus (PVN)
The paraventricular nucleus (PVN) houses three functional
neuronal types that act as central regulators of the stress
response: parvocellular, neurosecretory magnocellular, and
long-projecting neurons. These neurons are characterized
by their unique electrophysiological properties (Tasker and
Dudek, 1991). Parvocellular neurons display small low threshold
depolarizations, while long-projecting neurons generate large
low-threshold depolarizations. In contrast, magnocellular
neurons do not display low-threshold potentials but are
characterized by a distinct return to baseline after depolarizing
stimuli (Hernandez et al., 2015; Israel et al., 2016). Further
investigation is necessary to identify specific mechanisms that
lead to these unique properties.

Neurosecretory parvocellular neurons send their axons to
the external zone of the median eminence to regulate the
secretion of releasing factors [e.g., corticotropin-releasing

hormone (CRH), thyrotropin-releasing hormone (TRH)] into
the hypothalamohypophyseal portal vasculature to control the
secretion of corresponding anterior pituitary hormones. An
anterior parvocellular division extends from the rostral boundary
of the PVN to the rostral boundary of the medial magnocellular
division, just lateral to the periventricular area. The medial
parvocellular division lies lateral to the periventricular area and
medial to the medial magnocellular division. Neurons in the
anterior and medial parvocellular groups project to the median
eminence or other hypothalamic and extrahypothalamic regions.

Neurosecretory magnocellular neurons project to the
neurohypophysis to regulate the secretion of oxytocin (OT)
and arginine vasopressin (AVP) directly into the general
circulation (Vandesande and Dierickx, 1975; Rhodes et al., 1981;
Swanson and Sawchenko, 1983). The rat is the most studied
species for characterizing PVN morphology and in the rat PVN,
magnocellular neurons distribute into two distinct areas. The
medial magnocellular division lies anteromedially within the
PVN and contains mostly OT expressing neurons. The lateral
magnocellular division is largely comprised of AVP-expressing
neurons that are surrounded by a loop of OT neurons. Long-
projecting neurons send their axons to the brainstem and spinal
cord regions to control autonomic and somatosensory function.

The hypothalamus is derived from the anteroventral
neuroectoderm during early development (Takata et al., 2017).
Mapping of gene expression along the rostral-caudal axis shows
that the early hypothalamic primordium differentiates into the
floor plate, basal plate, and alar plate. The dorsal-most portion
of the alar plate gives rise to the PVN and supraoptic nucleus
(SON) and is identified by the expression of Brn-2, Otp, and
Sim1 genes and the absence of Dlx, Arx, Gad67, Isl1, and Vax1
genes that are found in the subregion immediately below the
PVN (Morales-Delgado et al., 2014).

The transcription factor, Brn-2 (POU-homeodomain protein
BRIN-2), is endogenously expressed in both parvocellular and
magnocellular neurons (He et al., 1989). Brn-2 null mutations
in rodents demonstrate a failure to differentiate between CRH
parvocellular neurons and OT and AVP magnocellular neurons,
suggesting it is necessary for terminal differentiation of these
hypothalamic cells (Schonemann et al., 1995).

The homeobox gene, Otp, transcribes a transcription factor
that helps regulate differentiation and maturation of the
neurosecretory PVN neurons expressing TRH, AVP, and OT.
In mice, the induction of a missense mutation in the Otp gene
causes acute onset obesity and increased anxiety, phenotypes
that have similarly been shown to be modulated by AVP and
OT. Moreover, Otp seems to be necessary for regulating the
transcriptional activity of PVN neurons (Moir et al., 2017).

The Sim1 transcription factor acts as another key regulatory
gene of the PVN, encoding a protein that also regulates AVP,
TRH, and OT expression, as well as CRH and somatostatin
(Michaud et al., 1998). Sim1 knock-out mice show severe
loss of AVP, TRH, CRH, OT, and somatostatin neurons and
rarely survive to adulthood (Michaud, 2001), while heterozygous
mice display early obesity, hyperinsulinemia, hyperphagia, and
hyperleptinemia, phenotypes that are associated with PVN
neurosecretory neurons (Michaud, 2001). The Sim1 protein
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has been shown to dimerize with Aryl hydrocarbon receptor
nuclear translocator 2 (ARNT2), which is thought to differentiate
PVN and SON neurons. Brn2, a downstream target of
the Sim1/ARNT2 dimer, also mediates Sim1 function. Brn2
promotes the expression of AVP, OT, and CRH in the PVN,
and decreased numbers of these cell phenotypes are seen in Brn2
knock-out mice (Schonemann et al., 1995).

Morphology and Development of the
Pituitary Gland
The pituitary gland functions largely in response to releasing
factors from the hypothalamus. The pituitary gland is divided
into two structures: the adenohypophysis (anterior pituitary)
and the neurohypophysis (posterior pituitary; Dorton, 2000).
The adenohypophysis constitutes 80% of the pituitary gland
and houses specialized hormone-producing cells that synthesize
and secrete several hormones, including, but not limited to,
growth hormone (GH), thyroid-stimulating hormone (TSH),
follicle-stimulating hormone (FSH), luteinizing hormone (LH),
prolactin and adrenocorticotropic hormone (ACTH). These
hormones target various types of tissues to mediate several
physiological processes in response to stress (Scanes, 2015).
Annexin-1 (formerly known as lipocortin 1) is another protein
that exists in the anterior pituitary. While it is not directly
involved in the synthesis of hormones discussed above, it is
an important regulator of their secretion through inhibitory
pathways (for a more detailed description of the actions of
annexin-1, see reviews by John et al., 2004; Denef, 2008).

The adenohypophysis can be further divided into the pars
distalis, pars intermedia, and the pars tuberalis. The pars distalis
is composed of chromaffin and chromophobe cells and is
where most hormone synthesis occurs. The pars tuberalis is an
extension of the pars distalis and houses epithelial cells and the
hypophyseal portal vessels that connect the anterior pituitary to
the hypothalamus. The pars intermedia, located between the pars
distalis and neurohypophysis, secretes products produced by the
proopiomelanocortin (POMC) gene, particularly melanocyte-
stimulating hormone (MSH; Ilahi and Ilahi, 2020).

In contrast to the adenohypophysis, the neurohypophysis is
directly connected to the hypothalamus by axonal projections
of magnocellular neurons originating from either the PVN or
SON. The posterior pituitary stores OT and AVP synthesized
by these neurons and secretes them into the general circulation
in response to various hypothalamic releasing factors. OT is
required for lactation, while AVP is involved in the regulation
of osmotic balance (Borrow et al., 2019). Peptide hormones
synthesized in the SON and PVN travel along axons to their
terminals in the posterior pituitary where they are released
into the general circulation in response to signals from their
hypothalamic cell bodies (Ohbuchi et al., 2015).

The development of the pituitary gland is complex, yet unique
because of its dual origin.

In humans, during the fourth week of gestation, cells of
the oral portion of the ectoderm begin to thicken to form the
hypophyseal placode (Ericson et al., 1998). The hypophyseal
placode elongates to form Rathke’s pouch. At 6–8 weeks of
development, the base of Rathke’s pouch is separated from the

oral epithelium. The rapid proliferation of cells of the anterior
wall of the pouch forms the anterior lobe of the pituitary (pars
distalis) and the slower proliferation of cells of the posterior
wall give rise to the intermediate lobe or pars intermedia. By
contrast, a specific portion of the ventral diencephalon located
dorsal to Rathke’s pouch gives rise to the infundibulum from
which posterior pituitary originates (Amar andWeiss, 2003; Zhu
et al., 2007).

The development of the pituitary gland is mediated by
several cellular transcription factors. Sonic hedgehog, expressed
in the oral ectoderm, and bone morphogenic protein 4, and
fibroblast growth factor 8, found in the ventral diencephalon, are
all important signaling genes that initiate cellular proliferation
of pituitary cells. These genes have also been shown to
affect the expression of transcription factors that contribute
to the differentiation of specific pituitary lineages, however
specific mechanisms are not yet known (Ericson et al.,
1998). Furthermore, the transcription factor, Tpit, is critical
for the expression of the POMC gene. POMC is expressed
in corticotrophs, the first pituitary cell type to terminally
differentiate (about gestation day 12.5 in the mouse; Pulichino
et al., 2003). A deficiency of Tpit blocks terminal differentiation,
but not a commitment to the corticotroph lineage (Pulichino
et al., 2003). Somatotrophs, lactotrophs, and thyrotrophs are
differentiated through the influence of transcription factors,
Prop1 and Pit-1 whereas gonadotrophs require GATA-2 and
SF1 signaling molecules for terminal differentiation. Although
these terminal cell lineages are found in the pituitary gland, the
existence of a common ancestral precursor pool is unclear (Zhao
et al., 2001).

Morphology and Development of the
Adrenal Gland
The adrenal gland of adult mammals is surrounded by a
fibrous capsule and is composed of two regions with differing
embryological origins (Bornstein et al., 1991). While the adrenal
medulla, responsible for catecholamine production, derives from
neuroectoderm, the steroid-hormone producing adrenal cortex
has an embryonic origin from the adrenogonadal primordium
(Sun et al., 2018).

The adrenal medulla is composed of chromaffin cells that
secrete epinephrine and norepinephrine following sympathetic
stimulation. They can be considered as a grouping of
modified postganglionic neurons that are directly innervated by
preganglionic neurons from the central nervous system (CNS;
McCorry, 2007). Thus, the adrenal medulla is an important
component of the ANS and responds very rapidly to stressors,
releasing epinephrine and norepinephrine into the bloodstream
to affect heart rate, blood pressure, metabolism, and others
(Vinson et al., 1994). These hormones are classically involved
in the ‘‘fight or flight’’ response. The effects of epinephrine and
norepinephrine on various physiological systems are emphasized
by changes noted in patients with pheochromocytoma, a
catecholamine secreting neuroendocrine tumor of the adrenal
chromaffin cells (Pacak, 2011). Symptoms include sweating,
heart palpitations, markedly elevated blood pressure, nausea,
tremors, and weight loss (Parenti et al., 2012).
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Histologically, the adrenal cortex is composed of three zones.
The outer zona glomerulosa produces aldosterone, which is
involved in water and mineral balance through its actions on
the kidney and colon (Rakova et al., 2017). The intermediate
zona fasciculata is the thickest region of the adrenal cortex
and synthesizes corticosteroids (primarily cortisol in the human,
corticosterone in most rodents) and androgens. Similarly, the
innermost zona reticularis also synthesizes adrenal androgens
(Longcope, 1986). Of note, dehydroepiandrosterone (DHEA)
is the most abundant circulating adrenal androgen in adult
humans, whereas these are very low in adult rats and mice
(Dumontet et al., 2019). Both the zona reticularis and fasciculata
are regulated by ACTH and in the absence of ACTH, these zones
atrophy, whereas following chronic ACTH stimulation, these
zones hypertrophy (Gallo-Payet et al., 2017).

The adrenal cortex is derived from mesoderm and is
dependent upon several transcription factors such as SF-1
(steroidogenic factor-1) and DAX-1 (dosage-sensitive sex reversal-
adrenal hypoplasia). Deletion of either of these genes results in
the absence of adrenocortical development in mice (Hammer
et al., 2005). During human gestation, an inner fetal adrenal
zone makes up the bulk of the adrenal gland, and an adult-like
‘‘definitive’’ zone, a group of small tightly packed cells is also
present (Coulter, 2004). The human fetal adrenal responds to
ACTH, but because of the absence of the 3-hydroxysteroid
dehydrogenase enzyme, the fetal adrenal mainly produces DHEA
and DHEA sulfate (Ishimoto and Jaffe, 2011). These fetal adrenal
steroids serve as precursors of maternal placental estrogens. The
definitive zone is the major producer of fetal cortisol in response
to ACTH stimulation.

By contrast, the developing rodent adrenal is quiescent.
It is questionable whether the rodent adrenal contains a
fetal adrenal zone per se, although some studies indicate a
transient fetal adrenal zone based on the presence of fetal
adrenal enhancer elements (Zubair et al., 2006). While the
adult cortex of rodents increases in size from late gestation
through puberty, the fetal zone cells disappear gradually and
accumulate along the boundary with the adrenal medulla
(Morohashi and Zubair, 2011). However, even after the adult
zones are developed, the adrenal gland of the rodent fetus does
not yet express aldosterone synthase nor does it respond to
stimulation by increasing mineralocorticoid or GC synthesis
(Ehrhart-Bornstein et al., 1998).

THE PHYSIOLOGY OF STRESS AND
CENTRAL REGULATION OF THE HPA AXIS

It is well established that animals and humans respond to
threats to their welfare by activating neurons that control
neuroendocrine and autonomic responses. For the HPA axis,
the endocrine response is characterized by the secretion of
GCs from the adrenal cortex. Circulating GCs act on a
variety of tissues to mobilize energy stores, induce lipolysis
and proteolysis, potentiate vasoconstriction driven by the ANS,
suppress reproduction, and alter stress-related behaviors, to
allow homeostasis (Papadimitriou and Priftis, 2009). Most of the
physiological responses to acute elevations in GCs that occur

following stressors, such as enhanced cognition and metabolism
and inhibition of immune function must be beneficial, as they
permit the ‘‘fight or flight’’ response. By contrast, although some
benefits to chronic stress exist, chronic activation of the HPA axis
has deleterious effects on immune, cardiovascular, metabolic,
and neural functions and may decrease the resilience of neurons
and glia to subsequent insults (McEwen, 1998; Jauregui-Huerta
et al., 2010; Heck et al., 2020), resulting in increased risk for
several diseases (see Figure 1 for summary describing effects of
chronic stress on health conditions). Whether these are direct or
indirect effects of glucocorticoids remains to be determined.

Negative Feedback Circuitry
The HPA axis is governed by a closed-loop GC-dependent
negative feedback system that is essential for the termination of
the stress response. Normal HPA function is highly influenced by
the dose and duration of GC exposure (Abe and Critchlow, 1980;
Sapolsky et al., 2000). For example, adrenalectomy decreases GC
secretion, which increases PVN neuropeptide expression and
secretion in both basal and stress-induced states (Sawchenko,
1987; Imaki et al., 1991). Negative feedback can also act at
the level of the PVN, the anterior pituitary, and indirectly via
brain regions that project to the PVN (Akana et al., 1986;
Sawchenko, 1987; Bradbury et al., 1994). Notably, primary sites
of negative feedback differ between endogenous and synthetic
GC. Endogenous GCs, such as corticosterone, primarily induce
negative feedback at the level of the PVN, while the synthetic GC,
dexamethasone (DEX), functions as a glucocorticoid receptor
(GR) agonist to inhibit GC release at the level of the anterior
pituitary gland (Spiga et al., 2017).

GC-dependent negative feedback has further been shown to
rely on the rhythmic release of GC in diurnal and ultradian
patterns that are fundamental to the termination of the stress
response (Sapolsky et al., 2000; Gjerstad et al., 2018). In all
vertebrates, a peak of circulating corticosterone occurs just
before the onset of daily activity. The diurnal rhythm of HPA
axis activity is driven by the central circadian pacemaker, the
suprachiasmatic nucleus (SCN), which has major inputs to
the PVN to regulate daily rhythms of GC output (Lightman
and Conway-Campbell, 2010). An ultradian variation in GC
secretion is composed of the pulsatile release of corticosterone
and ACTH that occur in response to differential timing of the
stimulus and feedback signals within the HPA axis (Walker
et al., 2012). In contrast to the circadian rhythm, the ultradian
rhythm is not under central regulation of the SCN but is likely
generated by a pituitary-adrenal feed-forward—feedback loop
under constant CRH infusion. Moreover, when high levels of
CRH were infused, the ultradian pattern was disrupted and
corticosterone oscillations were dampened, further suggesting a
dose-dependent effect of CRH on the patterns of GC secretion
(Rankin et al., 2012).

Since circulating GCs can bind to both GR and
mineralocorticoid receptor (MR), both receptors are involved
in the negative feedback regulation of the HPA axis.
MRs have a greater affinity for corticosterone (cortisol in
humans; Reul and de Kloet, 1985) and consequently, they
are predominantly bound during low or basal secretion
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FIGURE 1 | Chronic stress leads to reduced sensitivity of the negative feedback system that governs the hypothalamic-pituitary-adrenal (HPA) axis. The loss of this
negative feedback system is due to an increased level of circulating glucocorticoids (GCs). HPA axis dysregulation results in downstream physiological
consequences, increasing risk for immune system dysfunction, mood disorders, metabolic disease, and cardiovascular disease.

of corticosteroid (Reul and de Kloet, 1985). Adrenalectomy
increases basal CRH and ACTH levels, suggesting that a decrease
in circulating corticosterone removes the negative feedback
signal (Dallman et al., 1985, 1987; Rabadan-Diehl et al., 1997)
whereas corticosterone replacement at doses that bind MR
selectively, returns ACTH levels to baseline (Bradbury et al.,
1994). Moreover, the hippocampus (HC), a primary site for
HPA regulation during basal states, expresses MR at high
levels. MR antagonists administered directly to the rat HC
elevate basal ACTH and corticosterone levels like those seen
after adrenalectomy (Van Haarst et al., 1997). Studies using
transgenic mice that overexpress forebrain MR show reductions
in the corticosterone response to restraint and decreases in
anxiety-like behaviors (Rozeboom et al., 2007). Together, such
data suggest that the ratio of MR:GR are as influential as absolute
levels for regulating stress-induced HPA axis activity and
stress-related behaviors.

In contrast to MR, GR has a lesser affinity for corticosterone
and is thought to be the primary target for negative feedback
when GC levels are elevated (Ruel and de Kloet, 1985). GRs
remain mostly unoccupied during the basal state but are
quickly occupied after a stress-induced increase in circulating
GCs (Reul and de Kloet, 1985). This supports the hypothesis
that GR activation the return of HPA activity to baseline
following high amplitude secretion of corticosteroids after an
acute stressor. Like MR, GR is highly expressed in the HC,
as well as in the PVN and adenohypophysis (Ahima and
Harlan, 1990; Morimoto et al., 1996). Initiation of HPA axis
negative feedback occurs via GR expressing neurons in the HC
(Sapolsky et al., 1984) and the hypothalamus (Weidenfeld et al.,
2002), following stress-induced elevations in corticosterone. At

the PVN, this first acts upon AVP neurons (Kovács et al.,
2000). The importance of GR in negative feedback regulation is
further demonstrated using a transgenic mouse model. Selective
knockout of forebrain GR causes an increase in basal and stress-
induced corticosterone levels (Kolber and Muglia, 2009), further
implicating GC binding sites in the forebrain. In comparison,
Wei et al. (2004) showed that the overexpression of forebrain GR
does not alter basal ACTH or corticosterone levels, indicating
that the forebrain GR is not the only player in regulating the
baseline activity of the HPA axis. Selective disruption of GR
in the PVN increased CRH immunoreactivity in the PVN,
with corresponding increases in levels of plasma ACTH and
corticosterone, supporting the hypothesis that GR is involved in
negative feedback (Solomon et al., 2015). Furthermore, GR has
been reported to be absent in the SCN, suggesting an alternate
circadian-like feedback mechanism where GC influences HPA
axis activity as discussed previously.

Regulation of CRH in the Brain and
Pituitary
CRH is abundantly produced in neurons of the PVN as well
as other brain areas and is highly conserved between humans,
rats, and mice (Wamsteeker-Cusulin et al., 2013). While the
predominant site of CRH expression is the PVN, CRH is
expressed in other brain areas including the central n. of the
amygdala (AMY; CeA), the bed n. of the stria terminalis (BNST),
and the cortex and HC. It is well-known that stressors can
similarly increase crh expression in the PVN and CeA (Herman
and Tasker, 2016) with increases in the primary transcript
(heterologous nuclear RNA) for crh, rising within minutes
following the application of a stressor (Evans et al., 2013). This
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is followed by subtler increases in crh mRNA (Vazquez et al.,
2006). Following enhanced cellular activity such as following a
kainic acid-induced seizure, crh expression also increases and
numerous CRH-ir neurons can be visualized in brain areas that
normally express modest levels of CRH, including the HC, BNST,
and globus pallidus (Foradori et al., 2007).Within the PVN, CRH
is expressed by both pre-autonomic neurons that project to the
brainstem and spinal cord (Swanson and Kuypers, 1980), as well
as neuroendocrine neurons that project to the median eminence.

The actions of CRH are mediated by two receptor types,
CRF-R1 and CRF-R2. The cloning and characterization of the
CRH receptor were originally reported by Chen et al. (1993).
This receptor-bound CRH with high affinity and selectivity and
was coupled to adenylate cyclase to increase intracellular cyclic
adenosine monophosphate (cAMP). Subsequently, a second
CRH receptor, CRF-R2, was found to possess approximately 70%
homology to CRF-R1. CRF-R2 had a different distribution in
the brain, being found in subcortical regions, with the greatest
expression in the lateral septum and ventromedial n. (VMN), in
contrast to the CRF-R1 which was found to be highly expressed
in neocortical and cerebellar regions. In the adenohypophysis,
CRF-R1 was expressed at very high levels whereas CRF-R2 was
expressed at much lower levels (Chalmers et al., 1995). Such
studies indicate widespread effects of CRH with physiological
responses selectively mediated by two different receptors.

CRH action at the pituitary is primarily mediated by CRF-
R1, yet, its actions can be modified by a CRH binding protein
(CRH-BP) which is highly expressed by both pituitary and
hypothalamus, although only at low levels in the PVN (Chalmers
et al., 1995). CRH-BP is found in cells expressing CRH receptors
and in plasma and rapidly binds CRH with high affinity, thereby
acting as a competitive inhibitor of CRH actions (Kalin, 2018).
A sex difference in CRH-BP mRNA has been shown in the
mouse pituitary with females having much greater levels than
males (Speert et al., 2002). Moreover, stress increased CRH-BP
mRNA and protein expression in POMC neurons in females
more than males. Whereas data show that CRH-BP deficient
mice exhibit elevated corticosterone levels (Speert et al., 2002),
indicating that CRH-BP is functionally involved in preventing
the actions of CRH to reduce the HPA response to stress, this
is inconsistent with the greater basal and stress-induced levels of
plasma corticosterone in females, suggesting other mechanisms
are also involved in setting up sex differences in HPA function.

CRH as a Regulator of ACTH
ACTH is synthesized from high molecular weight (266 amino
acids) precursor protein, POMC, in the anterior pituitary (Harno
et al., 2018). The POMC gene consists of three exons and
two introns. All functional peptide products of the POMC
gene are encoded in exon 3 including N-terminal glycopeptide,
ϒ-MSH, ACTH, α-MSH, CLIP, β-lipoprotein, ϒ-lipoprotein,
β-MSH, and β-endorphin. Their evolutionary importance is
indicated by the fact that the regions encoding α-MSH, ACTH,
and β−endorphin are highly homologous between mammalian
species including humans. Consistent with the important role of
ACTH in mediating the neuroendocrine stress response, POMC
mRNA levels in the anterior pituitary are upregulated by CRH

and inhibited by GCs (Deng et al., 2015, 2017). By contrast, in
the intermediate lobe, there is no effect of GCs on POMCmRNA
levels due to the very low expression of GR (Wang et al., 2015).

AVP and OT as a Regulator of ACTH
While CRH is the primary regulator of ACTH secretion
by the adenohypophysis, supporting roles of AVP and OT
as co-secretagogues have also been shown (Herman et al.,
1992). Although AVP has been described as regulating osmotic
balance, and OT as a principal hormone for parturition, both
neuropeptides are co-expressed in about half of the parvocellular
CRH-expressing neurons of the PVN after adrenalectomy
(Sawchenko et al., 1984). Both are thought to be co-released with
CRH (Bondy et al., 1989; Raadsheer et al., 1993) to potentiate
CRH’s secretagogue activity at the corticotroph (Rivier and Vale,
1983; Schlosser et al., 1994). Moreover, both AVP and OT
can stimulate ACTH secretion even in the absence of CRH
(Gillies et al., 1982; Schlosser et al., 1994) by activating the V1b
receptor on corticotrophs (Schlosser et al., 1994). In contrast,
when applied to the PVN, or following intracerebroventricular
injection, OT and AVP inhibit HPA axis responses (Neumann,
2007; Landgraf and Neumann, 2004). It has also been shown that
these neuropeptides modify PVN function in a paracrine fashion
through local dendritic release within the PVN (Neumann,
2007), the net result being regulatory effects on the PVN that are
very different from actions on the adenohypophysis.

In the adenohypophysis, AVP is hypothesized to also
arise by collateral projections to the median eminence from
magnocellular neurons that target the posterior pituitary, or
through vessels from the posterior pituitary that connect to the
adenohypophysis. Interestingly, the mouse does not seem to
co-express AVP in CRH neurons to the same extent as the rat
(Biag et al., 2012) suggesting that co-release with crh may be
minimal in the mouse. Nonetheless, AVP drives the rapid release
of ACTH from anterior pituitary corticotrophs, although, by
itself, AVP alone causes only a small ACTH response. However,
AVP potentiates CRH-driven ACTH release in vivo and in vitro,
when cells are first exposed to CRH. In contrast, if cells are
first exposed to AVP, CRH does not potentiate AVP-stimulated
ACTH secretion (Roper et al., 2011). Thus, it appears that AVP
and CRH can cooperate, but not substitute for each other to
regulate ACTH secretion.

NEUROENDOCRINE STRESS RESPONSES
AND CENTRAL INPUTS

To cope with the physiological changes following a stressor,
parvocellular neurons of the PVN integrate neural or hormonal
input from a variety of sources leading to a physiologic and
metabolic response. Direct inputs arising from the brainstem
are essential to integrating HPA reactions to systemic stressors.
Projections originating from noradrenergic and adrenergic
neurons in the nucleus of the solitary tract (NTS), locus
coeruleus, and the ventrolateral medulla that innervate the
parvocellular PVN have been identified (Kítazawa et al., 1987;
Hornby and Piekut, 1989; Cunningham et al., 1990). CRH
neurons of the medial parvocellular PVN receive noradrenergic
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innervation fromA2 adrenergic cell groups of the NTS (Kítazawa
et al., 1987; Hornby and Piekut, 1989). The co-expression of
alpha(1) and alpha(2) receptors in medial parvocellular CRH
neurons (Cummings and Seybold, 1988; Day et al., 1997, 1999)
allows norepinephrine to rapidly increase crh mRNA (Itoi
et al., 1999; Cole and Sawchenko, 2002; Khan et al., 2007).
Alpha(1) adrenergic receptors may be primarily responsible
for the stimulatory effects of norepinephrine (Cummings and
Seybold, 1988; Kiss and Aguilera, 1992; Khan et al., 2007),
whereas alpha(2) adrenergic receptors, specifically alpha(2A)
and alpha(2C), may be essential in inhibition of norepinephrine
release at the presynaptic membrane (Bucheler et al., 2002).

Another circuit that strongly influences HPA responses to
stress are projections from the median and dorsal raphe nuclei.
Serotonergic fibers to the parvocellular PVN (Sawchenko et al.,
1983; Zhang and Fogel, 2002) stimulate the HPA axis (Van
de Kar and Blair, 1999). Serotonin (5-HT) 2C receptors have
been implicated in 5-HT-induced activation of the HPA axis
(Heisler et al., 2007). However, 5-HT1A receptors have also
been shown to increase ACTH secretion (Rossi et al., 2010)
and knockout of 5-HT1b receptors causes a 50% reduction in
the diurnal rise in plasma corticosterone (Sollars et al., 2014).
Restraint-induced elevations in ACTH and corticosterone can
be increased by blocking 5-HT7 receptors (García-Iglesias et al.,
2013), while 5-HT can inhibit GABAergic synaptic transmission
at the PVN (Lee et al., 2008) providing evidence that the
effect of 5-HT on PVN neurons vary depending on where the
afferents terminate.

Limbic Pathways Regulate CRH Neuron
Function
Important information to PVN neurons also arises from a variety
of limbic structures, including the BNST, a group of related
subnuclei that directly project to the parvocellular PVN (Cullinan
et al., 1993; Dong et al., 2001). BNST neurons express androgen
receptor (AR) and estrogen receptor (ER; Simerly, 1993), and
play a crucial role in gonadal steroid regulation of HPA function.
The majority of these neurons are GABAergic (Cullinan et al.,
1993) and their activity can be enhanced by collateral CRH
afferents (Kash and Winder, 2006; Dabrowska et al., 2011).
The BNST also contains CRH neurons that project to the PVN
(Dong et al., 2001; Dong and Swanson, 2006) and contain
ARs (Heck and Handa, 2019a). Lesion studies show that BNST
GABAergic neurons inhibit CRH mRNA levels, and inhibit the
corticosterone responses to stress (Dunn, 1987; Herman et al.,
1994) as does treatment with androgens (Lund et al., 2005).
However, not all BNST neurons are inhibitory since selective
lesions of the anterior or lateral BNST can decrease ACTH
secretion (Gray et al., 1993; Herman et al., 1994). Nonetheless, the
BNST represents an important modulating region that is gonadal
steroid hormone-sensitive.

Other limbic regions known to modulate stress-responsive
HPA axis activity include the HC, prefrontal cortex (PFC), CeA,
medial AMY (MeA), and lateral septum. These regions do not
directly innervate parvocellular PVN but relay through areas
such as the BNST or peri-PVN (Dong et al., 2001;McKlveen et al.,
2015). The predominantly glutamatergic projections from HC

and PFC (Walaas and Fonnum, 1980) are translated to inhibitory
actions on the HPA axis via the GABAergic nature of these
relays (Diorio et al., 1993; Herman et al., 1998; Figueiredo et al.,
2003). By contrast, AMY to BNST and peri-PVN projections
are largely GABAergic. Thus, reducing the inhibitory tone is an
effective mechanism to increase HPA axis activity (Swanson and
Petrovich, 1998).

DEVELOPMENT OF NEUROPEPTIDES
AND THEIR REGULATION

Development of CRH
In rats, Crh mRNA is detected as early as embryonic day 17 in
the PVN (Grino et al., 1989), while the peptide is found to be
expressed the following embryonic day 18 (Bugnon et al., 1982).
In contrast to the CRH peptide, CrhmRNA is robustly expressed
during embryonic days 18 and 19, followed by a reduction on
days 20 and 21. CRH finally reaches adult levels of expression
by the end of postnatal day (PND) 7 (Grino et al., 1989). In
the mouse hypothalamus, CRH expression is detected initially
on embryonic day 13, but mimics the same trend as the rat and
decreases just before the time of birth (embryonic day 17–18 in
mice), followed by an increase to adult levels thereafter (Schmidt
et al., 2003).

Development of AVP and OT
In all species examined, AVP mRNA has been detected during
development before OT mRNA, and in greater quantities
(Wolf et al., 1984). In rodent studies, immunohistochemistry
(Whitnall et al., 1985), quantitative PCR (Lipari et al., 2001),
quantitative immunoassay (Sinding et al., 1980), and in situ
hybridization assays (Laurent et al., 1989), show that AVP is
consistently found in the developing fetus’ brain, while OT is
not significantly expressed until 1–2 days following parturition
(Yamashita et al., 1988; Laurent et al., 1989). Interestingly,
more recently, Tamborski et al. (2016) detected OT mRNA as
early as embryonic day 16 in females, but not until PND 2 in
males, indicating a sex difference in the development of central
oxytocin that may contribute to sex differences in adulthood.
The AVP circuitry also becomes sexually dimorphic with the
greater synthesis of AVP in males than females during early
postnatal stages (for more details, see reviews: Szot and Dorsa,
1993; Rood and De Vries, 2011; Rood et al., 2013). In adulthood,
many AVP populations of neurons are androgen-responsive (de
Vries and Al-Shamma, 1990). Both AVP and OT expressing-
neurons continue to increase postnatally in the PVN, and SON
of the hypothalamus (Van Tol et al., 1987; Almazan et al., 1989;
for further details of OT and AVP development, see reviews: di
Scala-Guenot et al., 1990; Bales and Perkeybile, 2012).

NEURODEVELOPMENT OF THE HPA AXIS

Estrogens and Androgens Have
Activational Actions on the HPA Axis
Gonadal steroids are crucial hormones in the regulation of the
adult HPA axis, resulting in stark differences in responsiveness of
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the axis between sexes. Studies show that testosterone generally
depresses the stress response (Viau and Meaney, 1996) while
estradiol can either enhance or inhibit it (Handa et al., 2009;
Zuloaga et al., 2014). The actions of estrogens are controlled
by two major types of ER, ERα and ERβ. ERs are ligand-
activated transcription factors that bind to estrogen response
elements (ERE) in gene promoters, thereby providing a link
between gonadal hormones and transcriptional responses of
the HPA axis (McEwen et al., 1999). ERα and ERβ both have
unique yet overlapping expression patterns in the brain. ERα

is highest in the VMN, arcuate n. (ARC) and medial preoptic
area (MPOA), whereas ERβ is highly expressed in the PVN,
SCN, and SON (in the rat). Overlapping brain regions containing
both ERs include BNST, MeA, and MPOA (Hiroi et al., 2013).
The unique expression of ERα and ERβ accounts for various
physiological functions, specifically the HPA response to acute
stress considering that EREs exist upstream of AVP, OT, and
CRH gene promoters and can directly regulate gene transcription
(Shapiro et al., 2000; Miller et al., 2004; Pak et al., 2007; Hiroi
et al., 2013).

Estrogens have been shown to augment HPA axis activity
and the release of the stress-related secretagogues at several
sites due to the broad expression of ERs. In the adrenal
gland, estradiol increases the adrenal response to ACTH
administration (Patchev et al., 1996). Similarly, reports have
shown that at the level of the adenohypophysis, estradiol
results in a greater response to CRH demonstrated by increased
ACTH secretion. Ovariectomy decreases HPA axis stress-
responses and these effects can be reversed by replacement
of estradiol to females (Seale et al., 2004). Increased PVN
CRH immunoreactivity following estradiol treatment has also
been shown (Patchev et al., 1996), with more recent studies
displaying an overlap of ERβ expression in CRH neurons
of the mouse PVN, further suggesting a possible mechanism
for augmentation of HPA axis function by estrogens (Oyola
et al., 2017). By contrast, some studies have demonstrated
that estradiol decreases HPA axis activity or has no effect
(Young et al., 2001; Ochedalski et al., 2007). Treatment with
estradiol decreased neuronal activation in the PVN (Figueiredo
et al., 2007), as well as reduced ACTH secretion (Young
et al., 2001) and expression of Crh (Ochedalski et al., 2007).
Varying reports of the effects of estradiol on the HPA axis
could be explained by differing experimental conditions, such
as a dose or duration-dependent effect (Figueiredo et al.,
2007). Opposing effects of estradiol may also occur due to
different signaling mechanisms of ERα and ERβ (Tsigos and
Chrousos, 2002). In ovariectomized female rats, ERα agonist,
propylpyrazoletriol, increases stress-induced GC secretion while
diarylpropionitrile, an ERβ agonist, decreases stress-induced GC
secretion (Weiser and Handa, 2009). It has also been proposed
that ERα works by reducing the inhibitory tone of GABAergic
neurons that project to the PVN, such as those in the BNST,
hippocampus, and peri-PVN (Handa and Weiser, 2014) but has
limited expression in PVN-specific neurons (Oyola et al., 2017),
implicating indirect effects on the HPA axis (Weiser and Handa,
2009). Meanwhile, ERβ is proposed to directly alter HPA axis
function since it is found to be co-expressed with several PVN

neuropeptides, such as CRH, OT, and AVP (Lund et al., 2006;
Oyola et al., 2017).

Androgens are consistently reported to inhibit HPA axis
activation and activity (Rosinger et al., 2018; Heck and Handa,
2019a,b). Castration of male rodents removes endogenous
androgens, increasing stress-induced secretion of ACTH and
corticosterone (Handa et al., 2013). Further, testosterone or
dihydrotestosterone replacement is consistently shown to reverse
the inhibitory effects, reducing the ACTH and corticosterone
response to an acute stressor, suggesting the inhibitory role of
testosterone on the HPA axis (Williamson and Viau, 2008). The
alterations in ACTH and corticosterone were not accompanied
by alterations to CRH sensitivity in the pituitary, suggesting a
more central-mediated effect of androgens. Recent studies (Seale
et al., 2005b) show that the HPA axis is inhibited by testosterone
directly through ARs or indirectly through metabolism with
other co-regulatory elements that bind ARs or ERs.

Notably, the effects of dihydrotestosterone, a potent
androgenic metabolite of testosterone, are important in the
suppression of the HPA axis and GC secretion following stress.
Central administration of a 5α-reductase inhibitor, finasteride,
blunted the effects of testosterone, and not dihydrotestosterone,
implicating a central role for the enzyme, 5α-reductase,
in the reduction of testosterone to dihydrotestosterone in
HPA reactivity to stress (Handa et al., 2013). Consistent
with a study by Handa et al. (2013), dihydrotestosterone
injected near the PVN in a gonadectomized, adult male
decreases ACTH and corticosterone secretion (Lund et al.,
2006). Androgens additionally are reported to decrease CRH
response to stress in castrated males, indicating indirect
action of testosterone on CRH synthesis since ARs are not
expressed by hypophysiotropic CRH neurons (Bingaman et al.,
1994). In rodent studies, dihydrotestosterone is metabolized
intracellularly to 5α-androstane 3β, 17β-diol (3β-diol), which
subsequently binds ERβ to inhibit the HPA axis. Thus, although
interactions between androgen and estrogen actions can
occur at the level of ligand identity, interactions on a
molecular level are harder to identify. Recently, Mahfouz
et al. (2016) showed a significant overlap between AR and ER
in MPOA and hippocampus in rodents, using genome-wide
spatial co-expression of AR and ER targets. Whether this
overlap indicates functional interactions at a cellular level
in rodents remains to be determined, with the caveat that
additional factors may modify these cellular mechanisms
in humans.

It has been proposed that sex differences arise, in part,
due to varying levels of GR and MR and the availability
of corticosteroids in the brain. Corticosteroid-binding
globulin (CBG), a glycoprotein produced by the liver, binds
to circulating corticosterone. CBG enhances corticosteroid
stability during transport to target tissues, but it also prevents
corticosteroids from binding to GR or MR (de Kloet et al.,
2005). Only free corticosterone can exert physiological
effects through its actions on its receptors. Thus, it is
important to make a distinction when comparing total
plasma corticosterone levels and available corticosterone.
In females, CBG is found at levels that are 2-fold higher
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than in males, but levels of total corticosterone are also
significantly higher. Therefore, the increased levels of CBG
may help buffer the increased amount of total plasma
corticosterone, contributing to the lack of a sex difference
in free corticosterone levels (McCormick et al., 2002). Moreover,
CBG binds acute stress-induced corticosterone, resulting
in a delayed free corticosterone response in comparison
to total plasma corticosterone, and implicating CBG as
an important buffer for available corticosteroids (Qian
et al., 2011). The greater levels of CBG in females likely
contributes to the increased HPA axis activity when compared
to males, whereas, low levels of CBG in males may lead to
higher availability of free corticosterone and a more robust
negative feedback on the HPA axis (Viau and Meaney, 1996;
Tinnikov, 1999).

Evidence for Organizational Actions of
Gonadal Steroids on HPA Axis
The sex differences in adult stress responses may also
be programmed by neonatal exposure to gonadal steroids
suggesting an organizational effect on the neural circuitry
controlling patterns of corticosteroid secretion (Seale et al.,
2005a,b) and shaping brain morphology in some brain sites
controlling HPA axis function in adulthood (Green and
McCormick, 2016). The mechanism(s) by which gonadal steroid
hormones act to influence HPA function has not been completely
resolved but evidence for androgens and estrogens modulating
adrenal (Kitay, 1965), pituitary (Coyne and Kitay, 1969; Viau and
Meaney, 2004) and hypothalamic functions (Handa et al., 1994;
Viau andMeaney, 1996; Viau et al., 2001) has been reported. The
considerable overlap in gonadal and adrenal steroid hormone
receptor expression within the neural circuitry of the PVN
supports this as a mechanism (Figure 2; see review Goel et al.,
2014 for a more in-depth overview).

There are two important periods during development in
which a surge of testosterone has been reported to defeminize
and masculinize the brain of male rodents: late gestation
and shortly after birth (Weisz and Ward, 1980). Whereas
many studies have examined the sexual differentiation of
reproductive components of the brain, much less has been
published regarding the organizational differentiation of the
HPA axis. Postnatal gonadectomy of male rats has been
reported to cause a more female-like HPA axis activity in
adulthood, characterized by increased basal and stress-induced
corticosterone secretion (Patchev et al., 1995). Further, inhibiting
the aromatase enzyme to prevent the conversion of testosterone
to estradiol in neonatal males, has similar lasting consequences of
increased basal and stress-induced corticosterone in adulthood.
These results implicate the actions of estradiol, as the result
of the aromatization of testosterone in the male on the
organization of sex differences in the HPA axis (Lucion et al.,
1996; de Kloet et al., 1998). The organizational actions of
perinatal steroids have been further supported by studies
examining the pulsatile patterns of corticosterone secretion
throughout the day, where males show a lower amplitude
and frequency of corticosteroid pulses compared to females
(Seale et al., 2005a). Administration of an AR antagonist

in a perinatal male increases the amplitude and frequency
of corticosteroid pulses to resemble that of adult females.
Moreover, perinatal gonadectomy of males also leads to a
female-like pulsatile pattern in adulthood, while a single dose
of testosterone following gonadectomy reverses this effect.
Moreover, females treated with testosterone within 24 h of birth
show a male-like pattern of corticosterone secretion (Seale et al.,
2005a,b). These studies implicate an organizational action of
testosterone directly through AR or indirectly through ER, via
the aromatization of testosterone to estradiol, on the HPA axis
(Seale et al., 2005a,b).

Development of the HPA Axis During Early
Life
During pregnancy, the stress response of the fetus is immature
and relies heavily on inputs from the maternal and placental
systems (Gunn et al., 2013). During late gestation, the fetus
becomes capable of secreting CRH and ACTH in response
to maternal stress, resulting in corticosterone production
(Gunn et al., 2013). Basal levels of corticosterone during this
time are similar to those of adults (Meaney et al., 1985b),
suggesting functional HPA axis activity. From PND4 to PND14,
basal corticosteroid levels drop, accompanied by substantially
decreased ACTH and corticosterone production in response
to stress (Schmidt et al., 2003). This period is known as the
‘‘stress hypo-responsive period’’ (SHRP; Buschdorf and Meaney,
2016). During this time, the expression of GR and MR mRNA
is significantly increased (Yi et al., 1994). Accompanied by
the lower levels of corticosterone, these changes are thought
to dampen the HPA axis responses. Stress exposure during
the SHRP induces a slight increase of expression of c-Fos
mRNA in the PVN but does not influence ACTH or peripheral
corticosterone secretion (Levine, 1994). Such data suggests an
adrenal insensitivity may also play a role in the SHRP, but further
mechanisms have not yet been determined.

Recent studies show that SHRP can be maintained through
the influence of maternal care (Buschdorf and Meaney, 2016).
Maternal care, quantified through observations of pup licking
and maternal arch-backed nursing, are highly correlated with
each other (Caldji et al., 1998). Dams categorized by levels
of maternal care show a causal relationship to epigenetic
reprogramming that alters negative feedback sensitivity through
changes in DNAmethylation and histone modifications (Weaver
et al., 2004; Buschdorf andMeaney, 2016). Several studies suggest
this may be related to the transcription factor, nerve growth
factor-inducible protein A (NGFI-A) which binds to a promoter
region on exon 1–7 of GR (Caldji et al., 1998) consisting of two
CpG dinucleotides on opposing ends of the response element
that are methylated on the day of birth. Offspring that received
high maternal care show higher amounts of demethylation of 5′

CpG sites in the NGFI-A binding region in adulthood (Buschdorf
andMeaney, 2016). Offspring that received low levels of maternal
care displayed no change in methylation. Point mutation studies
indicate that the NGFI-A binding strength and gene expression is
determined by the presence of a methyl group at the 5′ CpG site,
where a mutated 5′ CpG site resulted in increased transcription
of NR3C1, the gene encoding GR (Weaver et al., 2004). These
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FIGURE 2 | Relationship of inputs of adrenal and gonadal steroid hormone receptors to the circuitry of the HPA axis. Several brain regions secrete adrenal and
gonadal hormones that act on receptors in the peri-PVN and paraventricular nucleus (PVN). Much of the expression shows considerable overlap.

studies support the actions of low maternal care to program
increased GR expression and increase feedback sensitivity of
adult offspring (Liu et al., 1997). Additional studies show
decreased corticosterone and ACTH responses to acute stress in
adulthood of high maternal care-exposed offspring. Such data
further support epigenetic reprogramming of the 5′ CpG site.
A genome analysis of chromosome 18 containing NR3C1 found
that varying amounts of maternal care correlated with changes
in protocadherin loci (McGowan et al., 2011) which regulate
the development of the CNS (McGowan et al., 2011) thereby
implicating maternal care during the SHRP for proper brain
development. However, it is important to note that the promoter
region on exon 1–7 of GR only accounts for about 1% of all
GR mRNA transcripts in the hippocampus. Reports examining
promoter region on exon 1–7 of GR methylation found that
upregulation of NGFI-A did not alter stress-induced activation
of the promoter region on exon 1–7 of GR transcription or total
expression of GR (Makino et al., 1995). Consistent with this,
Witzmann et al. (2012) showed low methylation levels at the 5′

CpG site following acute stress, further indicating that NGFImay
not drive the promoter region on exon 1–7 of GR transcription
nor play a role during the acute stress response (Witzmann et al.,
2012). Thus, while epigenetic reprogramming is altered through
maternal care, specific mechanisms in which this occurs are
still unclear.

Maternal separation during fetal development is another
variable that influences HPA axis development and adult
patterns of stress-reactivity (Boccia and Pederson, 2001).
Prolonged separation from the dam is associated with a
hyperactive HPA axis and increased anxiety- and depressive-like
behaviors in adult offspring (Liu et al., 1997). In contrast,
brief separation increases maternal attentiveness to pups,
resulting in better attenuation of the stress-response (Boccia
and Pederson, 2001). Rodent studies have demonstrated
that these changes are partially a consequence of alterations
in the dopaminergic system since prolonged maternal

separation caused decreased dopamine uptake associated
with changes in dopamine transporter expression (Curley
et al., 2011). This is thought to lead to increased stress-
induced dopamine activity resulting in a hyperactive HPA
axis. 5-HT signaling has also been shown to be altered
by maternal separation with decreased metabolism in the
AMY and enhanced concentrations of 5-HT and associated
metabolites in the dorsal raphe nucleus and cingulate cortex
(Arborelius and Eklund, 2007). Long-term consequences
include the altered function of 5-HT receptors and transporters,
as well as decreased expression of 5-HT receptor subtypes
in the PFC and hypothalamus (Ladd et al., 2005). These
changes correlate with increased anxiety- and depressive-like
behaviors, suggesting that a signaling pathway linking the
dopaminergic and serotonergic systems with stress responses
exists, however, specific mechanisms have yet to be elucidated
(Zakharova et al., 2009).

Paternal influences on the stress axis of adult mice have
also been reported. Males exposed to 6 weeks of chronic
variable stress before breeding had offspring of both sexes with
reduced HPA axis activation to acute restraint in adulthood
(Rodgers et al., 2013). This correlated with gene transcription
changes in the PVN and BNST of offspring suggesting the
possibility of epigenetic reprogramming through the male
lineage. Studies have also investigated paternal retrieval and
grooming effects in offspring. Testosterone levels were decreased
in offspring from rats with increased paternal retrieval, as
was AVP expression in the BNST, and this correlated with
reduced aggressiveness in social interaction tests, such as
the resident-intruder test (Frazier et al., 2006). Such data
suggests an important hormonal link between paternal care,
testosterone levels, and aggression. AVP immunoreactivity in
the PVN was also found to be increased with reduced paternal
care (Rodgers et al., 2013), correlating with increased stress-
induced corticosterone secretion, further linking paternal care
and HPA axis responses. Nonetheless, specific mechanisms of
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how paternal transmission to the offspring occurs have yet to
be elucidated.

The Development of the HPA Axis at
Puberty
Puberty is a unique developmental event, influenced largely by
the maturation of the hypothalamic-pituitary-gonadal (HPG)
axis, which is responsible for gonadal maturation and adult
hormone secretory patterns (Ojeda and Urbanski, 1994). Some
reports also suggest that this represents a second critical period
for organizational actions of gonadal hormones that further
sculpt the HPA axis into its adult-like characteristics (Romeo,
2003; see review Romeo, 2010 for a more thorough analysis of
age-dependent changes in the HPA axis).

Importantly, HPA axis reactivity is significantly greater before
puberty than after puberty. Rat studies in males show an
increased and prolonged stress-responsive release of ACTH
and GC prepubertally in comparison to post-pubertal animals
(Goldman et al., 1973; Romeo et al., 2004a). Similarly, the stress-
induced activity of CRH neurons in the prepubertal PVN is
greater than that of adults, demonstrating that the prolonged
prepubertal pattern of corticosterone and ACTH may be driven
by increased hypothalamic CRH synthesis (Romeo et al., 2004b;
Viau et al., 2005) and altered by the onset of male puberty. These
findings indicate a blunted GC-dependent negative feedback in
prepubertal males (Romeo et al., 2004a).

Studies in pre-pubertal male rodents show elevated HPA
activation, with increases in CRH activation following restraint
in comparison to adults, indicating that PVN CRH neuron
activity changes across puberty (Romeo et al., 2006). Following
a corticosterone injection, Romeo and McEwen (2006) showed
increased GR expression in regions of the brain, such as
HC, AMY, and PFC, in adolescents compared to adults.
This observation further indicated that puberty represents a
critical period during development that renders the brain more
vulnerable to environmental perturbations and increases the
risk of HPA-related neuropathologies (Romeo and McEwen,
2006). The changes in the HPA axis do not appear to be the
consequence of pubertal rises in testosterone (Romeo, 2003).
However, because the initial increase of gonadotropin-releasing
hormone (GnRH) secretion and kisspeptin occurs near the
onset of puberty, one possibility is that changes in the HPA
axis observed across puberty are preprogrammed developmental
events that are independent of changes in gonadal hormones
(Romeo, 2003).

Some reports further suggest that the pubertal rise in estradiol
may also play a role in shaping the adult HPA axis. Studies
in pre-pubertal females show an inhibitory effect of estradiol
on stress-induced HPA axis function, while estradiol treatment
in post-pubertal females shows a stimulatory effect of estradiol
during the acute stress response (Evuarherhe et al., 2009).
Further, regardless of whether females were ovariectomized
before or after puberty, administration of estradiol consistently
elevated basal and stress-induced GC secretion, as well as GC
pulse amplitude and frequency (Evuarherhe et al., 2009). Data
suggests there is a reversal effect of estradiol on HPA axis

function during puberty where estradiol is inhibitory before
puberty and stimulatory post-puberty, implying an estradiol-
independent mechanism in the development of the HPA axis
during puberty in adult females (Evuarherhe et al., 2009).

Disruption of the Maternal-Fetal HPA Axis
and Adult Disease Risk
A growing body of studies has described fetal risk factors
for adult diseases that form the basis for the hypothesis of
the Developmental Origins of Health and Disease (DOHaD;
Sandman et al., 2015). The DOHaD postulates that there is a
critical period of development where the fetus is most sensitive
to certain environmental influences that significantly impact
short- and long-term health (Harris and Seckl, 2011). Such
environmental influences include maternal stress, which is a
likely correlate of fetal overexposure to GC, implying a common
pathway in which environmental insults become linked between
mother and fetus (Edwards et al., 1993; Cottrell and Seckl, 2009).

Commonly, administration of synthetic GCs has been a
common clinical treatment for women at risk for preterm labor,
to improve survival of the newborn by allowing proper lung
maturation (Liggins and Howie, 1972; Crowther et al., 2019).
Betamethasone or DEX is often used (Roberts and Dalziel, 2006)
in the clinic and they do not appear to differ in efficacy (Crowther
et al., 2019). DEX has also been used to treat female fetuses
diagnosed with congenital adrenal hyperplasia (CAH; Speiser
et al., 2010), an autosomal recessive disorder that results in
the deficiency of 21-hydroxylase that impairs the synthesis of
corticosterone and causes impaired synthesis of adrenal enzymes
(Speiser et al., 2010). Therefore, steroid metabolism is redirected
to adrenal androgens, resulting in abnormal masculinization of
genital development and behaviors in females. Consequently,
dexamethasone is administered to female CAH fetuses to
inhibit adrenal androgen production and minimize these effects.
Notably, these females represent a population that is exposed
to dexamethasone early in gestation, a critical period for fetal
development. More recent studies have begun to elucidate long-
and short- term consequences of prenatal exposure to excess
GC, causing programming effects in the HPA axis of the fetus
that result in dysregulation of important physiological functions
in adulthood.

A key player mediating the consequences of maternal
elevations of GC from stress is the placenta. During pregnancy,
GC concentrations in maternal blood are higher than those of the
fetus. This is a result of 11β-Hydroxysteroid dehydrogenase type
2 (11β-HSD2) expression by the placenta (Stroud et al., 2016).
11β-HSD2 oxidizes maternal corticosteroids into its inactive
11-keto derivatives (Benediktsson et al., 1997; Holmes et al.,
2006), which buffers the increased levels of maternal GCs to
the fetus. Levels of 11β-HSD2 are known to increase during
early and mid-gestation, followed by a drop in late gestation to
allow GC mediated fetal lung maturation. Furthermore, rodent
studies suggest that the drop in 11β-HSD2 during late gestation
allows increased transport of maternal GC to the fetus, increasing
the vulnerability of the fetus during this period to unwanted
programming effects (Edwards et al., 1993). Inhibition of 11β-
HSD2 with carbenoxolone during late gestation shows effects
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similar to excess GC, further suggesting the importance of 11β-
HSD2 in protecting the fetus from overexposure of GC (Brown
et al., 1993; Lindsay et al., 1996; Holmes et al., 2006). Importantly,
the administration of synthetic GCs bypasses the 11β-HSD
system of the placenta since synthetic GCs are not a substrate for
the enzyme (Figure 3; Low et al., 1994; Walker et al., 1994).

The short- and long- term effects on the fetus of maternal
elevations of GC due to prenatal stress or prenatal exposure
to synthetic GC have been found to depend on the length
of exposure and time during development at which the insult
occurs (Barbazanges et al., 1996). Fujioka et al. (1999) highlighted
duration-dependent effects in rodents exposed to excess GCs
in CRH-expressing PVN neurons, where chronic prenatal stress
caused degeneration and apoptosis in these neurons (Baquedano
et al., 2011). However, brief prenatal stress did not cause a change
in CRH-expressing PVN neurons, suggesting that the duration of
the stressor is important for impacting the normal development
of PVN neurons (Fujioka et al., 1999) and perhaps neurons
controlling the HPA axis (Insel et al., 1988).

Other studies have investigated the time-dependent effects
of fetal exposure to excess GC. In rodents, in utero exposure
to elevated GCs during late gestation has been shown to cause
hyperactivity of the HPA axis in adulthood with elevated levels
of basal GC and ACTH and decreased CRH expression (Kapoor
et al., 2006), perhaps suggesting reduced negative feedback.
Increased peaks and prolonged secretion of these hormones in
response to stressors have also been observed (Muneoka et al.,
1997; Shoener et al., 2006). In contrast, Kamphuis et al. (2002)
demonstrated that postnatal exposure to a synthetic GC reduced
stress-induced HPA activity in adulthood, further suggesting

that the timing of GC elevation plays a crucial role in the
developing stress response. Importantly, studies have also shown
that treatment with allopregnanolone and 3β-diol can reverse the
hyperactive HPA response to immune challenges in adult rats
that were prenatally stressed (Brunton et al., 2015). This raises
the possibility that the HPA axis can retain sufficient plasticity
postnatally to allow reversal of maternal HPA axis hyperactivity
in the offspring.

Offspring of rodent dams prenatally treated with GC during
late gestation typically exhibit reduced birth weights that
were consistently reduced throughout life compared to control
offspring (Carbone et al., 2012). Reductions in birth weight
have been suggested to be a direct consequence of a lack of
placental 11β-HSD2 activity and excessive GC exposure on the
fetus (Holmes et al., 2006), rather than due to malnutrition
or poor maternal care (Nyirenda et al., 2001). Carbone et al.
(2012) further observed reduced long bone lengths through
PND21 in female, but not male, offspring prenatally exposed
to DEX. This was thought to be linked to a dysregulation in
growth hormone signaling, thereby reducing transcription of
the Igf-1 gene (Carbone et al., 2012). Similarly, Ghrh mRNA
transcripts in the ARC of female, but not male, offspring were
reduced (Carbone et al., 2012). Together, such data suggest a
sex-specific mechanism in which prenatal GC exposure causes a
reduction in Ghrh to decrease circulating GH, resulting in lower
plasma IGF-1, and reduced birth weights. Evidence for molecular
mechanisms underlying these events remains to be determined.

It is well-established that prenatal insults can impact the
autonomic system in adult offspring exposed to fetal GC.
Such long-term consequences include cardiovascular function

FIGURE 3 | Prenatal exposure to excess GCs has short- and long- term effects. During pregnancy, 11-β hydroxysteroid dehydrogenase type 2
(11β-HSD2) expression in the placenta mediates the fetus’ exposure to excess maternal GC. 11β-HSD2 regulates the level of active GCs through the oxidation of
maternal corticosteroids into inactive 11-keto derivatives, reducing fetal exposure to active GCs. While 11β-HSD2 concentration in the placenta is high during most
of gestation, 11β-HSD2 levels drop during late gestation. As a result, fetal exposure to maternal GCs increases, leading to short term effects, observed immediately
at birth into adulthood. To note, synthetic GC does not act as a substrate for 11β-HSD2 and bypasses this system to the fetus.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 12 January 2021 | Volume 14 | Article 601939

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Sheng et al. HPA Axis and Development

(O’Regan et al., 2008). Angiotensinogen is an important
component of the renin-angiotensin-system (RAS) that is
upregulated by GCs (Tamura et al., 1995). Estrogens are
found to have inhibitory influences over angiotensinogen gene
expression (Dzau and Hermann, 1982), implying sex-dependent
programming effects could be correlated with increased
sensitivity to GC-mediated hypertension in females (O’Regan
et al., 2004).Moreover, adult female offspring exposed to prenatal
stress display a more prolonged increase in systolic blood
pressure and a longer recovery period when subjected to restraint
stress than males (Igosheva et al., 2007). Such data are consistent
with recent observations of altered R-R interval variability
(Heart rate variability; HRV) in adult offspring exposed to
elevated fetal GCs. Adult female, but not male offspring of
prenatal GC treated dams exhibit a reduction in high-frequency
power when compared to control (Madhavpeddi et al., 2020).
Because high-frequency power represents parasympathetic
activity (Akselrod et al., 1981), these effects suggest that prenatal
GC treatment programs the parasympathetic nervous system,
which, in female offspring, is responsible for altered pressor
and tachycardic responses. Whether this is the same as the
responses of prenatal stress remains to be determined but
implicate sex-specific programming effects of the ANS due to
excess prenatal GC exposure.

In addition to alterations in ANS and neuroendocrine
function in adult offspring exposed to elevated GC levels in
development, the risk for adult metabolic dysfunction is also
increased. Female rats prenatally exposed to high levels of
GCs are hyperinsulinemic after oral glucose administration,
with alterations in the expression of genes that mediate GC
and lipid metabolism in subcutaneous fat (Brunton et al.,
2013). By contrast, prenatal GC exposure was found to
cause hyperglycemia following oral glucose in male offspring
(Nyirenda et al., 1998), with alterations in the expression of genes
that mediate GC and lipid metabolism in skeletal muscle and
liver. These observations suggest sex-specific mechanisms where
fetal exposure to GCs programs the stress response, leading
to a dysregulation of glucose-insulin homeostasis (Brunton
et al., 2013) and increased risk for diabetes mellitus type 2 in
adulthood (Nyirenda et al., 1998). Moreover, prenatal exposure
to GC alters hepatic gene expression, with decreased mRNA
transcripts encoding Pparα and Pgc1α, key regulators of lipid
and energy metabolism, and an increase of plasma triglyceride
concentrations in offspring (Drake et al., 2010; Brunton et al.,
2013). These observations suggest a mechanism in which fetal
GCs affect important genes in fatty acid metabolism and increase
the risk for hepatic steatosis in adulthood (Carbone et al., 2012).

Future Studies on DOHaD

The developmental origins of the disease model posit that events
during fetal and early-life correlate with long-term consequences
that encompass the development of neuroendocrine signaling
and ultimately susceptibility to neuropsychological and
neuropathological diseases in adulthood. Improper development
of the HPA axis is commonly suggested as the primary

neuroendocrine system affected by alterations in the
prenatal environment.

A growing body of evidence further suggests the placenta’s
important role in mediating maternal-fetal interactions during
the prenatal period. Placental hormones and cytokines are
thought to regulate the effects of maternal stress on the fetal
HPA axis, but it is important to consider the nature and
timing of prenatal insults, as evidence suggests exposure to
prenatal stress during various gestational periods and varying
lengths of time exerts different effects on HPA axis activity
(Sandman et al., 2015). However, precise mechanisms in which
prenatal stressors influence neuroendocrine signaling between
thematernal-placental-fetal interface are still unclear. In humans,
a potential prospect is placental CRH, which is upregulated
by maternal and fetal cortisol. Studies implicate placental CRH
to directly mediate fetal pituitary-adrenal growth and steroid
production, factors that are known to significantly affect HPA
axis function during development and in adulthood (Green et al.,
2016). Notably, more recent evidence examines the effects of
fetal sex in placental crosstalk. In rodents, placentas of female
fetuses show greater expression of genes associated with immune
and endocrine function, while placentas of male fetuses tend
to express more genes involved in inflammation (Cvitic et al.,
2013). Moreover, the inherent sex differences in fetal metabolic
needs and timing of GC administration related tomaturation and
decline of placental function towards the end of gestation could
help us understand mechanisms by which fetal sex influences
the maternal-placental-fetal interface, a primary regulator of
the development of the HPA axis (Lassance et al., 2015:
Sun et al., 2020).

Although there is a long history of research behind the
HPA axis and development, much remains to be revealed.
It is well known the HPA axis holds a fundamental role in
maintaining proper neuroendocrine function and a large body
of research strongly correlates the dysregulation of the HPA axis
to neuropsychological and physiological disease risk. Therefore,
it is reasonable to suggest a strong association between the
development of the HPA axis to such diseases, emphasizing the
importance of future developmental studies to address this large
gap in our current knowledge.
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