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ABSTRACT

Synonymous single nucleotide variants (sSNVs) are
common in the human genome but are often over-
looked. However, sSNVs can have significant bi-
ological impact and may lead to disease. Exist-
ing computational methods for evaluating the ef-
fect of sSNVs suffer from the lack of gold-standard
training/evaluation data and exhibit over-reliance on
sequence conservation signals. We developed syn-
Vep (synonymous Variant effect predictor), a ma-
chine learning-based method that overcomes both of
these limitations. Our training data was a combina-
tion of variants reported by gnomAD (observed) and
those unreported, but possible in the human genome
(generated). We used positive-unlabeled learning to
purify the generated variant set of any likely unob-
servable variants. We then trained two sequential
extreme gradient boosting models to identify sub-
sets of the remaining variants putatively enriched
and depleted in effect. Our method attained 90%
precision/recall on a previously unseen set of vari-
ants. Furthermore, although synVep does not ex-
plicitly use conservation, its scores correlated with
evolutionary distances between orthologs in cross-
species variation analysis. synVep was also able
to differentiate pathogenic vs. benign variants, as
well as splice-site disrupting variants (SDV) vs. non-
SDVs. Thus, synVep provides an important improve-
ment in annotation of sSNVs, allowing users to focus
on variants that most likely harbor effects.

INTRODUCTION

The recent increase in accessibility of sequencing has fa-
cilitated a rise in precision medicine efforts focused on the
interpretation of the effects of individual-specific genome
variation (1). Genome-wide association studies (GWAS)
have identified multiple variants marking specific pheno-
types (2). However, the evaluation of variants in terms
of their functional contributions to molecular pathogenic-

ity mechanisms holds promise for both a better under-
standing of disease and drug discovery/optimization (3).
SNVs (single nucleotide variants) are the most common
variants in the human genome (4). Three types of SNVs
are of particular interest––regulatory (i.e. changing the
quantity/production of the gene product, e.g. transcrip-
tion or splice site variants), non-synonymous (i.e. altering
product protein sequence), and synonymous (i.e. variants
in protein-coding regions that, due to the degeneracy of the
genetic code, do not alter the protein sequence). Many com-
putational tools have been developed to evaluate the func-
tional effects of regulatory and non-synonymous variants
(5,6). However, while an individual genome carries as many
synonymous as non-synonymous SNVs (7), the former are
often disregarded as functionally irrelevant. Still, sSNVs
can cause disease (8) and affect gene function via multi-
ple mechanisms, including binding of transcription factors
(9), splicing (10), mRNA stability (11–13), co-translational
folding (14–16), etc., as reviewed in our earlier work (17).

Existing methods for predicting sSNV effects are ei-
ther (1) sSNV-specific tools, including SilVA (18), reg-SNP-
splicing (19), DDIG-SN (20), TraP (21) and IDSV (22), or
(2) general-purpose ones, including CADD (23,24), DANN
(25), FATHMM-MKL (26), and MutationTaster2 (27).
The number of computational sSNV effect predictors is
limited in comparison to that of nsSNV (non-synonymous
single nucleotide variant) effect predictors, as reviewed in
(6,17). Partially, this paucity is due to the limited available
experimental data evaluating variant effects, which could
be used for training or testing of such methods. In fact, all
existing predictors, except CADD and DANN, are trained
using ‘pathogenic’ variants from databases such as Human
Gene Mutation Database (HGMD) (28) and ClinVar (29).
Here we note that ‘pathogenicity’ is not equivalent to ‘func-
tional effect’ (30,31) and inferring variant-disease causality
is complicated by this inequality. The experimental disease
variant annotations are also often unreliable (17), as it is
difficult to distinguish causative variants from simply asso-
ciated ones. Moreover, the pathogenic label is inconsistent
across databases, and possibly over time/database releases.
Finally, even these labeled effect variants are few; even fewer
are experimentally labeled neutral polymorphisms. Thus,
predictors trained on these variants are likely insufficient to
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predict the effects of tens of millions of possible sSNVs in
human genome.

Using positive-unlabeled learning (32–34), we inferred
a subset of human sSNVs that could be used for train-
ing a predictor of sSNV molecular effect. We then devel-
oped, synVep (synonymous Variant effect predictor), a ma-
chine learning-based method for scoring putative effect for
each possible human sSNV. synVep discriminated experi-
mentally validated pathogenic sSNVs from randomly sam-
pled common variants. Its predictions also displayed the
expected trends (35) in evolutionary distances between or-
thologs, where the sSNVs corresponding to evolutionarily-
close human relatives’ (e.g. chimp) reference nucleotide,
have lower effect scores than those corresponding to the nu-
cleotides of further away organisms (e.g. fruitfly). Further-
more, nucleotides that are not identified in any of the species
evaluated here are deemed to have most effect when substi-
tuted into the human reference. However, many of the sS-
NVs that are not observed in the human population, tend
to be scored very high (most effect), regardless of their ap-
pearance in other species.

In line with our earlier observations (17), we find that
the variant frequency in the population is poorly correlated
with the effect score; i.e. rare variants are about equally
likely to have no effect on gene function as common vari-
ants (65% common versus 69% rare). synVep does not
rely on conservation and is developed without an experi-
mental or explicitly evolutionarily estimated gold-standard
training/development set. Its success thus suggests the fea-
sibility of a similar approach for the development of a train-
ing set for other variant types, e.g. nsSNVs or indels. We ex-
pect that synVep predictions will greatly contribute to our
understanding of pathogenicity pathways and to the prior-
itization of synonymous variants in disease.

MATERIALS AND METHODS

Data collection

We extracted all 93 437 human protein-coding transcripts
from the Ensembl BioMart (36) GRCh37 p.13 assembly (37)
and discarded the ones containing unknown nucleotides,
lacking a start/stop codon, or having patched (https://
grch37.ensembl.org/Homo sapiens/Info/Annotation) chro-
mosome IDs. We then generated all possible sSNVs for
the remaining 72 400 transcripts. We further used AN-
NOVAR (38) (installed 5 August 2019) to extract sSNVs
in these transcripts, and their allele-count based frequen-
cies, from the Genome Aggregation Database exome subset
(gnomAD exome) (39). An sSNV present in gnomAD was
labeled a singleton if it was seen in only one individual and
otherwise labeled observed. Generated sSNVs were those in
the set of all possible variants in the 72,400 transcripts that
were not singleton or observed. Thus, we collected 4 160 063
observed, 3 438 470 singleton and 57 208 450 generated sS-
NVs (https://zenodo.org/record/4763256). Note that these
correspond to 1 520 334 observed, 1 233 878 singleton and
21 314 668 generated sSNVs with unique genomic coordi-
nates and reference/alternative alleles, i.e. in one transcript
per gene.

To evaluate and compare the performance of our predic-
tor to other predictors, we manually curated a dataset of 42

curated-effect sSNVs with known biological effects, includ-
ing the 33 pathogenic variants from the Buske et al. study
(18). We required that all sSNVs in this set were strongly
associated with disease and that there was experimental ev-
idence of their molecular effects. These 42 sSNVs (Sup-
plementary Table S1) mapped to 170 transcript-based sS-
NVs and were excluded from model training throughout
this manuscript.

Variant features

We collected 35 variant and sequence features (Supplemen-
tary Table S2), grouped into six categories: codon bias and
autocorrelation (ten), protein structure (three), mRNA sta-
bility (eight), distance to regulatory factors (four), expres-
sion profile (three), and miscellaneous (seven). The rea-
sons for selecting these features are described in our ear-
lier paper (17). We further calculated the correlation of
feature values across all sSNVs using the dython pack-
age (v0.6.7, https://github.com/shakedzy/dython), where
correlations between continuous-continuous, continuous-
categorical, and categorical-categorical features were com-
puted using Pearson correlation (40), Cramer’s V (41)
and correlation ratio (42), respectively. Feature importance
was obtained by calculating the average performance gain
across all splits where the feature was present.

Transcript expression profiles. We downloaded the
GTEx (43) ‘Transcript TPMs’ dataset (dbGaP Acces-
sion phs000424.v7.p2) and standardized the transcript
expression across tissue samples. We then used the average
expression of each transcript over all samples from the
same tissue as the representative transcript expression for
that tissue.

Calculations of some of the codon bias metrics described
below require a reference set of coding sequences, which are
typically a set of highest expressed transcripts (44). To iden-
tify these references, we collected the maximum expression
values for all transcripts across the 53 tissues. We then se-
lected the transcripts within the highest 1% expression per
tissue. We also used log10 (minimum expression per tissue),
log10 (median expression per tissue) and log10 (maximum
expression per tissue) for each transcript as features.

Codon bias and autocorrelation. A variety of measures
and/or their ‘�’ form (difference in measure value after mu-
tation versus value before mutation) are adopted as features
to characterize the codon bias of transcripts (see Supple-
mentary text for more details), including the Codon Adap-
tation Index (CAI, Supplementary text Equation S1) (44),
Fraction of Optimal Codons (fracOpt, Supplementary text
Equation S2) (45), Codon Usage Bias (CUB, Supplemen-
tary text Equation S3) (46), Intrinsic Codon Deviation In-
dex (ICDI, Supplementary text Equation S4) (47), Syn-
onymous Codon Usage Order (SCUO, Supplementary text
Equation S5) (48), and tRNA Adaptation Index (tAI, Sup-
plementary Equation S6) (49). The calculation of these val-
ues was performed in R (50) and is available as an R package
in https://bitbucket.org/bromberglab/codonbiasmetrics/src/
master/.

These measures describe codon bias from different per-
spectives. CAI, fracOpt and CUB rely on a reference set of
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optimal codons, found in highly expressed genes (51). CAI
computes the geometric mean of relative usage of a codon
compared to the most frequently used codon for the same
amino acid (44). fracOpt is the fraction of optimal codons
in a sequence of a certain length. CUB weighs the frequency
of amino acids in calculating codon bias. ICDI is indepen-
dent of a reference set of genes (47). SCUO borrows the idea
of entropy from Shannon information theory to describe
codon usage bias of sequences (48). tAI focuses on transla-
tional efficiency by taking tRNA levels into account (49).

We also considered codon autocorrelation – a feature that
has not yet been used by any sSNV predictors. In autocorre-
lated sequences, same codons cluster together, whereas they
are separated in anticorrelated sequences (e.g. XXXYYY
is more autocorrelated than XYXYXY, where X and Y are
two different codons) (52). Cannarozzi et al. noted the asso-
ciation between codon autocorrelation and translation dy-
namics and proposed the tRNA pairing index (TPI) to de-
scribe a sequence’s codon autocorrelation. Autocorrelated
sequences benefit from rapid translation due to the recycling
of isoaccepting tRNAs (52). However, we note that the sig-
nificance of recycling is likely weaker if the interval between
two issoaccepting codons is larger––a feature that is not
accounted for in TPI. Therefore, we proposed a new mea-
sure, Codon Autocorrelation Measure (CAM, Supplemen-
tary Equation S7), to describe the variant-specific codon au-
tocorrelation impact penalized by the distance between the
synonymous codons.

Finally, we also introduced the change of frequency mea-
sure (CF, Supplementary text Equation S8), to describe the
amount of impact on codon’s frequency in a sequence due
to the introduction of the variant.

Distance to regulatory and splicing sites. We used as fea-
tures the distances to the nearest splice sites, transcription
factor binding site (TFBS), RNA-binding protein (RBP)
motif, and exonic splicing regulator (ESR). Their genomic
coordinates were obtained from different sources as de-
scribed below. We then computed the distance of a variant
(in nucleotides) to all regulatory sites and selected the min-
imum value as the feature distance. We categorized these
distances (d) into six categories as feature inputs: d = 0,
0 < d ≤ 3, 3 < d ≤ 5, 5 < d ≤ 10, 10 < d ≤ 20 and d > 20.

Genomic coordinates of regulatory regions were inferred
as follows: (i) Splice sites were inferred from the ‘Ge-
nomic coding start’ and ‘Genomic coding end’ of all human
protein-coding transcripts annotated in Ensembl BioMart
GRCh37 p.13 assembly. (ii) We downloaded the Gene Tran-
scription Regulation Database (GTRD, version 18.06) (53)
and identified the genomic coordinates of TFBS, using hg38
to hg19 conversion via CrossMap (54) for correspondence
with our transcript coordinates. (iii) We downloaded the
ATtRACT database of RNA binding proteins and Asso-
Ciated moTifs (55) and mapped the human RPB motifs to
our set of transcript sequences. (iv) We also downloaded
the supplementary data of Cáceres et al. (56) gold standard
ESR motif set and mapped these to our transcripts.

Protein structure. We ran PredictProtein (57), a collection
of tools for protein structure predictions, on all of the trans-
lated transcript sequences. We were particularly interested

in protein secondary structure (PSS), residue solvent ac-
cessibility (SS) and disorder (PD) predictions; in Predict-
Protein, PROFphd (58) predicts PSS and SS, while Meta-
disorder (MD) (59) predicts PD.

mRNA stability, structure and structural changes. We ran
RNAfold (60) to predict (with calculation of partition func-
tion and base pairing probability matrix) the secondary
structure and stability of all transcripts. We extracted
the frequency of the structure with minimum free energy
(MFE) in the structure ensemble, the free energy of the cen-
troid structure, and its distance to the structure ensemble, as
well as the local mRNA structure (strongly paired, strongly
up/down -stream paired, weakly paired, weakly up/down-
stream paired, or unpaired bases).

We also used RNAsnp (61) to predict the variant-induced
local secondary structure changes for all sSNVs. The ‘mode’
and ‘winsizeFold’ parameters should be assigned according
to the length in nucleotides (L) of the input sequence. We as-
signed the parameters as follows: (i) for L ≤ 200, mod = 1
and winsizeFold = 100; (ii) for 200 < L ≤ 500, mod = 1
and winsizeFold = 200; (iii) for L > 500, mod = 2 and win-
sizeFold = 500. We recorded the local structure dissimilar-
ity, global structural dissimilarity and their statistical signif-
icance (P-values).

Model construction

Classifier setup. We standardized all continuous features
and label-encoded categorical features. We compared two
classifiers for differentiating observed and generated vari-
ants: deep neural network (DNN) (62) and XGBoost (63);
we selected XGBoost as the classification algorithm for
its higher accuracy and speed (preliminary experiment de-
scribed in Supplementary Text, Page 2). XGBoost is im-
plemented in Python (v3.6.4) xgboost package (v0.8.2) in-
tegrated with sci-kit learn (0.20.3) (64) (https://xgboost.
readthedocs.io/en/latest/python/python api.html).

Balancing variant data by transcript. The generated set of
sSNVs is much larger than the observed set, but the num-
ber of observed sSNVs per transcript varies greatly. More-
over, some classifier input features are transcript-specific.
Thus, a predictor may ‘memorize’ transcripts that have
more observed sSNVs, and preferentially assign its variants
observed status, instead of finding variant-specific differ-
ences between observed and generated. To avoid this, we as-
signed sampling likelihood weights for the generated set,
i.e. the sampling likelihood weight of a generated variant is
the number of observed sSNVs in the corresponding tran-
script. In all further balancing of data sets, generated sSNVs
were probabilistically added to the set on the basis of their
weights. Thus, the number of generated sSNVs on a tran-
script that were selected for a particular training set was cor-
related with the number observed sSNVs on this transcript.

Positive unlabeled learning (PUL) to identify unobservable
sSNVs. PUL is a semi- supervised approach applicable to
scenarios where only positive data points are labeled and
the rest can be positive or negative (32–34). We employed
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the modified version of PUL (34) to separate the gener-
ated sSNVs into unobservable and not-seen sets. To pre-
vent overfitting, we adopted relatively conservative hyper-
parameters of XGBoost (100 trees [n estimor], 5 maximum
depth [max depth], 30% of the features per tree [colsam-
ple bytree], 30% subsamples per tree [subsample]). We left
out from PUL a fraction of observed as a test set, aiming
to reach <5% incorrect predictions for this set at the end of
the PUL.

In one epoch of PUL, a classifier was trained to differ-
entiate the observed sSNVs from the same number of unla-
beled ones (generated; selected via transcript-based set bal-
ancing as described above). All unlabeled sSNVs, including
the ones not used in training, were evaluated with the result-
ing model and the generated variants classified as observed
(scoring below 0.5) were added to the not-seen pool. The
PUL process was repeated until convergence (Supplemen-
tary text). sSNVs scoring >0.5 in prediction from the last
PUL model were further excluded from our data set. One
pitfall of this PUL strategy is that a fraction of the unla-
beled samples may become positive (observed) with more
sequencing in the future.

Differentiating the observable from not-seen using an inter-
mediate model. We trained a model to differentiate the ob-
servable sSNVs from the not-seen sSNVs (termed interme-
diate model from here on). We excluded 10% (9274) of the
common sSNVs (MAF > 0.01; excluded set) and all curated-
effect sSNVs (170) from the construction of the intermedi-
ate model for testing and final model parameter optimiza-
tion. We split the observed sSNVs into subsets of 9: 0.5: 0.5
size ratio for training (3 631 441 variants), validation and
testing (201 746 variants each). We then randomly sampled
the not-seen variants to match the observed validation and
test set sizes; this left 47 923 258 not-seen sSNVs for training.
We then up-sampled the 3.6M observed variants in the train-
ing set to create a balanced set of 47 923 258 observed and
not-seen variants, each). We tuned the model hyperparame-
ters by optimizing the F-score (Equation 3) of performance
on the validation set and evaluated the resulting model on
the test set.

Precision = TP
TP + FP

(1)

Recall = TP
TP + FN

(2)

F1 score = 2 × Precision × Recall
(Precision + Recall)

(3)

Accuracy = TP + TN
TP + TN + FP + FN

(4)

where TP, TN, FP, FN are respectively, true positive, i.e. ob-
served sSNVs predicted to be observed; true negative, not-
seen sSNVs predicted to be not-seen; false positive, not-seen
sSNVs predicted to be observed; false negative, observed sS-
NVs predicted to be not-seen.

Final model (synVep) training. We used the intermediate
model to score the excluded common and curated-effect sS-
NVs, as well as all observed and not-seen sSNVs. Here we
assumed that common variants should be enriched in no-
effect/neutral variation. Based on the scores of excluded
sSNVs, we defined effect and no-effect synVep develop-
ment sets, where sSNVs (both observed and not-seen) scor-
ing above the median of the curated-effect predictions were
deemed effect; while sSNVs (both observed and not-seen)
scoring below the median of the excluded common sSNV
predictions were labeled no-effect. We thus collected 7 385
137 no-effect and 32 117 625 effect sSNVs.

We split the no-effect and effect sSNVs into subsets of
9:0.5:0.5 size ratio (in the same way as for the intermediate
model) for training, validation and test sets (62 758 222:735
194:735 194 variants per set). We sampled equal numbers
of effect sSNVs to match the no-effect sSNVs in validation
and test sets. We trained the final model on the training set
using the hyperparameters optimized (F-score; Equation 3)
on the validation set. We finally evaluated the model on the
test set. Note that none of the curated-effect, the excluded
common sSNVs, or the ClinVar (described below) dataset
variants were included in our model training.

Performance comparison with other predictors

For all comparisons with other predictors, we calculated
the area under the receiver operating characteristic curve
(auROC) using the pROC package (65) (v1.17.0.1), and
the area under the precision recall curve (auPRC) using
PRROC (66) (v1.3.1). Statistical significance of the differ-
ences between the auROC/auPRC of synVep and those of
other predictors were tested using the pROC package (boot-
strap method with the default settings, n = 2000; source
code was modified to accommodate testing for auPRC).

Common/curated-effect dataset comparison. To evaluate
synVep in comparison with other predictors, we used
the 170 (transcript-based; 42 genomic coordinate-based)
curated-effect sSNVs and the 9274 (transcript-based; 7957
genomic coordinate-based) excluded common sSNVs. Here,
we again assumed that common variants should be enriched
in no-effect/neutral variation.

Other predictors in this comparison included: CADD
(phred-like scaled scores) (23), DANN (25), FATHMM-
MKL (26), DDIG-SN (20) and EIGEN (67). EIGEN
scores were collected using ANNOVAR (38) annotations;
for other predictors, the scores were collected with default
parameters as described in our earlier work (17). We did not
include SilVA (18) or TraP (21) in this comparison because
33 of 42 of the curated-effect sSNVs are in their training sets.

Note that synVep scores are produced per variant per
transcript, while other predictors use the genomic coordi-
nates, i.e. one reference sequence per variant. For the pur-
poses of our comparison, we randomly re-sampled each
tool’s predictions of the effect set (42 variant scores) to pro-
duce 170 scores. Furthermore, as the common sSNVs (pu-
tatively no-effect) outnumbered the effect set, we randomly
sampled 170 common variant scores in 100 comparison it-
erations. For each sampling, we performed a one-sided per-
mutation test (null hypothesis: mean of common variant
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scores is equal to mean of effect scores; alternative hypoth-
esis: mean of common variant sores is lower than mean of
effect scores) and recorded the P-value and the correspond-
ing method accuracy (Equation 4).

We also computed the Spearman correlation across pre-
dictor scores and the Fraction of Consensus Binary Pre-
dictions (FCBP; i.e. the number of binarized predictions
agreed upon by all predictors, divided by total number of
predictions) (17). An effect/no-effect scoring threshold for
the FCBP computation is required; we used the default
value of score = 0.5 for DANN, FATHMM-MKL and
DDIG-SN. For CADD, we used score = 15 as the threshold
recommended by its online documentation (https://cadd.gs.
washington.edu/info). As there was no recommended cut-
off in the EIGEN publication (67), we selected the cutoff
(score = 1.35) at the 75-percentile of EIGEN scores of 1000
randomly sampled observed sSNVs.

ClinVar dataset comparison. We downloaded all Clin-
Var (68) submissions from the FTP site (https://ftp.ncbi.
nlm.nih.gov/pub/clinvar/) and identified the sSNVs among
these. We only considered the sSNVs with the ‘reviewed
by expert panel’ review status. From these we selected the
(i) pathogenic and pathogenic/likely pathogenic variants as
the pathogenic set and (ii) benign and benign/likely benign
as the benign set. There were 51 benign (genomic coordinate-
based; 254 transcript-based) and 17 pathogenic (genomic
coordinate-based; n = 68 transcript-based) sSNVs (Supple-
mentary Table S3). We also annotated these ClinVar sS-
NVs with the precomputed GERP++ scores (http://mendel.
stanford.edu/SidowLab/downloads/gerp/) (69).

Splicing dataset comparisons. We downloaded and ana-
lyzed a dataset of SNV splicing effects (70) (https://github.
com/KosuriLab/MFASS), referenced by genomic coordi-
nates and Ensembl transcript IDs. For comparison with
synVep, we downloaded and ran spliceAI (71) (https://
github.com/Illumina/SpliceAI) and retrieved CADD-splice
(72) annotation from https://cadd.gs.washington.edu/score.
spliceAI predictions are composed of probabilities of splice
acceptor and donor’s gain and loss. Since these outputs are
predominantly zero, we took the maximal value for evalua-
tion purpose, as in (72).

Cross-species sequence variation (CSV) analysis

Cross-species variation (CSV) describes the nucleotide dif-
ference between the human reference sequence and the or-
tholog reference sequence of another species. In this study,
we selected 20 species to generate CSVs: yeast (Saccha-
romyces cerevisiae), worm (Caenorhabdiis elegans), fruitfly
(Drosophila melanogaster), zebrafish (Danio rerio), xenopus
(Xenopus laevis), anole lizard (Anolis carolinensis), chicken
(Gallus gallus), platypus (Ornithorhynchus anatinus), opos-
sum (Monodelphis domestica), dog (Canis familiaris), pig
(Sus scrofa), dolphin (Tursiops truncatus), mouse (Mus
musculus), rabbit (Oryctolagus cuniculus), tree shrew (Tu-
paia belangeri), tarsier (Carlito syrichta), gibbon (Nomascus
leucogenys), gorilla (Gorilla gorilla), bonobo (Pan paniscus),
and chimpanzee (Pan troglodytes).

To represent the evolutionary distance of the CSV species
to human, we obtained the value in million years since

divergence from the TimeTree database (73). Given a hu-
man transcript T and its corresponding human gene G,
we queried Ensembl BioMart for G’s orthologs in the 20
species, Gorthologs = [Gyeast, Gworm, Gfruitfly, . . . , Gchimpanzee].
We downloaded all coding DNA sequences (CDS) for these
orthologs from Ensembl (release-94) (74). For each gene
in Gorthologs, we identified its longest transcript per organ-
ism, Torthologs = [Tyeast, Tworm, Tfruitfly, . . . , Tchimpanzee]. We
then used PRANK (75) to generate a multiple sequence
alignment (MSA) for each T. PRANK aligns CDSs by first
translating them into protein sequences so that gaps tend
to be placed between codons, instead of within codons. For
each codon in each human transcript, we could identify if
other organisms carried the same codon or another, even if
the amino acid remained the same. If the codon was differ-
ent, the corresponding human sSNV was termed a CSV.

Evaluation of synVep predictions according to constraint on
coding regions

Constrained regions (76), referenced by genomic co-
ordinates, were downloaded from https://s3.us-east-2.
amazonaws.com/ccrs/ccr.html. The constraint of human
coding region is measured by percentile (of residuals from
a linear regression for distance-to-mutation prediction as
computed in (76)), where a high percentile indicates a more
constrained region. We annotated the sparsity of sSNVs, i.e.
the fraction of observed sSNVs among all possible sSNVs in
a region of a certain constraint level, and the median synVep
prediction of variants in these regions.

Analysis of sSNVs identified in Qatari Genome

We downloaded all VCF files containing variants identified
from the Qatari Genome project (QTRG) (77) from NCBI
Sequence Read Archive (78) (https://trace.ncbi.nlm.nih.
gov/Traces/sra/?study=SRP061943). We then parsed these
VCF files, extracted the variants, and mapped the sSNVs to
our observed, singleton, not-seen, and unobservable sets.

RESULTS AND DISCUSSION

Generated sSNVs may be observable in the future

In the absence of a gold-standard experimentally validated
data set describing sSNV functional effects, we sought an
alternative for the development of our method. We had pre-
viously proposed to use sSNVs that have been observed in
major sequencing projects versus all other possible human
genome sSNVs (the generated set) for method evaluation
(17). We collected 72 400 human transcripts with 4 160 063
(n = 1 520 334 genomic coordinate-based) observed sSNVs
and 3 438 470 (n = 1 233 878 genomic coordinate-based)
singletons (observed in only one individual) from the ex-
ome sequencing data of the Genome Aggregation Database
(gnomAD exome) (39). We then created a generated set of
57 208 450 (n = 21 314 668 genomic coordinate-based) all
possible sSNVs in these transcripts that were not found in
gnomAD data. Note that only ∼12% of all sSNVs in our set
were ever reported by gnomAD. We annotated these sSNVs
with 35 transcript- and variant-specific features, including

https://cadd.gs.washington.edu/info
https://ftp.ncbi.nlm.nih.gov/pub/clinvar/
http://mendel.stanford.edu/SidowLab/downloads/gerp/
https://github.com/KosuriLab/MFASS
https://github.com/Illumina/SpliceAI
https://cadd.gs.washington.edu/score
https://s3.us-east-2.amazonaws.com/ccrs/ccr.html
https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP061943
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codon bias, codon autocorrelation, transcript stability, ex-
pression level, distance to regulatory sites, predicted protein
secondary structures, etc. (Methods; Supplementary Table
S2).

While the observed sSNVs are not necessarily function-
ally neutral, they are at least compatible with life. The gen-
erated sSNVs, on the other hand, likely comprise two sub-
types: the not-seen sSNVs, which may or may not become
observed with more sequencing, and the unobservable ones,
which cannot be observed given the contemporary variant-
discovery capability. Note that the unobservable character
of sSNVs may be due to a broad range of technical and
biological reasons such as sequencing (79,80), molecular
functional constraints (81), and analytical biases or extreme
deleteriousness resulting in early embryonic incompatibil-
ity with life (82,83). We also note that in our modeling, the
unobservable set may simply be poorly described by our se-
lection of variant features.

We used observed sSNVs as positives in positive-
unlabeled learning (PUL) (32–34) to differentiate the not-
seen sSNVs (similar to observed) from unobservable ones
in the generated (unlabeled) set (Figure 1). At convergence
(epoch 63, Methods; Supplementary Figure S1), PUL parti-
tioned all generated sSNVs into unobservable (n = 6 278 254
transcript-based and 2 764 229 genomic coordinate-based;
11%) and not-seen (n = 50 930 196 transcript-based and 19
730 623 genomic coordinate-based; 89%). Additionally, 8%
(n = 266 192) of singletons were deemed unobservable by
the PUL model, as were 2% of the observed sSNVs (n = 79
639). The latter result highlights the possible insufficiency of
our variant descriptors for capturing the complete observ-
able variant diversity, while the former may also indicate se-
quencing errors. The difference in percentages of variants
misidentified by the model (11% of generated versus 2% of
observed), however, suggests that deleteriousness of variants
also plays a role in defining unobservable variants.

Observed and not-seen variant sets contain both no-effect and
effect sSNVs

We trained the intermediate model (Figure 1) to recog-
nize observed vs. not-seen sSNVs. The model accurately (F-
score = 0.71; Equation 3) recognized the two classes in a
previously unseen variant test set (Supplementary Figure
S2). It also predicted 9% (9 282 542) of the not-seen sSNVs
to be observed (scoring < 0.5), implying that these may be
sequenced in the future.

Although large effect sSNVs may be enriched in the
not-seen group, the intermediate model cannot be directly
used to evaluate effect, because it is only meant to pre-
dict whether an sSNV has been observed or not. To build
a model for effect evaluation, we leveraged the interme-
diate model’s predictions on common variants excluded
from training and the experimentally validated effect sS-
NVs (curated-effect; Methods; 170 transcript-based sS-
NVs). While these curated-effect sSNVs are, in fact, ob-
served, their prediction scores were higher than those of the
excluded common set (Supplementary Figure S2, Mann–
Whitney U test P-value < 2.2e–16). This observation is
likely due to the fact that the not-seen set is enriched, while
the common variant set is depleted, in large effect sSNVs.
We assume this for common variants because large-effect

deleterious variants would not become common and large-
effect advantageous variants would tend to become wild-
type.

We excluded 10% (7957) of the common sSNVs from
training of the intermediate model for selecting the cutoff
of effect/no-effect variants as next described. For training
of the final model, we selected as no-effect those sSNVs
(both observed and not-seen) scoring below the intermedi-
ate model prediction median (0.38) of the excluded common
sSNVs; variants scoring above the intermediate model me-
dian of the curated-effect sSNVs (score = 0.63) were labeled
effect (Supplementary Figure S2). We thus obtained 7 385
137 (2 580 540 observed and 4 804 597 not-seen) no-effect
and 32 117 625 (405 170 observed and 31 712 455 not-seen)
effect sSNVs. We trained the final model (synVep, Figure 1)
to differentiate the no-effect and effect sSNVs (in balanced
class training), using a 9:0.5:0.5 split of data for training,
validation, and testing purposes (Methods). synVep was ac-
curate (F-score = 0.90; binary score cutoff = 0.5) in eval-
uating the hold-out test set (369 257 no-effect and 369 257
effect). Note that synVep prediction scores did not correlate
with allele frequency (Pearson correlation = 0.02).

Feature importance in discriminating effect

We collected 35 features (Supplementary Table S2; Meth-
ods) highlighting the different ways how sSNVs can im-
pact gene function (17). We examined the correlation of
feature scores across all sSNVs (Supplementary Figure S3;
Methods) and computed feature importance for the final
model (Supplementary Figure S4; Methods). Feature scores
correlated within the same feature category for some cate-
gories (e.g. codon context, codon bias, and expression pro-
file), but not across different categories. The most impor-
tant feature for our model was codon mutation (i.e. the wild
type/mutant codon pair), which is consistent with our ear-
lier observation that some codons are preferentially mu-
tated in observed sSNVs (17) and with the Karczewski et
al. (39) observation that CpG-transitions in the popula-
tion are closer to saturation than other mutation types. An-
other codon context feature – next codon, which is highly
correlated with the last codon and codon mutation fea-
tures – was the third most important feature. This reflects
the biological importance of codon pairs in modulating
translational efficiency (84–86). Codon bias measures (and
their changes due to mutation) were also of high impor-
tance (starting at second highest rank), in line with the
abundant evidence of the relationship between codon com-
position and a variety of biologically-relevant factors, in-
cluding gene expression (49,87,88), translational efficiency
(14,89,90), and mRNA stability (91–94). Since codon selec-
tion modulates translational speed and thus cotranslational
folding (95), sSNVs can also affect protein structure (96)
without altering protein sequence. We incorporated protein
annotations (predicted secondary structure, solvent acces-
sibility, and disorder) as features; curiously, solvent accessi-
bility ranked 8th in importance for the synVep model. Sur-
prisingly, most other features had low importance; includ-
ing features related to mRNA structure and stability, which
are known to be directly influenced by sSNVs (8). This is
perhaps due to the fact it is difficult to accurately predict
RNA structure/stability for sequences longer than 500 nu-
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Figure 1. Pipeline of predictor construction. Starting with 4 160 063 observed and 57 208 450 generated sSNVs, 63 epochs of positive unlabeled learning
(PUL) was conducted to separate the generated set into not-seen (observable) and unobservable set (Supplementary text). An intermediate model was
trained using the observed and not-seen sets (observed set was up-sampled to equal amount of not-seen variants). The intermediate model’s predictions for
common and pathogenic sSNVs were used as guideline to set cutoffs assigning no-effect and effect set. The final predictor was trained using the no-effect
and effect sets (no-effect set was up-sampled to equal amount of effect sets). After the final synVep model was trained, it was evaluated on independent
datasets as shown. Here, singletons are sSNVs found in only one individual in gnomAD; observed are any other sSNVs found in gnomAD; generated are
all possible sSNVs, except singletons or observed; unobservable are sSNVs PUL-labeled to be unlike the observed; not-seen are any other generated sSNVs;
effect/no-effect are sSNVs that affect/do not affect the function or quantity of a gene product.

cleotides (97), and over 74% of transcripts in our data are
longer than that.

Note that we did not use conservation as a synVep fea-
ture as it is usually the overarching signal of effect for
most predictors (6) and we were hoping to capture ad-
ditional, more subtle, signals orthogonal to those already
reported. However, we also evaluated synVep’s potential
performance loss due to this choice by re-training the fi-
nal model with an additional conservation feature (we
used GERP++ scores for evaluation purposes (69)). This
model was not significantly better in discriminating no-
effect/effect variants (0.9 versus 0.9 F-score with and with-
out conservation, respectively, in evaluating the test set);
we also note that the difference in distribution of conser-
vation scores across the effect and no-effect data sets was
minimal (Supplementary Figure S5). Driven by this some-
what unexpected lack of conservation difference between
the effect/no-effect sets, we further aimed to validate our
set selection at the intermediate model level. We trained an
intermediate model using conservation as one of the fea-
tures. This model identified a new, conservation-included

set of effect (n = 6 263 638) and no-effect (n = 32 010 049)
sSNVs. This new partition overlapped significantly with
the original one (75% of the original sSNVs were present
and had identical effect/no-effect labels in both data sets).
Moreover, synVep (without the conservation feature) pre-
dicted both data sets equally well. Using a balanced test
set from the original data, it achieved 89%/90% no-effect
precision/recall (Equations 1 and 2) and 90%/89% effect
precision/recall; it achieved a similar performance for a bal-
anced subset of the conservation-included effect/no-effect
set (87%/88% no-effect precision/recall and 87%/88% ef-
fect precision/recall). Given these results, we chose to fur-
ther continue to exclude conservation from synVep features.
This choice makes synVep scores orthogonal to those of
other predictors and allows for the further described cross-
species variant analysis to be performed.

Predictors identify sSNV effect

To evaluate the performance of synVep, we needed a gold-
standard set of designated effect and no effect variants.
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Figure 2. Extraction of cross-species sequence variants (CSV). For each
human protein coding transcript T, codon-oriented multiple sequence
alignment was performed with 20 species’ longest coding sequencing of the
same ortholog as T. The CSV are represented as ‘codon > codon’ format
for specific transcript positions and may coincide with human sSNVs.

However, since there is no experimentally validated ‘neutral’
sSNVs, we used the common sSNVs excluded in training
as neutrals (no-effect), i.e. as described above we assumed
that the majority of common sSNVs have little or no ef-
fect. Note that variants with large deleterious effects could
not become common, while neutral or weak effect muta-
tions could due to genetic drift (98,99). Note, that the pre-
dictors that we discuss below target different classifications
of variants (effect, fitness, pathogenicity, etc.) and are there-
fore not directly comparable on this data set; additionally,
some may have used portions of our test set in training, e.g.
DDIG-SN’s and FATHMM-MKL’s training sets included
common variants from 1000 Genome Project (100), which
may overlap with our test set’s negative samples.

We used the set of curated-effect sSNVs (n = 170) as the
effect group and the subset of common sSNVs (n = 9274) as
the no-effect group to compare the predictor performances
(Figure 3; both sets were excluded from synVep training).
In testing, synVep had the highest auPRC but the low-
est auROC (Figure 3H). However, at the default binary
classification cutoff, synVep and FATHMM-MKL had the
highest accuracy (Figure 3G). Importantly, note that most
predictors failed to differentiate the two groups of vari-
ants at their default cutoff, placing both sets of variants
below (CADD, DDIG-SN) or above the default thresh-
old (DANN, FATHMM-MKL). The absence of a well per-
forming standardized cutoff could arguably limit the prac-
tical applicability of these predictors in annotation of indi-
vidual variant effects.

We further retrieved each predictor’s predictions for all
observed sSNVs. For this set, CADD and DANN predicted
that 2% and 83%, respectively, of all observed sSNVs to be
deleterious; DDIG-SN and FATHMM-MKL find that 1%
and 62%, respectively are pathogenic. Meanwhile, synVep
predicts that 31% of all observed sSNVs are effect – a more

moderate finding in line with, for example, a fruitfly pop-
ulation study that highlighted ∼22% of four-fold synony-
mous sites to be under strong negative selection (101). We
also examined the correlation of the predicted scores (Fig-
ure 4G) and the Fraction of Consensus Binary Prediction
(17) (FCBP; Figure 4H) on all 4 160 063 observed sSNVs for
all predictors (synVep, CADD, DANN, FATHMM-MKL,
DDIG-SN and EIGEN). synVep’s scores were poorly corre-
lated with other predictor scores (Pearson correlation rang-
ing from −0.1 [DANN] to 0.23 [FATHMM-MKL]), while
binary classification was more similar (FCBP ranging from
0.37 [DANN] to 0.69 [CADD and DDIG-SN]).

Singletons are more likely than observed to have an effect

We re-predicted scores of all variants in our data (excluding
unobservable) with the final synVep model. As expected, of
observed sSNVs, only 31.3% were effect (median score 0.15),
while 72.0% of not-seen sSNVs were effect (median score
0.88); singletons were scored/distributed bimodally (Sup-
plementary Figure S6) into the two classes (48.2% effect;
median score 0.47). Note that synVep predictions did not
appear to be driven by site mutability (putative mutation
rate). synVep scores of not-seen sSNVs that share a genomic
position with none, 1, or 2 observed variants do not signif-
icantly differ from each other (median synVep scores 0.86,
0.94, and 0.88 respectively; Supplementary Figure S7).

Singletons were not included in our training because it
is difficult to estimate how many of them are artifacts due
to the 0.1–0.6% error rates of next-generation sequenc-
ing (102). If the singletons are not artifacts, then they are
likely to be individual or ultrarare variants. These are more
likely to be effect than higher frequency variants (103,104).
An excess burden of ultrarare variants (although not nec-
essarily synonymous) is also often seen in diseases, such
as schizophrenia (105–107), Parkinson disease (108), and
bipolar disorder (109). In line with these expectations, we
found that singletons were, on average, scored higher than
observed sSNVs (Supplementary Figure S6), suggesting that
singletons are more likely to have an effect than the observed.

Variant effect predictors differentiate benign and pathogenic
variants

Among the predictors considered in this work, only two
(FATHMM-MKL and DDIG-SN) are explicitly aimed to
assess variant pathogenicity. To investigate whether pre-
dictors for variant functional effect (i.e. not pathogenic-
ity) can identify pathogenic sSNVs, we obtained from
ClinVar 17 pathogenic (genomic coordinate-based, 68
transcript-based) sSNVs and 51 benign sSNVs (genomic
coordinate-based, 254 transcript-based) variants reviewed
by an expert panel. Of these 68 variants, one benign and
one pathogenic (genomic coordinate-based, 13 transcript-
based) were deemed unobservable by our model and
were removed from consideration. These ClinVar sSNVs
were also excluded from training of synVep. Note that
FATHMM-MKL’s and DDIG-SN’s training/testing data
include HGMD-reported variants, which likely overlap
with our ClinVar data, thus biasing predictor perfor-
mance evaluation. All variant-effect predictors, includ-
ing synVep, assigned higher scores to Pathogenic than
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Figure 3. Predictor performance on common vs. curated-effect sSNVs. Panels A–F show the differential predictions on sets of curated-effect (n = 170)
and common sSNVs (randomly selected n = 170) for CADD (phred-like scaled scores), DANN, DDIG-SN, FATHMM-MKL, EIGEN, and synVep,
respectively. Gray line indicates scoring cutoff suggested by tool authors. Neither the common set nor the curated-effect set were included in synVep
training. Permutation tests show that all predictors give significantly different scores between the effect and common variant sets in every iteration, except
for DANN where 11 of 100 comparisons were not significant (P-value > 0.05 after Bonferroni correction). Panel G reports two-class predictor accuracy
(Equation 4) on resampled data (100 resampling sets; common set is down-sampled to match the number of curated-effect variants). Predictors with different
red letters indicate significant difference by ANOVA test and Tukey’s procedure; e.g. CADD’s ‘a’ and DANN’s ‘b’ indicate that CADD’s and DANN’s mean
accuracies are significantly different. Panel H reports the performance (auROC and effect auPRC) of each predictor on the left-out common (negative;
n = 9274) and curated-effect (positive; n = 170) sSNVs. FATHM, DDIG, and EIGEN auROC and auPRC are significantly different from synVep’s (P-
value < 0.05; Methods). Note that the performance comparisons here are limited as each predictor targets a different effect (e.g. pathogenicity vs molecular
effect) and some methods have used our test set in training.

Benign variants (Figure 5A–C and E). However, at the
default/recommended cutoff, only synVep placed the ma-
jority of Benign vs. Pathogenic variants on opposite sides of
the cutoff (Pathogenic recall = 0.58; Benign recall = 0.66)
and thus attained the highest accuracy overall (Figure 5F).

synVep also attained the highest effect auPRC (Figure
5G), suggesting that it can identify disease-causing sSNVs
well even though it was not explicitly trained to do so. How-

ever, synVep attained the lowest auROC, which may be due
to the fact that benign ClinVar variants are actually func-
tionally significant (effect) and are thus predicted by syn-
Vep as such but classified as wrong by ClinVar annotation
(FP). In our definition, a variant of some effect is not nec-
essarily pathogenic, but pathogenic variants are expected to
have effect. Thus, experimentally validated pathogenic vari-
ants predicted to be no-effect by synVep are likely errors,
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Figure 4. Predictions of effect of observed sSNVs. Panels A–F show predictions on all observed sSNVs (n = 4 160 063) by CADD phred, DANN, DDIG-SN,
FATHMM-MKL, EIGEN and synVep, respectively. Red dashed lines indicate the default predictor cutoff for binary classification. Panel (G) Spearman
correlation and (H) fraction of Consensus Binary Prediction (FCBP) highlight similarity and lack thereof among the predictors for all observed sSNVs.

but benign variants predicted be effect are possibly correctly
identified as having functional impact, which does not nec-
essarily correspond to disease.

Note that because synVep’s predictions are transcript-
based, they can differ for the same variant across multiple
transcripts. Aggregating these predictions to score a variant
is not trivial: one can use the mean, maximum, or median
scores. A more sophisticated approach would be to weigh
the scores from different transcripts by their expression level
in multiple tissues. Specifically, if the question is about a
disease and if the disease is primarily associated with one
tissue, only the transcript most expressed in that tissue can
be considered. However, given the complicated regulation

and genetic interactions, this idea needs further validation.
An evaluation of predictions for the same variant, however,
highlights an interesting observation: only 5.1% of not-seen,
5.5% of observed, and 7.4% of singletons had at least one
transcript, whose effect prediction differed from others.

All variant-effect predictors, including synVep, assigned
higher scores to pathogenic than benign variants (Figure
5A–C and E, all statistically significant, one-sided permu-
tation test P-value = 0). Notably, conservation (GERP++
(69)) carried sufficient signal to recognize pathogenic vari-
ants as well, suggesting that these are often found in con-
served positions, which may not be the case for variants of
less severe effect. Note that all other predictors (CADD,
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Figure 5. Evaluating variant effect predictors using ClinVar data. Benign (negative; n = 254) are variants labeled ‘Benign’ and ‘Benign/Likely benign’ in
ClinVar, with ‘Review by expert panel’ as review status. Pathogenic (positive; n = 68) are those labeled ‘Pathogenic’ and ‘Pathogenic/Likely Pathogenic’
in ClinVar, with ‘Review by expert panel’ as review status or with ‘research’ method and at least one publication experimentally validating the effect.
Panels A–E show the predictions from for CADD (phred-like scaled scores), DANN, EIGEN, GERP++ score, and synVep, respectively. Grey dashed
lines show the method author-recommended cutoffs, where available. Differences between scores of Benign and Pathogenic variants in panels A-E are
all statistically significant (one-sided permutation test P-value = 0). Performance boxplots for pathogenicity predictors are excluded to conserve space.
Panel F reports two-class predictor accuracy (Equation 4) on resampled data (100 resampling sets; benign set is down-sampled to match the number
of pathogenic variants). Predictors with different red letters indicate significant difference by ANOVA test and Tukey’s procedure; e.g. CADD’s ‘b’ and
DANN’s ‘a’ indicate that CADD’s and DANN’s mean accuracies are significantly different. Panel G reports auROC and auPRC for each predictor; all
predictor auROCs and auPRCs are significantly different from that of synVep (P-value < 0.05; Methods). Note that the performance comparisons here
are limited as each predictor targets a different effect (e.g. pathogenicity vs molecular effect) and some methods have used our test set in training.

DANN and EIGEN) incorporate GERP++ as a feature,
but their auROC and auPRC are not substantially higher
(or even lower) than those of GERP++. Highly conserved
genomic positions often have experienced extensive purify-
ing selection (110). Therefore, conservation is understand-
ably a commonly used feature for disease variant prioritiza-
tion (111). However, in the scenario of disease variant pri-
oritization synVep, offers discriminative power independent
of conservation, so it may be used in combination with a
conservation score or other predictors.

One major challenge in disease variant prioritization is
that for complex diseases, causality can rarely be explained
by a single variant (112). The utility of variant pathogenicity
score is thus questionable: does a high score suggest a high
likelihood of an individual developing a disease or a high
likelihood of this variant contributing to a disease? Also,
would an individual with many predicted-pathogenic vari-
ants carry many diseases or be very certain to carry at least
one disease? A potential way to solve this puzzle is to es-
tablish the variant-disease relationship using the collective
effect from the whole variome instead of a single or a few

variants. A modification of polygenic risk scoring methods
(113,114) to only account for effect variants may represent
one approach, although it would be limited by the location
of most GWAS SNPs in non-coding regions. Another ap-
proach is to unite only the coding variant effects by aggre-
gating all variants per gene to predict disease predisposition
(e.g. (115,116)) synVep predictions (as well as those of other
predictors) may be plugged in these pipelines to explore the
contribution of sSNVs to complex diseases.

synVep highlights correlation between conservation and effect

We annotated all sSNVs as CSVs (cross-species variation)
or not (Figure 2; Methods). CSVs are codon differences be-
tween the human reference sequence and another species’
ortholog. For example, if the proline-coding codon in a hu-
man transcript T is CCC, while the aligned proline codon
on T’s chimp ortholog is CCT, then the human sSNV
CCC→CCT is considered a chimp-CSV. We thus annotated
15 618 155 unique (only exists in one species) and 35 102
565 non-unique (overlapping across species) CSVs (Supple-
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Figure 6. Variant effect prediction from the perspective of cross-species variation (CSV). Panels A–C show synVep-predicted scores for variants grouped
by the number of species carrying the mutant nucleotide; separately for observed, singletons, and not-seen sets. The red dashed line is synVep’s default cutoff
for effect and no-effect. The number in each box indicates the number of variants of that group (in thousands). Panels D–F show the median score (y-axis)
across species at log2 million years since divergence from common ancestor with human (x-axis) and linear regression trendline (red line) between the two.
The Spearman correlations between median synVep score and log2(million years) for panels D–F are 0.68, 0.64 and 0.66, respectively.

mentary Figure S8). Since less than 10% (7026 of 72 400)
of the human transcripts can be mapped to orthologs in all
20 species, we analyzed separately the CSVs in (i) all tran-
scripts (n = 32, 264 860) and (ii) only the transcripts that
have orthologs in all 20 species (n = 3 321 574) and that are
likely ancient (ancient genes) (117).

The distribution of synVep prediction scores for CSVs in
the ancient genes and for those in all transcripts were similar
(�mean = 0.05, Mann–Whitney U test P-value < 2.2e–16),
suggesting that synVep’s evaluation of variants does not dis-
criminate by gene age. For all transcripts, observed sSNVs
had more CSVs (67%, n = 2 823 142) than did the not-seen
variants (53%, n = 26 976 016; Supplementary Figure S9).
CSVs overall were predicted less likely to be effect than non-
CSV for both ancient and all transcripts (Figure 6A–C; Sup-
plementary Figure S10A–C). While this is in line with the
scoring trends of the observed and not-seen variants over-
all, it also mirrors earlier findings of few CSV nsSNVs cor-
responding to a known human disease (118–121). synVep
scores also trended lower for CSVs whose substituting nu-
cleotide was found in more species, for both ancient (Figure
6A–C) and all transcripts (Supplementary Figure S10A–C).
Since the number of CSV species is somewhat indicative of
codon conservation, this trend suggests that, although syn-

Vep was trained without using conservation features, its pre-
dictions still identify conserved codons that are often func-
tionally relevant (122).

To further elucidate the effect of sequence conserva-
tion across species, we calculated codon mutation fraction
(CMF, Supplementary Equation S9) to describe how com-
mon a human’s alternative codon is, compared to the refer-
ence codon, among the 20 species included for CSV anal-
ysis. For example, if in a multiple sequence alignment of
the 20 species orthologs, the human CCC codon is aligned
to 10 CCC, 5 CCT, and 5 other codons, then the CMF
of the corresponding synonymous variant, CCC > CCT, is
5/15 = 0.33. We observed that predicted scores generally de-
crease with higher CMF (Supplementary Figure S11A–C),
indicating that sSNVs with alternative codons commonly
present as reference codons among other species have less
effect.

We additionally investigated the relationship between the
evolutionary distance of CSV species from human and the
effects of the corresponding sSNVs. Since one sSNV can
correspond to multiple species CSVs, we only considered
CSVs that are uniquely found in one species for this eval-
uation. The medians of synVep scores of these species-
exclusive CSVs in both ancient genes (Figure 6D–F) and
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Figure 7. Evaluation of synVep, CADD-splice, and spliceAI using large-effect splice-disrupting variants (SDVs) and non-SDVs. SynVep predictions are
higher scoring for a set of experimentally determined SDV (positive; n = 140) than non-SDV (negative; n = 3,157) variants across observed (A), singleton
(B) and not-seen (C) data sets. Note that non-SDVs may still carry other functional effects. The observed SDVs mispredicted as no-effect highlight the
limitations of our training data, although two of the five (40%) observed SDVs are correctly annotated as effect. Panels D–F show the distribution of scores
on complete non-SDV and SDV collections predicted by CADD-splice, spliceAI, and synVep, respectively. Boxplots for other non-splicing predictors are
not shown to conserve space. Panel G reports predictor two-state accuracy (Equation 4) on resampled data (100 resampling sets; non-SDV set is down-
sampled to match the number of SDV variants). Predictors with different red letters indicate significant difference by ANOVA test and Tukey’s procedure.
Note that DDIG-SN was offline when this dataset was analyzed (e.g. CADD’s ‘f ’ and DANN’s ‘a’ indicate CADD’s and DANN’s mean accuracies are
significantly different). Panel H reports auROC and auPRC for each predictor; all predictor auROCs and auPRCs are significantly different from that of
synVep (P-value < 0.05; Methods). Note that the utility of auROC and auPRC is limited without a pre-defined test set; thus, a cutoff is needed.

all transcripts (Supplementary Figure S10D–F) correlated
with the evolutionary distance of the corresponding species
to human. However, for ancient genes, the median scores
of observed variants unique to further related (i.e. beyond
Tarsier) species were in the effect range (synVep > 0.5). Ar-
guably, this means that human sSNVs that introduce nu-
cleotides likely present in recent ancestors tend to be no-
effect, while similarity to further removed relatives carries
no such benefit (Figure 6D). These findings agree with our

recent work on nsSNV CSV analysis (35). We note that
species relationship had much less impact on binary effect
classification for singleton variants and none for not-seen
variants (Figure 6E-F). The same observations could not
be made for the all transcript set of variants, where ob-
served and singleton CSVs were predicted to be no-effect for
a large portion of species (Supplementary Figure S10D–F).
This observation suggests that ancient genes are function-
ally crucial and have been sufficiently optimized over time
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to only permit minor levels of variation without impact on
functionality.

synVep differentiates splice-disrupting variants

Cheung et al. (70) measured the splice-disrupting effects of
genomic variants (3297 transcript-specific sSNVs) and de-
fined a group of large-effect splice-disrupting variants (140
SDV sSNVs). As expected, synVep scores of SDVs were on
average higher than those of non-SDVs (Figure 7A–C). Cu-
riously, 140 SDVs comprised only six observed (4.6%) and
18 singletons (13.7%) variants; nine were deemed unobserv-
able (6.4%) and 107 were not-seen (76.4%). The fact that
most of SDVs are not-seen reinforces our assumption that
not-seen sSNVs are enriched for large-effect deleterious sS-
NVs that may have been purified.

We evaluated two state-of-the-art predictors for splic-
ing effect evaluation: CADD-splice (72) and spliceAI (71)
on this set of experimentally determined variants (Figure
7D, E). spliceAI is a 32-layer deep learning model that
predicts splicing donor/acceptor gain/loss probabilities.
CADD-splice was developed based on CADD (23) with the
addition of two splicing-specific predictor (MMsplice (123)
and spliceAI) outputs as features. MMsplice and spliceAI
were selected to be incorporated into CADD-splice because
they performed best among several other splicing-specific
predictors on the same non-SDV/SDV dataset (not limited
to synonymous variants). CADD-splice had the highest ac-
curacy (Figure 7G) and auROC (Figure 7H); meanwhile,
the auRPC of all the three predictors are similar (Figure
7H).

Splicing disruption is a well-known and well-studied
mechanism of sSNV effect (124). In fact, most of the
experimental validations of our curated-effect and Clin-
Var pathogenic variants refer to elucidating splicing effects
(Supplementary Table S1 and S3). Moreover, many cancer
driver mutations are found to be splice-disrupting synony-
mous variants (125). Aside from splicing, experimental val-
idation of variant effect is rare, arguably due to technical
challenges (126). Perhaps, since the experimental evidence
for splicing disruption is more abundant than non-splicing
effects’, the former is considered a major factor in clini-
cal consideration for sSNVs. For example, according to the
guidelines from American College of Medical Genetics and
Genomics (127), an sSNV is clinically benign if it is not in
a conserved position and is predicted to be non-impacting
to a splice site (e.g. via GeneSplicer (128), NNsplice (129)).
Thus, synVep’s ability to identify effect and score sSNVs re-
gardless of their splice effects or conservation makes it an
ideal tool for prioritization of all possible variants, regard-
less of their mechanism or evolutionary evidence of effect.

sSNV effects reflect genomic constraints

Havrilla et al. developed the concept of ‘coding constrained
regions’ (CCR) to describe the regional scarcity of protein-
changing (missense or loss-of-function) variants in the hu-
man genome (76). Here, a region with fewer of these vari-
ants observed in the human population has a higher CCR
percentile score. For our set of variants, the fraction of ob-
served (number of observed sSNVs divided by all possible

sSNVs in this region) negatively correlated (Pearson � =
−0.61) with CCR percentile (Figure 8A); i.e. higher con-
straint indicates fewer sSNVs. Furthermore, synVep pre-
dictions positively correlated with CCR percentiles for ob-
served (� = 0.58, Figure 8B), i.e. lower CCR percentile
(less constrained regions) indicated lower (no-effect) synVep
scores.

The negative correlation between the fraction of sSNVs
and CCR indicates a positive correlation between synony-
mous mutation rate and missense or loss-of-function mu-
tation rate. This observation is in line with earlier studies
(130,131), but raises a question of the utility of Ka/Ks ratio
(non-synonymous divided by synonymous mutation rate),
which is widely used to measure the strength of evolution-
ary selection at certain genomic sites (132). The application
of the Ka/Ks ratio is based on the assumption that syn-
onymous mutations are neutral and thus Ks can serve as
a baseline for Ka. However, it has been demonstrated that
a high Ka/Ks can also result from a low Ks due to strong
negative selection at the synonymous sites (10,11,133–135).
Efforts have been made to improve the utility of Ka/Ks by
incorporating codon preference (136–138), but the question
remains: how often is the selection at synonymous sites suf-
ficiently underestimated so that Ka/Ks is no longer accu-
rate? Lawrie et al. found that 22% of the fourfold synony-
mous sites (where the amino acid can be encoded by four
codons) in the fruitfly genome are under strong selection
(101). Lu and Wu estimated that 90% synonymous differ-
ences between human and chimp are deleterious (139). Hell-
mann et al. estimated that 39% mutations at the human-
chimp-diverged non-CpG fourfold synonymous sites have
been purified (140). Zhou et al. showed that 9% of all yeast
genes and 5% all worm genes undergo purifying selection
on synonymous sites (138). In turn, our results show that,
excluding unobservable (9.6%), ∼67% of all possible human
sSNVs are effect (synVep score > 0.5), but we cannot es-
timate the strength of selection acting upon these. These
findings suggest that Ka/Ks measures of genomic site con-
straints may be underpowered.

synVep sheds light on future variant discovery and interpreta-
tion

Whenever a human genome variant is sequenced, it will au-
tomatically be reassigned a class in our collection. Thus, a
newly sequenced variant will first become a singleton and
may, eventually, be a member of the observed group. An en-
richment in observed variants will likely come from large-
scale sequencing. The ethnic diversity of gnomAD repre-
sents the ethnic diversity in the United States, but not global
ethnicity diversity; although only 16% of global population
are of European descent (141), 53% of the samples from
gnomAD exomes database are (142) are; i.e. there is a sig-
nificant underrepresentation of sSNVs from other ethnici-
ties. When more diverse genomes are sequenced, will there
be a significant addition to the observed set (i.e. significant
reduction of the not-seen set)?

To answer this question, we obtained all variants from the
Qatar Genome (QTRG) project (77) and mapped them to
our set of sSNVs. QTRG comprises 1,376 individuals and
may serve as a representative pool of genomic variants in
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Figure 8. sSNV effect measured by region constraint. Coding constrained regions (CCR) describe the regional scarcity of nsSNVs; higher percentile regions
represent have fewer observed nsSNVs. Observed sSNVs are relatively scarce in constrained regions (A), while their median synVep scores are higher (B).
Pearson correlation are indicated in blue.

Figure 9. Distributions of the Qatar Genome sSNVs. In both panels, our gnomAD-based observed (orange), singleton (blue) and not-seen (dark orange)
sets are highlighted. (A) represents the fraction of the QTRG sSNVs mapped our observed, singleton, not-seen, and unobservable (gray) sets. (B) synVep
scores for our (gnomAD-based) variant sets, as well as the scores for QTRG sSNVs (white) mapping to the corresponding gnomAD-classes. Importantly,
the synVep scores of QTRG variants that were previously classified as singletons or not-seen score much lower than other variants in the corresponding
groups.

Middle East and north Africa (MENA) area (77); thus, this
set is complementary to gnomAD. We identified 526 616
transcript-based sSNVs (n = 192 246 genomic coordinate-
based) from QTRG sequencing. Importantly, only 0.6% of
the Qatari sSNVs mapped to our unobservable set––a frac-
tion that is lower than the misprediction rate (5%) that we
allowed during PUL. Moreover, two thirds of these vari-
ants were singletons in QTRG. This observation suggests
that our unobservable variants are indeed unlikely to be ever
observed in future sequenced human populations. The ma-
jority of QTRG sSNVs (81.9%) mapped to our observed
set; 4.6% and 12.8% were singleton and not-seen, respec-
tively (Figure 9A). Interestingly, 63.5% and 64.6% QTRG
sSNVs mapping to our singleton and not-seen sets, respec-
tively, were singletons in the Qatari cohort. We also found
that gnomAD singletons that were present in QTRG, on av-
erage, scored higher than QTRG variants overlapping with
observed sSNVs (34.7% versus 26.6% effect variants, re-

spectively). This finding further confirms that singletons are
more likely to have an effect than observed variants.

How many of the previously not-seen sSNVs are effect?
New sSNVs are likely to come from clinical sequencing and
could thus could often be deemed disease-associated. We
expect, however, that these variants will carry little or no
effect. In other words, currently not-seen no-effect observ-
able sSNVs (n = 14 259 180 transcript-based and n = 5 975
076 genomic coordinate-based) are more likely to be dis-
covered in the future than an effect ones––even if a sam-
ple is taken from a sick individual. Recall our assumption
that the not-seen set is composed of those sSNVs that carry
a large effect and have been purified, as well as those that
are putatively neutral and will be seen in the future if more
sequencing is performed. The synVep scores of the QTRG
sSNVs mapping to our not-seen set were, on average, much
lower than those of the entire not-seen set (Figure 9B, av-
erage synVep score 0.49 versus 0.88, Mann–Whitney U test
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P-value < 2.2e–16). Similarly, the median synVep score of
the 2 469 205 sSNVs not-seen according to gnomAD, but
present in dbSNP (143) was lower than for the entire not-
seen set (0.47 versus 0.88; P-value < 2.2e–16). These results
confirm our assumption, as these newly identified sSNVs
are actually observable (not purified) and thus they are gen-
erally less likely to have large effect (and thus lower synVep
scores). It may also be that the newly identified predicted
effect variants (from QTRG, and other sequencing efforts
in the future) are the ethnicity-differentiating, i.e. not neces-
sarily affecting overall fitness, but contributing to individual
differences (as in e.g. (144)).

CONCLUSION

We developed synVep––a machine learning-based model
for evaluating the effect of human sSNVs. Our model does
not use disease/deleteriousness-labeled training data. In-
stead, we used the signals derived from observed (and corre-
sponding generated) sSNVs from large sequencing projects.
Our model successfully distinguishes sSNVs with experi-
mentally validated effect, e.g. splice-site disrupters, as well
as pathogenic sSNVs. Moreover, our model’s predictions of
cross-species variants (CSVs) correlate with the evolution-
ary distance between human and CSV-species. While fur-
ther experimental validations of effect prediction are neces-
sary, synVep’s evaluation on sSNV effect will greatly con-
tribute to our understanding of biological molecular path-
ways in general, and of pathogenicity pathways in particu-
lar.

DATA AVAILABILITY

synVep webserver for online query: https://services.
bromberglab.org/synvep; For local run, Python script
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diction database (https://zenodo.org/record/4763256) are
also available.
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