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The large amount of repeats, especially high copy repeats, in the genomes of higher
animals and plants makes whole genome assembly (WGA) quite difficult. In or-
der to solve this problem, we tried to identify repeats and mask them prior to
assembly even at the stage of genome survey. It is known that repeats of differ-
ent copy number have different probabilities of appearance in shotgun data, so
based on this principle, we constructed a statistical model and inferred criteria
for mathematically defined repeats (MDRs) at different shotgun coverages. Ac-
cording to these criteria, we developed software MDRmasker to identify and mask
MDRs in shotgun data. With repeats masked prior to assembly, the speed of as-
sembly was increased with lower error probability. In addition, clone-insert size
affects the accuracy of repeat assembly and scaffold construction. We also designed
length distribution of clone-inserts using our model. In our simulated genomes of
human and rice, the length distribution of repeats is different, so their optimal
length distributions of clone-inserts were not the same. Thus with optimal length
distribution of clone-inserts, a given genome could be assembled better at lower
coverage.
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Introduction

Sanger invented the DNA sequencing technology us-  such as that of Drosophila melangoster (11) and

ing dideoxynucleotide chain terminators in 1975 (1).
Then the shotgun sequencing strategy was developed
in the early 1980s (2 — 4).
been the fundamental method for large-scale DNA se-

Shotgun sequencing has

quencing in the last 20 years (5 — 7). However whole-
genome shotgun sequencing (WGA) had been routine
only in small organisms such as bacterial genomes.
Lots of high copy repeats in the genomes of higher
vertebrates make WGA at an enlarged risk of mis-
assembly. In the initial stage of the human genome
project, there were scientific debates over whether to
use hierarchical shotgun sequencing (8) or WGA (9)
to sequence the human genome. The International
Human Genome Sequencing Consortium chose the
latter (10). In recent years, there are some success-
ful examples of WGA of complex eukaryotic genomes,
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Homo sapiens (12) assembled by Celera Genomics,
and that of Oryza sativa assembed by Beijing Ge-
nomics Institute (13, 14).
tions of capillary sequencers, the clone-end pair infor-

With extensive applica-

mation is likely to reduce assembly trouble due to re-
peats. Therefore WGA will become the major method
in genome research in the following years. Compared
to “regional chromosome assembly”, WGA can assem-
ble random shotgun data without any high-density
genetic or physical maps, so it has advantages of high
speed, easy pipelining and little laborious headwork.

Here we present a statistical model, which inferred
standards for identifying mathematically defined re-
peats (MDRs). With MDRs masked before assembly,
the risk of mis-assembly was reduced and the speed
of assembly was increased.

In the strategy of repeat-masked assembly, de-
tected repeats were masked prior to the assembly,
For the

purpose of gap closure, clone-inserts should cover re-

thus leaving so many gaps in the genome.
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peats at least twice, so it is necessary to design the
length distribution of clone-inserts. First, clone-insert
sizes affect repeat assembly. With proper clone-insert
sizes, gaps were closed and the assembly was accu-
rate (Fig. 1, A). If clone-inserts were not long enough
to cover repeats, there would be many hubs linking
to similar but distinct repeats. Thus we could not
determine the correct path of assembly (Fig. 1, B).
On the other hand, because of the varience(usually
not less than +10%) of clone-inserts, if the length of
clone-insert was more than 10 times that of repeats,

we would mis-evaluate the accurate number of short
tandem repeats (Fig. 1, C). Second, clone-insert sizes
also affect scaffold construction. If clone-inserts were
too short (approaching repeat length), it would lead
to insufficient coverage and failure in bridging across
contigs, gaps could not be closed (Fig. 1, D). On the
contrary, too large clone-inserts would result in inter-
leaving scaffold problems (Fig. 1, E), and we might
incorrectly estimate the length distribution of gaps
and of the total length of the genome.
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Fig. 1. The effect of clone-insert size on the accuracy of repeat assembly and scaffold construction. A. Repeats

are assembled correctly with proper clone-insert size; B. If the clone insert is too short, the hubs linking to similar but

distinct repeats make us unable to judge the correct path of assembly; C. If the clone insert is too long, we were not

able to estimate the exact number of short tandem repeats because of the variation of clone-inserts, which is usually

not less than £10%; D. Clone inserts being too short result in insufficient coverage, thus leaving too many gaps; E.

Clone inserts being too large lead to interleaving scaffold problem.

Results

Recognizing MDRs using the model

From the model, we could deduce standards for recog-
nizing MDRs at different shotgun coverage. Because
1-copy sequences (non-repeats) in shotgun data usu-
ally cover more than 2/3 of the genome, the probabil-
ity of non-repeats being incorrectly defined as repeats

should be controlled to a small (e.g. about 0.3%)
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number to avoid the false positive. Following this rule,
we calculated a series of threshold depth by Py (see
Methods) and selected these depth (Table 1) as stan-
dards for recognizing MDRs at different coverage. If a
20-mer appeared more frequently than the standard,
we regard it as a repeat at that coverage, otherwise
as a non-repeat. When we use these standards, we
could further reckon the false negative by G, (see
Methods). We compared MDR detection efficiency at
different standards for shotgun coverage of 1X and 4X
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respectively (Fig. 2). And with the series of standards
for recognizing MDRs, we also showed MDR detection
efficiency at different shotgun coverages (Fig. 3). It is
shown when coverage approached 4X and above, re-
peats with more than 5 copies could be detected, but
increasing coverage contributed little to the efficiency
of repeat detection.

To verify the feasibility and repeat-detecting effi-
ciency of our model, we developed the software MDR-
masker to find MDRs in the genome. MDRmasker
was once applied to find repeats in simulated 2X, 4X,
4X+2X data of human and bacterial artificial chromo-
some (BAC) sequences of rice, which were described
and discussed elsewhere (13, 14).

In this paper, we focus on repeat detection ef-
ficiency and genome assembly result of a 6X simu-
lated data of the human genome. We randomly se-
lected high quality reads from 87 human BAC (Table
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Fig. 2. The probability of detecting repeats of diffe

2), which came from a region of 11.9 Mb (3p24.3 to
3p26.1) on human chromosome 3. In the overlapping
region, reads were picked out from only one BAC, so
that the coverage of all the segments was equal. We
merged all the data and established a 6X test set of
human sequences. We run MDRmasker to detect re-
peats from the simulated data set (Fig. 4). After
masking detected repeats with poly ‘N’ prior to as-
sembly, we assembled the remaining data longer than
10 bp by Phrap. The information of clone-end pairs
was further used to recover long repeats in the contigs
and construct scaffolds (multiple contigs organized in
correct order and orientation). Thus the assembly
was finished (Table 3). We assembled the 6X test
data set of human sequences by a straightforward use
of Phrap as control. Unfortunately, the program died
after a running of more than 400 h, which was more
than ten times that used for repeat-masked assembly.

Probahility of repeats
=

hemp

i 4 & 7 i 15

Copy number of repeats m the

L mNme

r] (=]

-
4

3
— 7 ] T —m— i

rent copy number at different coverage and different depths.

A. Results of a shotgun coverage of 1X; B. Results of a shotgun coverage of 4X. Each solid line depicts a depth, which

may be a candidate standard.
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Fig. 3. The probability of detecting repeats as a function of their copy number in the genome at shotgun coverage

of 1X, 2X, 3X, 4X, 5X, and 6X.
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Fig. 4. The probability of detection of repeats in a 6X test set of human sequences. The solid line depicts the
theoretical probability as predicted by the statistical model, and the triangles depict the actual probability detected by
ADRmarker.
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Fig. 5. With a 10X coverage of clone-inserts of 3 kb, 8 kb, 20 kb, and 50 kb, it shows the probability of clone-inserts

covering gaps as a function of gap length at a 10X coverage.

Table 1 Standards for Identifying Repeats at Different Shotgun Coverage

Coverage 1X 2X 3X 4X 5X 6X
Repeat identifying 5 7 9 11 13 14
standards

Table 2 Information of 6X Simulated Data Set of Human Sequences

Number of reactions 142,177
Genome size (Mb) 11.9
Average Q20 read length (bp) 528.88
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Table 3 Assembly Results of 6X Test Set of Human Sequences

Number of contigs 2320
N50 contig length (kb) 10.42
Total genome size (kb) 12,165
Number of Singletons 5047
Coverage (X) 6.18
Misassembled Contigs 12
Frequency of mis-assembly 0.52%
Total length of mis-assembly (bp) 64,629
Length ratio of mis-assembly 0.53%

Table 4 The Recommended Length Distribution of Clone-Inserts without Considering the Length
Distribution of Repeats

Clone-insert Coverage of Converted successfully Sequenced
size (kb) clone-inserts (X) coverage(X)
50 10 0.2
20 10 0.5
8 10 1.25
3 10 3.33
0.5 * 1.3 1.3
Total 6.6

* Means either end of insert is successfully sequenced.

Table 5 Information of Simulated Genomes, for Which Length Distribution of
Clone-Inserts Are Designed

Human Rice
Genome size (Mb) 11.9 4.5
Average Q20 read length (bp) 528.88 551.21

Table 6 Optimal Length Distribution of Clone-Inserts for Simulated Human Genome

Clone insert Coverage Converted Converted Converted
sizes (kb) of clone successfully successfully successfully
inserts(X) sequenced sequenced sequenced

clones reactions coverage (X)

0.5% 1.1 26,999 26,999 1.2
3 9.0 35,700 71,400 3.2
8 8.3 12,346 24,692 1.1
20 10.0 5,950 11,900 0.5
50 0.0 2 4 0.0
Total 134,995 6

* Means either end of insert is successfully sequenced.
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Table 7 Optimal Length Distribution of Clone-Insert for Simulated Rice Genome

Clone insert Coverage Converted Converted Converted
sizes (kb) of clone successfully successfully successfully
inserts(X) sequenced sequenced sequenced

clones reactions coverage (X)

0.5% 1.2 11,526 11,526 1.201
3 8.7 13,920 27,840 2.9
8 9.5 5,700 11,400 1.188
20 9.5 2,280 4,560 0.475
50 12 1,152 2,304 0.24
Total 57630 6

* Means either end of insert is successfully sequenced.

Designing the length distribution of
clone-inserts using the model

As a result of repeats masked, there were lots of gaps
to be closed. Because the length of gaps is quite differ-
ent, clone-inserts should be a series of sequences with
different length, and the longest clone-insert should
cover the longest repeat effectively. If the length dis-
tribution of repeats (gaps) in the target genome was
not known, a coverage of 10X was recommended for
each of the series of clone-inserts (Table 4), so that the
probabilities of series of clone-inserts covering series
of gaps at least twice could be all approaching 99%
(Fig. 5). At this time, the accumulative successful
sequencing coverage was about 6.6X.

For any given genome, the length distribution of
repeats(gaps) could be calculated out. We made sim-
ulated genomes of human and rice (Table 5) and de-
signed length distribution of clone-inserts for them.
53 BAC sequences of Oryza sativa L. ssp. in-
dica were retrieved from http://www.tigr.org/tigr-
scripts/IRGSP /Rstatus.cgi?chr=4&spp=indica, and
concatenated as simulated rice genome. And the ref-
erence sequence of the 87 human BAC mentioned
above was concatenated and used as simulated human
genome. With length distribution of gaps in the sim-
ulated genomes reckoned by random sample method,
we calculated the probability of series of clone-inserts
covering gaps of different length using equations (5)
and (6). Meanwhile, with the reckoned length dis-
tribution of gaps, we also estimated the expectation
of uncovered gaps. Thus we knew how many base
pairs were not covered effectively in a unit length of
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the genome. With the restriction of a given coverage
(e.g. 6X), we could get an optimal length distribu-
tion of clone-inserts by a non-linear programming al-
gorithm. In essence, the optimal length distribution of
clone-inserts minimized the length of uncovered gaps.
However, it was not necessary to keep the length dis-
tribution of clone-inserts at such a high precision ob-
tained by non-lineal programming. So we manually
adjusted length distributions of clone-inserts by Mi-
crosoft excel. The results of optimal length distribu-
tion of clone-inserts for man and rice are shown in Ta-
ble 6 and Table 7, respectively. Repeats in simulated
rice genome are much larger than those in simulated
human genome. As a result, the optimal length distri-
butions of clone-inserts for rice and human sequences
were not the same. We set a minimal size of repeats
so that repeats shorter than 200 bp were not consid-
ered. In the simulated human genome, repeats range
from 0.2 to 6 kb; while in the simulated rice genome,
they range from 0.2 to 25 kb. Therefore, clone-inserts
were mainly 3, 8, and 20 kb for simulated human, and
with an additional 50 kb for simulated rice.

Discussion

There were two reasons for choosing human sequences
as simulated data to test MDRmasker.
genome is the most repetitive one we have at present

First, our

and, second, we can further use the human finishing-
map to test the validity of the repeat-masked assem-
bly.

We could not assemble 6X test data of human se-
quences using common Phrap, because there were so
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many repeats that Phrap failed to decide the correct
assembly path from similar but distinct repeats. How-
ever, we successfully assembled the same data using
the repeat-masked assembly strategy. After masking
the repeats , the process of assembly was largely sim-
plified and Phrap was able to handle much larger data
sets than in a common assembly process. So the sta-
tistical model for recognizing repeats was of great im-
portance in WGA of complex eukaryotic genomes.

The repeat-masked assembly process had a little
discrepancy if the size of the data set was different. If
the target genome was in the order of millions or tens
of millions of base pairs (e.g. the 6X test set of hu-
man sequences is 12 Mb in size), the repeat-masked
sequences were assembled straightforwardly. But if
the target genome was more than hundred megabases
(e.g. the rice genome is 466 Mb), we must cluster
repeat-masked data into several groups by their ho-
mology and preliminarily assemble them within the
groups. After that, we recovered repeats in the con-
tigs according to the original data, and clone-end
pairing information was used to re-assemble data be-
tween groups. Because the clustering of data might
be improper, pairwise alignment of contigs by BLAST
(15, 16) were made to be de-redundant. Clone end
pairing information was further used to construct the

scaffold.

Given a point [i] with depth &, there would be k reads
having a starting point in the region of [i — L + 1,7]
in the genome; but the other N — k reads would not
have a starting point in that region. And the length

P(Yikzl)chlif(

Because the total genome length G was much
larger than the average Q20 read length L, we did
not consider the deviation of probability of both start

G

Methods

Herein we define some words used in our paper. Copy
number means the times a sequence occurs in the
genome. Coverage means the times a genome is repre-
sented in the shotgun data. Depth refers to the num-
ber of times a fragment appears in the shotgun data.
Q20 read length refers to the length of high quality
reads, the error probability of which is less than 1072,
We define G, L, N, F by

G =total genome length;
N = qualified reaction number;
L = average Q20 read length;

F = the minimal recognizable fragment length.

To simplify the model, two assumptions were
made. First, we supposed each Q20 read length being
equal to L, and thus average Q20 read length was also
L. Second, repeats shorter than the minimal recog-
nizable fragment length F', which was 15-20 bp in our
model, would not be considered.

Depth of a single base in shotgun data

First, we defined a random variable Y;; to describe
the depth of a single base in shotgun data.

when Point ¢ has depth of k

otherwise

of the region was L. If the starting points of all the
reads were distributed randomly in the genome, the
probability of the random variant Y;; being equal to
1 was:

o) (1-3) 0

and end L — 1 base pairs in the genome. Thus equa-
tion (1) is tenable for each point in the genome and
the mean of points of depth k is:

L

o= r(S) =e es(2) (-5 >

i=1
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Especially, the mean of points of depth 1 is:

E(i) = NL(

Depth of fragments of a given length in
shotgun data

Second, we reckoned the depth of fragments of a given
length in shotgun data. Due to lack of position in-
formation and relationship with the other fragments,
it was not likely that we would recognize MDRs only

P(Yi = 1) = Ck (=

When considering fragments instead of single
bases, we just needed to substitute L — F'+1 in equa-
tion (4) for L in equation (1). The corresponding
conclusions remained unchanged.

In genome surveys, to avoid identical fragments
occurring by chance, the choice of fragment length de-
pends on the total genome size. For example rice has a
total genome size of 430 Mb and a total number of seg-
ments of about 108, so we chose 20 bp as its fragment
length. Thus there could be 42 (about 10'?) kinds of
unique 20-nucleotide oligomers (20-mers). As a result,
identical 20-mers by chance would not occur. But if

1- =
G

L—F—|—1>k<1

N-1
A 3)
from single base, so we considered fragments of a given
length. Similar to the case of single bases, given a
fragment (length F' and starting point [¢]) with depth
k, there would be k reads having starting points in the
region of [i — L + F,i] in the genome, but the other
N — k reads would not have starting points in that
region. So the equation changed into:

L—F+1)N—k

- (®)

we consider a bacterial genome, with a total number
of segments of about 10%, 15 bp was long enough to
avoid identical fragments by chance.

Depth of fragments of a given length in
MDRs

Now we began to find the depth of fragments with a
given length F' in MDRs.

As inferred in 2.1, the mean of points with depth
k is E(Y})in shotgun data. Here we defined Py by

P, = E(Y3)/G,

where the variant Pj is the probability of points of
depth k appearing in shotgun data.

As inferred in 2.2 the probability of fragments with
a given length F' has depth k in shotgun data, as long
as we change the value L into L — F'+1. However, the
probability mentioned above was actually the proba-
bility of non-repeats, since we had supposed that each
fragment only appeared once in the genome. In fact,
repeats of m copy number actually appeared at m dif-
ferent positions in the genome, the observed depth of

which was the sum of depth at all of the m positions.
For example, depth 0 means that each of the m po-
sitions has depth 0; and depth 1 means that at one
position there is depth 1 and at the other positions
depth 0; similarly, depth 2 means there were either
depth 1 at two positions and depth 0 at the others,
or depth 2 at one position and depth 0 at the others,
etc. The probability of m-copy repeats having depth
k in shotgun data was defined as Gyt :

Gmo = P
Gp1=CL P -Pt
Gma=C2, -PZ-P" 24+ CL . Py P!

Gz =C3 -P}-P"?4+C2.C)-P-Py-P) 2+ CL-Py- P!
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where G,,;4 refers to the probability of m-copy re-
peats having depth j and above.

Designing length distribution of clone-
inserts

Because repeat assembly and scaffold construction
were both affected by clone-insert sizes, we tried to
design the length distribution of clone-inserts using
our statistical model. The successful sequencing ratio

Pk:P(Yik:l):CJIif<
G
where Py, denotes the probability of clone-inserts with
length L covering repeats (of start point [7] and length
F) k times; N refers to the total number of clone-
inserts; and G is the length of genome.
Equation (5) was used to design the length dis-

Py =1-Py— Py.
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