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ABSTRACT

Multi-nucleotide variants (MNVs) are defined as clus-
ters of two or more nearby variants existing on
the same haplotype in an individual. Recent stud-
ies have identified millions of MNVs in human
populations, but their functions remain largely un-
known. Numerous studies have demonstrated that
single-nucleotide variants could serve as quantita-
tive trait loci (QTLs) by affecting molecular pheno-
types. Therefore, we propose that MNVs can also
affect molecular phenotypes by influencing regula-
tory elements. Using the genotype data from The
Cancer Genome Atlas (TCGA), we first identified
223 759 unique MNVs in 33 cancer types. Then,
to decipher the functions of these MNVs, we in-
vestigated the associations between MNVs and six
molecular phenotypes, including coding gene ex-
pression, miRNA expression, lncRNA expression, al-
ternative splicing, DNA methylation and alternative
polyadenylation. As a result, we identified 1 397 821
cis-MNVQTLs and 402 381 trans-MNVQTLs. We fur-
ther performed survival analysis and identified 46 173
MNVQTLs associated with patient overall survival.
We also linked the MNVQTLs to genome-wide associ-
ation studies (GWAS) data and identified 119 762 MN-
VQTLs that overlap with existing GWAS loci. Finally,
we developed Pancan-MNVQTLdb (http://gong lab.
hzau.edu.cn/mnvQTLdb/) for data retrieval and down-
load. Pancan-MNVQTLdb will help decipher the func-
tions of MNVs in different cancer types and be an
important resource for genetic and cancer research.

INTRODUCTION

Sequencing technologies have rapidly advanced our under-
standing of human genetic variants (1). Among human
genetic variants, single-nucleotide variants (SNVs) are the
most common type (2), and genome-wide association stud-
ies (GWAS) have identified thousands of SNVs associated
with numerous traits and diseases (3–5). However, genetic
studies showed that only a tiny proportion of the heritabil-
ity of quantitative traits was explained by SNVs, especially
for complex diseases, and missing heritability remains to be
explored (6), indicating that other types of genetic variants
may also contribute to the heritability.

Multi-nucleotide variants (MNVs) are defined as clusters
of two or more nearby variants existing on the same haplo-
type in an individual (7). When nearby variants are within
the same codon, the amino acid changes caused by MNVs
may differ from either of the separate SNVs (7). Currently,
most existing variant identification tools often misannotate
MNVs as individual SNVs with incorrect function predic-
tions, which probably hampers scientific research and clini-
cal practice (8). For example, Srinivasan et al. (8) analyzed
genotype data from The Cancer Genome Atlas (TCGA)
(9) and found that a large amount of MNVs was misan-
notated as SNVs, and half of these MNVs were annotated
with novel protein functions relative to SNVs. In addition,
another study (10) found significant enrichment of MNVs
in genes associated with diagnosing developmental disor-
ders, indicating that MNVs could be causal variants in dis-
eases. However, the functions of MNVs, especially those in
noncoding regions, remain largely unknown.

Previous studies have shown that single-nucleotide poly-
morphisms (SNPs, common variants of SNVs) could affect
regulatory elements, thereby influencing gene expression
(11) and other molecular phenotypes (12–15). For example,
Beesley et al. (16) reported that the risk allele of rs61938093
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potentially decreased the expression level of NTN4 by re-
ducing the activity of the NTN4 promoter in breast can-
cer, indicating that NTN4 may be a potential mediator for
breast cancer risk. Another study (17) reported rs12203592
as a hotspot of melanocyte trans-meQTLs. This SNP as
a cis-eQTL was related to IRF4 and 131 candidate target
CpGs, which were enriched in IRF4 binding sites, indicat-
ing that IRF4 may play an important role in the regulatory
network. There were also databases providing comprehen-
sive annotations about the SNP functions (18,19). Consid-
ering that both SNVs and MNVs can alter DNA sequences,
we propose that MNVs can also affect molecular pheno-
types by influencing regulatory elements, such as methy-
lation, miRNA binding and alternative splicing. Over the
past few years, other researchers and we have reported many
databases on the association of SNPs and molecular pheno-
types (11,20–27). However, there is currently no systematic
analysis of the associations between MNVs and molecular
phenotypes.

The TCGA data portal (9) provides multi-omic data (e.g.
genomics, transcriptomics) and clinical data of 33 cancer
types generated from >9100 samples. Using this valuable
resource, we first identified 223 759 unique MNVs in 33
cancer types using the genotype data. To better understand
the impact of these MNVs on molecular phenotypes, we
investigated the associations between MNVs and six cur-
rently available molecular phenotypes. Finally, we devel-
oped Pancan-MNVQTLdb, a database that allows users to
query, search and visualize quantitative trait loci (QTLs)
by cancer type, molecular phenotype and variants. Pancan-
MNVQTLdb also incorporates GWAS and clinical data to
help users to understand the functions of MNVs in cancers.

MATERIALS AND METHODS

MNV identification, genotyping and quality control

We first obtained the genotype data detected using the
Affymetrix SNP 6.0 array from the TCGA data portal (9)
and imputed autosomal variants for all samples of 33 can-
cer types using IMPUTE2 (1000 Genomes Phase 3 as the
reference panel) (28). The imputation was performed in the
two-step procedure provided by IMPUTE2. After imputa-
tion, we performed quality control to select high-quality
SNPs with (i) imputation confidence score ≥0.4, (ii) minor
allele frequency (MAF) ≥5%, (iii) missing rate <5% and (iv)
Hardy–Weinberg equilibrium P > 1e−6.

After SNP imputation, MNV identification was per-
formed using the strategy described by Wang et al. (7).
Specifically, we used SHAPEIT4 (29) to perform compu-
tational phasing in each cancer type to determine the chro-
mosome from which the allele comes. Next, Hail (version
0.2.11, https://hail.is/docsh/0.2/api.html) was used to iden-
tify MNVs from the phased genotype. First, the genotype
data were converted to a matrix. Second, all the variants
with the homozygote reference allele were filtered. Next,
MNV calling was conducted from SNPs with distances ≤10
(window by locus = 10). The reason for selecting MNVs
within 10 bp is that when the length of window exceeds 10,
the accuracy of phase determination will be reduced pre-
cipitously (7). Finally, the aggregate function was used to
obtain the site-level information.

According to the MNV definition, an MNV was defined
as multiple variants in the same haplotype. We used ‘0’,
‘1’ and ‘2’, representing the number of haplotypes contain-
ing an MNV, to encode the MNV genotypes. For exam-
ple, an MNV with two SNPs (A>a and B>b) has 16 dif-
ferent combinations of SNP genotypes (Figure 1A). Indi-
viduals with (a|b, a|b) are counted as ‘2’, and individuals
with (A|B, a|b), (A|b, a|b), (a|B, a|b), (a|b, A|B), (a|b, A|b) or
(a|b, a|B) are counted as ‘1’, while others are counted as ‘0’.
The coding of polynucleotides is similar. Using this method,
we generated an MNV genotype matrix for each cancer
type.

Finally, the quality controls of MNVs were performed.
We excluded MNVs with low allele frequency (MAF < 1%)
in QTL identification. Additionally, for each MNV, we re-
quested that the heterozygous genotype group contain at
least three samples; all the MNVs that did not meet this
condition were also excluded.

Molecular phenotype data collection and processing

Six molecular phenotypes were used for MNVQTL map-
ping. They are miRNA expression, lncRNA expression,
coding gene expression, alternative splicing, alternative
polyadenylation (APA) and DNA methylation (Figure 1B).
After obtaining the data from the TCGA data portal (9),
we performed quality control for these data.

For the quality control of coding genes and lncRNAs,
we downloaded the gene expression profile from TCGA (9)
and excluded all the genes with an extremely low expression
[median fragment per kilobase million (FPKM) <0.01] for
downstream analysis. Then, genes were classified into cod-
ing genes and lncRNAs according to the annotation from
ENCODE (version v36) (20,21). These coding genes and
lncRNAs were separately used for the eQTL and lncRNA-
eQTL mapping.

For the quality control of miRNAs, we downloaded the
miRNA sequencing data from TCGA (9) and excluded the
miRNAs with a median transcription per million (TPM)
<0.01.

Percent spliced index (PSI) is a commonly used metric
for quantifying splicing events. PSI is defined as the ratio of
reads indicating the presence of a transcript element versus
the total number of reads covering the splicing event. After
downloading the PSI data from the TCGASpliceSeq (30),
we excluded the PSIs with a missing rate >0.1 or on sex
chromosomes.

APA events were often quantified by the percentage of
distal polyA site usage index (PDUI), and PDUI is used to
represent the relative usage rate of transcripts on the dis-
tal polyA site. The PDUI data for apaQTL analysis were
downloaded from the TC3A data portal (31). We excluded
APA events with a missing rate >0.1 or a standard deviation
<5% (23).

The DNA methylation of TCGA (9) was generated by the
Illumina Infinium HumanMethylation450 BeadChip array.
We downloaded these data from the TCGA data portal (9)
and filtered the sites according to the following criteria: (i)
on sex chromosomes; (ii) mapping to multiple locations on
the genome; (iii) containing known SNP on CpG sites; and
(iv) beta value with a missing rate >0.05.

https://hail.is/docsh/0.2/api.html
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Figure 1. The pipeline of Pancan-MNVQTLdb. (A) Processing of variant data. (B) Processing of phenotype data. (C) Identification of cis- and trans-
MNVQTLs. (D) Identification of survival-QTLs. Three genetic models were used to test the associations between MNVs and sample survival time. (E)
Identification of GWAS-QTLs.
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Covariates

Studies have proved that factors affecting molecular pheno-
types may reduce the power of QTL identification (32,33).
Adjusting covariates in QTL identification is necessary to
minimize confounding effects (34). Three types of covari-
ates were included in this study: (i) the top five principal
components in genotype data to minimize the effect of pop-
ulation structure on molecular phenotypes (34); (ii) PEER
factors equivalent to 25% of the sample size but not >100
generated by PEER software (35) to minimize the poten-
tial batch effects and other confounders in the quantitative
data; and (iii) basic clinical information, including age, gen-
der and tumor stage, to minimize the effects of clinical status
on molecular phenotypes. We calculated these covariates for
each cancer type separately.

Identification of MNVQTLs

For each molecular phenotype of each cancer, genotype
data, molecular phenotype indexes and covariates were pro-
cessed into three matrix files with the matched samples.
QTL analysis was performed using the linear regression
model in the Matrix eQTL R package (36). MNVs with false
discovery rates (FDRs) <0.1 were defined as MNVQTLs.
In addition, a window of 1 Mb was used to distinguish cis-
MNVQTLs from trans-MNVQTLs (Figure 1C).

Identification of survival-related MNVQTLs

To identify MNVQTLs associated with disease prognosis,
we obtained clinical information, including the survival
time of all donors from TCGA (9). We applied the log-rank
test to analyze the associations between survival time and
MNV genotype. We used three models in this study, i.e. ad-
ditive, dominant and recessive. In the additive model, we
divided the donors into three groups based on the three
genotypes of each MNV and tested the difference in sur-
vival time among the three groups. In the dominant model,
donors with genotype ‘1’ and donors with genotype ‘2’ were
merged into one group and tested against the other. In the
recessive model, donors with genotype ‘1’ and donors with
genotype ‘0’ were merged into one group and tested against
the other. The Kaplan–Meier (KM) plot was used for visu-
alization (Figure 1D).

Identification of GWAS-related MNVQTLs

Due to linkage disequilibrium, GWAS identified trait-
related variants that are often tag variants rather than
causal ones. So far, causal variants in most GWAS loci are
still unclear. Thus, to facilitate the fine mapping of func-
tional variants, we integrated the MNVQTLs with GWAS
risk loci. First, we downloaded all the GWAS risk vari-
ants from the latest release of the NHGRI-EBI GWAS
Catalog (37). Then, LDlink (https://ldlink.nci.nih.gov/) (38)
was used to calculate the R2 between each MNV and each
GWAS locus. For each MNVQTL, if any SNV in the MN-
VQTL is located in the LD region (R2 > 0.5) of the GWAS
tagSNP, we define it as a GWAS-related MNVQTL (Fig-
ure 1E).

DATABASE CONSTRUCTION AND CONTENT

Data summary of Pancan-MNVQTLdb

In Pancan-MNVQTLdb, the multi-omic data of >9100 pa-
tient samples (Table 1, Figure 2A) from TCGA (9) were
used to perform MNVQTL analysis. The sample sizes of 33
cancer types ranged from 35 (cholangiocarcinoma, CHOL)
to 1091 (breast invasive carcinoma, BRCA) (Table 1). From
imputed SNP genotype data, we identified 223 759 unique
MNVs, ranging from 62 514 in BRCA to 138 731 in acute
myeloid leukemia (LAML), with an average of 113 049
MNVs per cancer type (Table 1).

Six molecular phenotypes were used for MNVQTL map-
ping (Table 2). For apaQTL identification, we downloaded
the PDUI data from the TC3A data portal (31), containing
PDUI values for an average of 4144 APA events per cancer
among 32 TCGA cancer types. For eQTL, lncRNA-eQTL
and miRNA-eQTL identification, we obtained gene expres-
sion profiles from the TCGA data portal (9). After filtering
out the genes with low expression (median FPKM < 0.01
for eQTL and lncRNA-eQTL, and average TPM < 0.01 for
miRNA-eQTL), an average of 16 686 coding genes, 13 159
lncRNA genes and 723 miRNA genes per cancer were re-
tained. For sQTL identification, we downloaded the PSI
data from the TCGASpliceSeq database (30). After filter-
ing out the splicing array probes with a missing rate >0.1
or located on sex chromosomes, an average of 34 751 splic-
ing array probes per cancer remained, ranging from 24 708
in UCEC to 43 938 in ESCA. For meQTL, we obtained
the methylation data from TCGA (9), and an average of
380 563 methylation probes per cancer type were retained
for meQTL analyses.

cis- and trans-MNVQTLs in Pancan-MNVQTLdb

For each molecular phenotype of each cancer type, the as-
sociations of MNV–molecular trait pairs were tested for cis-
and trans-QTL mapping with a cutoff of FDR < 0.1 (Table
3). In apaQTL analysis, we identified 31 415 cis-apaQTLs
and 878 trans-apaQTLs. For coding genes, lncRNA and
miRNA expression QTLs, we identified 222 039 MNV–
coding gene pairs, 191 332 MNV–lncRNA pairs and 1421
MNV–miRNA pairs in cis-eQTL analysis. In trans-eQTL
analysis, we identified 996 MNV–coding gene pairs, 16 697
MNV–lncRNA pairs and 154 MNV–miRNA pairs. In
sQTL analysis, 266 486 cis-sQTLs and 357 383 trans-sQTLs
were identified. In the meQTL analysis, there were 685 128
cis-meQTLs and 26 273 trans-meQTLs identified.

Survival and GWAS-associated MNVQTLs

To identify MNVQTLs associated with cancer prognosis,
we associated the MNVQTL genotypes with the survival
time of patients downloaded from TCGA (9) and identi-
fied 46 173 MNVQTLs significantly (log-rank P < 0.05)
related to overall survival. Specifically, we separately iden-
tified 31 484, 25 728 and 28 481 survival-associated MN-
VQTLs in the additive, recessive and dominant models. To
further identify MNVQTLs associated with complex hu-
man diseases or traits, we mapped MNVQTL results into

https://ldlink.nci.nih.gov/
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Table 1. Sample sizes and the numbers of MNVs in Pancan-MNVQTLdb

Sample size in QTL analyses

Cancer type No. of MNVs apaQTL eQTL lncRNA-eQTL miRNA-eQTL meQTL sQTL

ACC 86 722 77 77 77 77 76 77
BLCA 106 344 408 406 406 400 407 406
BRCA 62 514 1091 1091 1091 1059 784 1090
CESC 108 279 299 299 299 242 298 250
CHOL 98 469 36 36 36 36 35 36
COAD 114 555 285 285 285 282 275 285
DLBC 127 570 48 48 48 46 47 48
ESCA 115 155 184 165 165 168 183 180
GBM 118 365 150 149 149 149 50 150
HNSC 108 197 518 500 500 489 517 499
KICH 97 672 66 66 66 66 65 66
KIRC 118 716 525 526 526 507 315 527
KIRP 128 472 290 290 290 289 273 290
LAML 138 731 122 107 107 113 121 122
LGG 121 213 515 513 513 499 514 514
LIHC 104 191 369 369 369 363 368 369
LUAD 111 666 511 514 514 504 455 512
LUSC 92 112 500 500 500 469 370 500
MESO 126 960 87 87 87 82 86 87
OV 70 947 291 265 265 289 8 300
PAAD 133 398 178 178 178 178 177 178
PCPG 123 425 178 178 178 175 177 178
PRAD 127 053 494 494 494 476 493 494
READ 117 161 – 94 94 91 91 94
SARC 102 014 258 258 258 255 257 258
SKCM 128 871 103 103 103 97 103 103
STAD 109 256 414 376 376 409 371 414
TGCT 127 357 150 150 150 148 149 149
THCA 129 070 503 502 502 497 502 503
THYM 130 258 120 120 120 120 119 120
UCEC 129 128 176 176 176 175 171 176
UCS 93 616 56 56 56 56 55 56
UVM 123 160 80 80 80 77 79 80

GWAS regions and identified 119 762 MNVQTLs overlap-
ping with GWAS loci.

Database construction of Pancan-MNVQTLdb

All results were stored in the MongoDB database (version
3.4.2). A user-friendly web interface, Pancan-MNVQTLdb
(http://gong lab.hzau.edu.cn/mnvQTLdb/), was con-
structed based on Flask (version 1.0.3) framework to
support data browsing, searching and downloading. The
database was running on Apache2 web server (version
2.4.18) and was compatible with modern browsers.

The function and usage of Pancan-MNVQTLdb

Pancan-MNVQTLdb provides a user-friendly web inter-
face (http://gong lab.hzau.edu.cn/mnvQTLdb/) for users to
browse, visualize, search and download different types of
MNVQTLs.

We provided a quick entry on the ‘Home’ page for users
to conveniently access each module (Figure 2A). We also
offered an aggregation search option for users. By enter-
ing an MNV, a gene or a genomic region, users could ob-
tain integrated search results, including the information for
all associations of the query MNV in each QTL type (Fig-
ure 2B). In the separate query pages for each QTL type
(Figure 2C), users could obtain a table containing detailed

information on query results on these pages (Figure 2D).
In that table, users could also get the boxplot showing the
distribution of the molecular phenotype in each genotype
group (Figure 2E). The result table contained eight stan-
dard columns, i.e. cancer type, QTL type, MNV ID and
five additional columns of the association statistics, which
are beta value, standard error, Pearson correlation, P-value
and FDR. Other columns varied according to the molecular
phenotype, showing the specific information of the corre-
sponding molecular phenotype. For example, on the ‘eQTL’
page, the columns for molecular phenotype would be gene
position, gene name and gene ID.

Similar to the ‘QTL’ pages, users could obtain a table
containing the survival analysis results on the ‘survival-
QTL’ page, including the analysis model, samples, median
survival time and the log-rank P-value. Users could ob-
tain a KM curve plot showing the difference in survival
time among different genotype groups (Figure 2F). On the
‘GWAS-QTL’ page, users could get a table of MNVQTLs
overlapping the LD regions of GWAS risk variants and the
LD information between MNVs and GWAS risk variants,
including R2, D-prime and the associated traits.

In Pancan-MNVQTLdb, datasets for six types of MN-
VQTLs, survival-QTLs and GWAS-QTLs are freely avail-
able from the ‘Download’ page. Additionally, users can find
the definition of MNV and a tutorial for using this database
on the ‘Help’ page. Pancan-MNVQTLdb is open to any

http://gong_lab.hzau.edu.cn/mnvQTLdb/
http://gong_lab.hzau.edu.cn/mnvQTLdb/
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A
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C

Figure 2. The interface of Pancan-MNVQTLdb. (A) Browser bar in Pancan-MNVQTLdb and main modules in Pancan-MNVQTLdb, including ‘apaQTL’,
‘eQTL’, ‘lncRNA-eQTL’, ‘miRNA-eQTL’, ‘meQTL’, ‘sQTL’, ‘Survival-QTL’, ‘GWAS-QTL’ and ‘Download’ modules. (B) Example of the aggregate search
in the Pancan-MNVQTLdb. (C) The query page of the specific MNVQTL section (sQTL is shown). (D) Search results of sQTL dataset. (E) An example
of the boxplot provided on the search result page. (F) An example of a KM plot provided on the survival-QTL result page.
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Table 2. The numbers of molecular phenotypes in Pancan-MNVQTLdb

Number of molecular phenotypes in QTL analyses

Cancer type APA event Coding gene lncRNA gene miRNA gene Methylation probe Splice event

ACC 3115 16 098 10 387 744 407 747 26 621
BLCA 3781 16 564 11 962 761 372 097 32 126
BRCA 5380 16 777 13 315 646 368 273 38 429
CESC 3269 16 509 12 147 732 371 369 33 444
CHOL 3565 16 602 12 069 702 379 193 31 209
COAD 3357 16 553 12 127 665 387 590 27 467
DLBC 3659 16 095 11 354 733 381 312 26 278
ESCA 4511 17 317 18 932 695 373 181 43 938
GBM 5354 17 108 14 979 – 380 049 38 905
HNSC 4647 16 608 11 587 741 384 470 35 649
KICH 4478 16 467 12 767 638 387 055 39 172
KIRC 4907 16 846 14 727 587 375 521 39 697
KIRP 4356 16 544 12 665 670 385 983 33 439
LAML 3755 16 558 18 745 516 395 506 29 805
LGG 5252 16 953 14 201 771 384 927 41 897
LIHC 3128 15 895 9583 733 359 912 26 211
LUAD 4472 16 944 13 813 738 384 051 37 237
LUSC 5127 17 106 14 345 723 375 056 39 641
MESO 4000 16 611 12 179 712 375 122 36 011
OV 6175 17 123 16 412 727 384 253 41 416
PAAD 4467 17 114 13 181 688 375 660 39 105
PCPG 3697 16 456 11 809 779 389 173 34 322
PRAD 4705 16 848 12 918 610 378 419 37 655
READ – 16 638 12 423 681 387 226 29 275
SARC 3911 16 349 11 226 645 359 148 33 923
SKCM 4180 16 267 11 027 796 376 260 34 943
STAD 6979 17 314 18 383 680 361 142 41 434
TGCT 4617 17 591 14 397 993 381 647 35 759
THCA 520 16 487 12 939 742 394 672 39 755
THYM 3774 16 758 13 177 951 377 828 33 235
UCEC 2589 16 801 12 326 748 385 968 24 708
UCS 3734 17 173 13 264 833 388 295 32 023
UVM 3150 15 550 8885 754 390 464 32 068

feedback with the email address provided at the bottom of
the ‘Help’ page.

CONCLUSION AND FUTURE DIRECTIONS

In Pancan-MNVQTLdb, we identified MNVs in 33 hu-
man cancers. By associating them with six molecular phe-
notypes, we found considerable local and distal associ-
ations between MNVs and these regulation-related phe-
notypes. Furthermore, to further understand the poten-
tial function of these MNVs, we tested the association
of MNVs with overall patient survival time and exam-
ined the association of MNVs with disease-related vari-
ants. As a result, we found that many MNVs are signif-
icantly associated with cancer prognosis or complex dis-
ease. To facilitate easy access to the abundant data we gen-
erated, we developed Pancan-MNVQTLdb, a comprehen-
sive resource of MNVs associated with multiple molec-
ular phenotypes. To the best of our knowledge, this is
the first database systematically evaluating the effects of
the MNVs on molecular phenotypes in multiple cancer
types.

While Pancan-MNVQTLdb provides comprehensive
data on associations between MNVs and multiple molec-
ular phenotypes, there are some limitations in this study.
First, we did not analyze the effects of rare MNVs in our
QTL analyses. Rare variants usually need large sample size
populations to analyze their effect, but most cancer types

in TCGA only have ∼400 samples. Rare MNVs (MAF <
0.01) often only have <3 samples with homozygote alter-
native alleles, which would lead to high false positives in
QTL analysis. Thus, we did not analyze rare MNVs in this
study. In the future, we will try to analyze the functions of
MNVs by integrating large sample-size data and designing
possible algorithms specific to rare variants. Second, MNV
is a newly discovered variant type with limited methods ex-
plicitly designed for MNVs, which poses an unprecedented
challenge to deciphering the function of MNVs, especially
distinguishing whether MNVs or SNPs caused the effect
on molecular phenotype. Further studies, especially studies
with precise fine mapping and biological experiments, are
needed to help clarify the causative polymorphism in these
MNVs.

Nevertheless, recent studies have suggested that MNVs
may have a different impact from single variants or
even be more harmful. Therefore, investigating the func-
tions of MNVs will advance the understanding of genetic
variants and provide opportunities to bridge the knowl-
edge gap from multiple variants in sequence to pheno-
types. Currently, MNV studies are still much less than
SNV studies. In the future, with the increasing number
of genotype data and molecular phenotype data from
large consortium projects, we will consider updating the
Pancan-MNVQTLdb database and maintaining it as a
valuable resource for the genetic and cancer research
community.
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Table 3. The numbers of cis- and trans-MNVQTLs in Pancan-MNVQTLdb

Number of cis-QTLs Number of trans-QTLs

Cancer
type apaQTL eQTL lncRNA-eQTL miRNA-eQTL meQTL sQTL apaQTL eQTL lncRNA-eQTL miRNA-eQTL meQTL sQTL

ACC 114 141 229 0 2232 675 16 2 34 0 14 22 773
BLCA 1077 5347 6079 48 26 367 8751 40 47 562 2 744 2471
BRCA 2952 15 489 16 787 88 47 013 19 038 56 86 1621 17 3088 2377
CESC 736 3285 3839 62 16 453 7286 47 22 482 0 232 4919
CHOL 1 1 9 0 0 9 6 0 0 0 1 5361
COAD 613 5655 4822 72 17 381 8244 38 59 521 0 424 9
DLBC 41 19 61 2 81 304 0 0 0 0 0 722
ESCA 774 680 1285 15 7199 6641 1 0 193 0 65 15 154
GBM 1082 1741 2146 0 261 6434 0 4 146 0 0 18 697
HNSC 2222 11 658 9403 155 60 066 13 965 26 63 938 0 1393 1871
KICH 165 232 341 2 694 1155 2 0 7 0 2 34 663
KIRC 2344 26 167 19 662 82 46 489 20 699 57 88 1508 15 942 3006
KIRP 889 8863 6735 66 22 815 10 428 75 15 662 2 536 8894
LAML 170 1423 1681 7 6962 1434 0 4 206 0 98 29 418
LGG 2932 25 826 22 946 133 61 047 24 944 78 44 1597 26 2366 3185
LIHC 640 5289 5079 54 20 238 5953 52 7 499 3 410 4115
LUAD 2124 12 168 11 834 100 51 644 14 479 77 63 925 6 1194 2368
LUSC 2105 9021 10 029 97 28 432 14 615 28 58 965 12 620 3858
MESO 242 335 416 3 2572 2127 13 0 99 5 7 9418
OV 1681 1982 2699 26 0 7734 2 16 328 0 0 147
PAAD 757 3472 3682 12 19 525 6769 29 7 341 5 214 28 545
PCPG 569 2753 3113 7 11 098 5925 65 9 262 1 303 16 834
PRAD 2987 27 584 19 529 101 88 604 20 328 83 120 1571 13 10 564 4133
READ 0 497 674 15 3550 2429 0 0 101 0 17 7633
SARC 522 1791 2462 14 8823 6858 2 4 249 1 101 8662
SKCM 385 296 328 0 3457 2549 63 0 98 2 13 28 096
STAD 1684 5809 5336 60 25 021 8765 2 37 505 0 412 1655
TGCT 431 1906 2673 46 7884 5620 0 0 200 1 215 24 744
THCA 318 39 298 22 771 133 80 511 23 126 1 238 1570 35 2006 7460
THYM 354 1972 3088 14 10 193 4457 2 0 236 8 183 9923
UCEC 240 749 1056 5 4687 2878 15 3 202 0 75 3119
UCS 41 26 20 0 410 262 1 0 4 0 0 28 274
UVM 223 564 518 2 3419 1605 1 0 65 0 34 14 879
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