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ABSTRACT
Introduction: Drug concentrations in tuberculosis patients on standard regimens vary widely with
clinically important consequences.
Areas covered: We review the available literature identifying factors correlated with pharmacokinetic
variability of antituberculosis drugs. Based on population pharmacokinetic models and the weight,
height, and sex distributions in a large data base of African tuberculosis patients, we propose simplified
weight-based doses of the available fixed dose combination(FDC) for adults with drug susceptible
tuberculosis. Emerging studies will support optimized weight-based dosing for children. Other sources
of important pharmacokinetic variability include genetic variants, drug-drug interactions, formulation
quality, and methods of preparation and administration.
Expert commentary: Optimized weight band-based dosing will result in more equitable distribution of
drug exposures by weight. The use of high doses of isoniazid in patients with drug-resistant tubercu-
losis would be safer and more effective if a feasible test was developed to allow stratified dosing
according to acetylator type. There is an urgent need for more suitable formulations of many second-
line drugs for children. The adoption of new technologies and efficient FDC design may allow further
advances for patients and treatment programs. Lastly, current efforts to ensure adequate quality of
antituberculosis drug products are not preventing the use of substandard products to treat patients
with tuberculosis.
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1. Introduction

Many antituberculosis drugs exhibit wide pharmacokinetic
variability in patient cohorts [1–13]. Studies in patients with
drug-susceptible tuberculosis (DS-TB) on a standard regimen
of rifampin and isoniazid for 6 months with pyrazinamide and
ethambutol for the first 2 months, suggest that such variability
is clinically important. Specifically, patients with relatively low
systemic exposures to rifampin and pyrazinamide have worse
treatment outcomes [4,6], while rifampin, isoniazid and pyra-
zinamide exposures are related to the decline in bacterial load
in the sputum during the weeks following initiation of treat-
ment [6,8,14–18]. For ethambutol and isoniazid, as well
as second-line drugs for drug-resistant tuberculosis (DR-TB),
such as linezolid, cycloserine, moxifloxacin, aminoglycosides,
and capreomycin toxicity, are dose-related. Dose optimization
should therefore aim to limit the number of patients with
lower or higher than optimal drug exposures.

For rifampin and rifapentine, plasma exposures higher than
those achieved with current doses result in improved antitu-
berculosis activity and appear to be relatively safe. Recent and
ongoing clinical studies are likely to broadly redefine the
optimal dosing strategies for these rifamycins and other
drugs in treatment and preventive therapy regimens [19–24].
Evidence is needed to inform appropriate doses for tubercu-
losis at sites where penetration of the drugs into the diseased
compartments is limited such as tuberculous pericarditis and

tuberculous meningitis [25–27]. For some antituberculosis
drugs, dose adjustments are indicated in patients with renal
or hepatic impairment. Therapeutic drug concentration mon-
itoring may have a role in some settings and is reviewed
elsewhere as part of the approach to personalized therapy
for DR-TB [28,29]. These topics are not included in this review.

We focus on the first-line antituberculosis drugs while
recognizing the even greater need for evidence to support
optimized drug doses and combinations in the emerging regi-
mens for DR-TB, for which current treatment is less effective
and more toxic than the first-line regimens. We discuss phar-
macokinetic variability in clinical cohorts due to the manufac-
turing process and storage conditions, patient factors (weight
and body composition, other clinical characteristics, and phar-
macogenetics) drug-drug interactions, and dose preparation
and administration (Table 1). We identify sources of pharma-
cokinetic variability in adults and children, which could be
used to limit systemic pharmacokinetic variability. We suggest
revised a priori dose adjustments based on weight to correct
the systematic under-dosing of low weight patients with
DS-TB.

2. Drug formulation

A recent metanalysis found that rifampin’s area under the
concentration-time curve (AUC) varied 3- to 4-fold between
different studies [30]. While between-laboratory differences,
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and genetic, environmental and pathophysiological differ-
ences between the study populations may play a role, evi-
dence from multiple studies suggests that differences in
bioavailability between formulations and batches could be
responsible for large bioavailability deviations.

An early study of 4-drug FDCs distributed on the global
market for the first-line treatment of tuberculosis found
that seven of the ten products were not bioequivalent for
rifampin [31]. Similarly, a more recent study from China
found that four of five FDCs failed bioequivalence criteria for
rifampin [32]. Observational studies in patients have attributed
massively compromised bioavailability to product or batch
quality [12,14,33–36]. Recently, a 20% reduction in the bioa-
vailability of rifampin was described in the 4-drug FDC used in
approximately 450 000 South African patients annually [37].
The implications of such smaller changes in formulation qual-
ity on treatment outcomes and the development of resistance
are unknown, however given the emerging evidence of the
importance of exposure-response relationships described for
rifampin and other drugs, these compromises may be devas-
tating when they occur on such a large scale [4,6,8].

Although the formulation of rifampin is challenging particu-
larly in FDCs, quality issues appear to occur commonly for other
tuberculosis drugs [38]. While quality may be related to
a specific product, batch-to-batch variability occurs and storage
conditions are also important [12,14,39]. Hence it is clear that in
spite of GMP inspections and prequalification programs, pro-
ducts and product batches of inferior quality are on the market
and contribute substantially to variability in drug exposure.

3. Weight and body composition

Dosing guidelines for antituberculosis drugs typically advo-
cate a uniform milligram per kilogram of body weight
(mg/kg) dose, and the drugs are typically dosed by
weight band to achieve a narrow mg/kg range using the
available formulations [40,41]. A consistent finding of

pharmacokinetic studies in adults and children dosed in
this way is that lower weight patients have lower drug
exposures [5,10,13,18,33,37,42–44]. This can be attributed
to the nonlinear relationship between clearance and size
whereby smaller people need higher maintenance doses
per kilogram of body weight [45]. Weight band doses
should be optimized accordingly. Moreover, fat-free mass
is frequently more closely related to clearance and volume
of distribution than total body weight [7,9–14]. For these
drugs (including rifampin, isoniazid, and pyrazinamide),
wasted or stunted individuals have lower drug exposures
due to a higher proportion of their total body weight being
accounted for by fat-free mass. Several clinical studies
report low body mass index or low weight as a risk factor
for poor tuberculosis treatment outcomes [46–48]. While
this association is likely to be multi-factorial, the potential
contribution of low drug exposures in wasted and low-
weight individuals should not be ignored.

For some drugs likemoxifloxacin and clofazimine dose adjust-
ment is limited by the available formulations. The same dose is
therefore administered to patients across a wide weight range.
Because they receive lower mg/kg doses with this approach,
exposures tend to be lower in heavier patients, in contrast to
the exposures when a uniform mg/kg dosing approach is used
[49]. For clofazimine which takes months to reach steady-state
pharmacokinetics and is highly lipophilic, plasma exposures are
inversely correlated with percentage body fat [50]. This is in
keepingwith extensive distribution to the tissues. Heavy patients
who are also obese are therefore likely to have relatively low
blood concentrations of clofazimine.

3.1. Adults

We recently evaluated the population pharmacokinetics of rifam-
pin, isoniazid, pyrazinamide, and ethambutol by weight band in
tuberculosis patients treated according to the widely implemen-
ted World Health Organization(WHO) recommendations using

Table 1. Summary of sources of variability discussed in this article, with potential actions that could reduce pharmacokinetic variability.

Source of pharmacokinetic
variability (section) Potential actions mitigating pharmacokinetic variability

Drug formulation (2) Independent bioequivalence testing against established standard comparator product.
Quality surveillance of drug products used in programs.
Development and implementation of protocols for regular testing of relative bioavailability in programs.
Development of improved in vitro screening methods that predict bioavailability, for use in programs.

Weight and body composition (3) Optimize pragmatic weight band-based dosing guidelines based on contemporary knowledge and pharmacokinetic evidence
in adult and pediatric patient populations.

Other clinical covariates (4) Pharmacokinetic studies to optimize dosing in infants, pregnant women, patients with renal or hepatic impairment, and
other special populations.

Pharmacogenetic variation (5) For clinically important genetic variants, development of field-friendly genetic tests to facilitate dosing by genotype.
Population surveys to optimize dosing for the population based on the prevalence of clinically important genetic variants.

Drug-drug interactions (6) Drug-drug interactions need to be considered and studied within antituberculosis regimens and between antituberculosis
drugs and other commonly administered drugs. Studies should preferably be performed in patients. For clinically
important pharmacokinetic drug-drug interactions, dose adjustment strategies should be evaluated in patients.

Dose preparation and
administration (7)

Investment in the development of user- friendly formulations for children and adults with robust bioavailability under field
conditions.
The clinical importance, in the context of patients under field conditions, of food effects and other factors influencing
bioavailability should be evaluated and if important should be addressed e.g. by developing formulations less vulnerable
to food effects.

Laboratory error (8) Laboratory participation in proficiency testing.
Development of platforms for sharing assay methodologies and expertise.
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fixed dose combination(FDC) tablets [5,10,13,37,32]. The phar-
macokinetic models for rifampin and pyrazinamide were pub-
lished previously [10,13]. The models for isoniazid and
ethambutol are presented as supplementary material. Fat-free
mass was more closely associated than total body weight with
clearance and volume of distribution for rifampin, isoniazid and
pyrazinamide. For each drug, markedly lower drug exposures are
evident in the lower weight bands (Figure 1, left panel). We used
simulations to predict the number of 4-drug FDC tablets (using
the widely available rifampin/isoniazid/pyrazinamide/ethambu-
tol 150/75/400/275 mg FDC) to achieve the most equitable drug
exposures across weight bands. The simulations were based on
the weight, height and sex distributions among 1092 African
patients with DS-TB in our database. Given the large proportion
of patients with drug concentrations low by comparison to the
recommended ranges [51], together with evidence for poor
treatment outcomes with low drug exposures and concern that
low drug exposures might drive resistance, as well as the vast
experience of the safety of doses in the 55–70 kg band, the
exposures achieved in this 55–70 kg weight band provided the
target for the simulations. Between patient variability was
reduced and dosing simplified by adding one FDC tablet for
patients under 55 kg (Figure 1, right panel). Very similar results
were obtained when a similar approach was applied to these
drugs based on data from Uganda [33]. The results of these
studies confirm that higher mg/kg doses are needed in patients
in the lower weight bands, and guidelines should be revised to
avoid systematic underdosing of low weight patients.

3.2. Children

Although many children have minimal disease, young children
are particularly vulnerable to severe forms of tuberculosis and
childhood mortality is estimated by the WHO to be as high as
25%. Due to growth and development, drug exposures tend to
be even more variable and less predictable among young
children than they are in adults [18,44,52–55]. Until recently
optimization of tuberculosis treatment has been neglected in
children. In response to several small studies showing lower
drug exposures in children than in adults treated with the
same mg/kg doses, the WHO revised dosing guidelines for
children under 12 years of age in 2010 [56]. The doses of
have been increased by 50% for rifampin to 15 (10–20) mg/kg
and by 100% for isoniazid to 10 (7–15) mg/kg, while 35
(30–40) mg/kg doses of pyrazinamide are recommended.
Emerging studies evaluating the revised doses show that
while the higher pediatric weight bands achieve average rifam-
pin and pyrazinamide exposures similar to adults, in children
under 12 kg exposures fall short of those in adults [42–44,55].
Early results from the SHINE study (ISRCTN63579542) show
a median rifampin AUC for children in the 4–7.9 kg weight
band, half that for children in the 16–24.9 kg band [44].
Therefore, in young children the higher mg/kg doses appear
to be insufficient for rifampin and pyrazinamide. Much of the
disparity between the higher and lower weight bands is due to
the higher clearance per kilogram of body weight in smaller
individuals [45]. For rifampin, however, reduced bioavailability
has been shown to contribute to low exposures in young
children; in spite of reduced clearance due to immaturity of

drug disposition pathways, the youngest had lowest rifampin
exposures among children treated with a stringent regulatory
authority-approved formulation [42]. Children over 25 kg who
are treated with the lower adult mg/kg doses also have dis-
turbingly low drug exposures [44,57]. Recent evidence linking
low rifampin exposure in children to treatment failure and
death emphasizes the urgency to optimize pediatric dosing [18].
Emerging studies support improved weight-based dosing of
the first- and many second-line drugs for children [53,58–61],
however further pharmacokinetic studies in infants and children
are needed to represent different geographical regions and
account for age, weight and formulation-related effects.

4. Other clinical characteristics

While optimized dosing by weight results in markedly more
equitable exposures across the weight bands, much of the
pharmacokinetic variability between individuals remains. HIV is
a common co-infection in patients presenting with tuberculosis.
Several studies have investigated the association of HIV
infection with the pharmacokinetics of the first-line drugs for DS-
TB [2,21,62–65]. The findings across different studies are not
consistent. This may be due to methodological differences
between the studies, or differences between the study popula-
tions such as disease severity and wasting, inflammatory and
immune status, and the presence or absence of concomitant
antiretroviral treatment [11,66–68]. Reduced antituberculosis
drug exposures have also been described in males compared
to females [1,12]. Confounding by increased clearance per kilo-
gram of fat-free mass [7,9–14], may contribute to the association
of low drug exposures with HIV infection and male sex in some
cohorts. Among Tanzanian tuberculosis patients with HIV infec-
tion, nutritional supplementation during the first 2 months of
treatment improved the bioavailability of rifampin [7]. The effect
was independent of fat-free mass, suggesting a direct effect of
the nutritional intervention on the absorption of rifampin. As
rifampin is highly protein bound, increased albumin levels with
improved nutrition, may have contributed to an apparent
increase in bioavailability [69]. Changes in body composition
and plasma proteins have been implicated to alter pharmacoki-
netics during pregnancy. Few studies have evaluated antituber-
culosis drug concentrations during pregnancy, which is
commonly associated with modest reductions in the concentra-
tions of other drugs. Conversely, rifampin clearance is reduced
during pregnancy, possibly due to estrogen-related cholestasis
[70]. Pharmacokinetics in infants are less predictable than in older
children or adults due to growth and development. There is an
important gap in evidence to support dosing in infants and
pharmacokinetic studies are urgently needed [55].

5. Pharmacogenetic variation

Little is known about the role of pharmacogenetic variants in
determining the disposition of antituberculosis drugs with the
exception of isoniazid. Most studies investigating associations
between antituberculosis drug concentrations and genetic var-
iants have utilized a targeted approach evaluating specific single
nucleotide polymorphism(SNP)s in relatively small studies.
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Barring NAT2 for isoniazid, there is currently insufficient evidence
on which to recommend dose optimization based on genotype.

The impact of mutations in N-acetyl transferase 2(NAT2)
genes controlling conversion of isoniazid to acetyl-isoniazid
in the intestinal and hepatic cells, is well known. A trimodal

distribution of isoniazid exposures is described, although in
many studies the respective distributions of the apparent
clearance for intermediate and rapid metabolizers are not
clearly distinguished [71–73]. The AUC among slow acetylators
is typically 2- to 3-fold greater than in rapid acetylators.

Rifampin AUC achieved with dosing 
approach: 30-37 kg (300 mg), 38-54 kg 
(450 mg), 55-70 kg (600 mg) and > 70 
kg (750 mg). 

Rifampin AUC achieved with dosing 
approach: 30-37 kg (450 mg), 38-54 kg 
(600 mg), 55-70 kg (600 mg) and > 70 
kg (750 mg). 

Isoniazid AUC achieved with dosing 
approach: 30-37 kg (150 mg), 38-54 kg 
(225 mg), 55-70 kg (300 mg) and > 70 
kg (375 mg). 

Isoniazid AUC achieved with dosing 
approach: 30-37 kg (225 mg), 38-54 kg 
(300 mg), 55-70 kg (300 mg) and > 70 
kg (375 mg). 

Figure 1. Evaluation of WHO’s current weight band-based doses for the treatment of drug-sensitive TB. AUC to 24 h (AUC0–24) for rifampin (Court R, Chirehwa MT,
Wiesner L, Wright B, Smythe W, Kramer N, McIlleron H. Quality assurance of rifampin-containing fixed-drug combinations in South Africa: dosing implications.
Int J Tuberc Lung Dis. 1 May 2018;22(5):537–543. Reprinted with permission of the International Union Against Tuberculosis and Lung Disease. Copyright © The
Union), isoniazid, pyrazinamide and ethambutol, by weight band. Left-hand panel: Predicted AUC0–24 when the currently recommended fixed dose combination
tablets (rifampin/isoniazid/pyrazinamide/ethambutol 150/75/400/275 mg) are given according to the dosing guidelines for adults (<38 kg—2 tablets; 38–54.9 kg—3
tablets; 55–70 kg—4 tablets; >70 kg—5 tablets). Right-hand panel: Predicted AUC0–24 when patients <55 kg are given an additional FDC to account for the higher
CL/kg in smaller individuals (<38 kg—3 tablets; 38–54.9 kg—4 tablets; 55–70 kg—4 tablets; >70 kg—5 tablets).
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Standard (4–6 mg/kg daily, in adults [40]) doses of isoniazid
are effective and well tolerated in the majority of patients with
drug susceptible tuberculosis. Although dosing stratified by
NAT2 genotype has resulted in lower rates of toxicity and
improved efficacy in patient with DS-TB [74], it is in patients
with DR-TB that stratified dosing would play a more important
role. High doses of isoniazid (10–15 mg/kg daily) are necessary
to overcome strains of M. tuberculosis strains with low levels of

resistance to isoniazid, which are associated with inhA gene
mutations [75–77]. However, slow acetylators are at risk of
toxicity when increased doses of isoniazid are prescribed and
rapid acetylators may need even higher doses for optimal
efficacy [75–78]. Dose adjusting strategies have been pro-
posed based on the presence of inhA or katG mutations in
Mycobacterium tuberculosis [79]. Currently NAT2 genotyping is
not routinely available. The efficacy and toxicity of the

Pyrazinamide AUC achieved with 
dosing approach: 30-37 kg (800 mg), 
38-54 kg (1200 mg), 55-70 kg (1600 
mg) and > 70 kg (2000 mg). 

Pyrazinamide AUC achieved with 
dosing approach: 30-37 kg (1200 mg), 
38-54 kg (1600 mg), 55-70 kg (1600 
mg) and > 70 kg (2000 mg). 

Ethambutol AUC achieved with dosing 
approach: 30-37 kg (550 mg), 38-54 kg 
(825 mg), 55-70 kg (1100 mg) and > 70 
kg (1375 mg). 

Ethambutol AUC achieved with dosing 
approach: 30-37 kg (825 mg), 38-54 kg 
(1100 mg), 55-70 kg (1100 mg) and > 
70 kg (1375 mg).

Figure 1. (Continued).
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proposed doses should be confirmed in slow and rapid acet-
ylators, and the marked geographic variation in the distribu-
tion of NAT2 genotypes should be considered when
optimizing doses [76,77,79]. While several SNPs in the NAT2
gene are used to categorize the genotype into slow, inter-
mediate, and rapid acetylator types according to their number
of functional NAT2 alleles, the identification and validation
of a NAT2 tag SNP would simplify the development of
genetic tests separating slow from intermediate and rapid
acetylators [80,81]. Thus, if feasible and affordable genotyping
methods were developed, a priori optimization of isoniazid
doses by genotype could be contemplated.

The extent to which genetic variation governs the large
differences in rifampin exposures observed between patients
and between studies, is not well understood [30]. Organic-anion
-transporting polypeptide1B1 (encoded by SLCO1B1) mediates
transfer of rifampin into the hepatocyte, from where it is
excreted via the bile. Studies describe associations between
SLCO1B1 variants and rifampin as well as rifabutin. However,
as the findings have been inconsistent across the studies in
different populations, further studies are needed to confirm the
associations and identify particular single nucleotide poly-
morphisms related to rifampin pharmacokinetics [82–87].
Functional polymorphisms of the gene encoding arylacetamide
deacetylase, which efficiently converts rifamycins to 25-
desacetylrifamycin metabolites, have been identified, however
their clinical relevance has not been confirmed [86,88].
Although rifampin is also a substrate of p-glycoprotein and it
causes autoinduction regulated by the pregnane X receptor,
pharmacokinetic associations with variants in the genes encod-
ing these proteins have not been described [86]. Similarly,
isolated findings which should be confirmed ascribe changes
in moxifloxacin pharmacokinetics to SNPs in SLCO1B1, UGT1A,
and ABCB1 [89–91].

6. Pharmacokinetic drug-drug interactions

Drug-drug interactions are an important source of pharmacoki-
netic variability. The drug-drug interactions between tuberculo-
sis treatment and the drugs used to treat HIV-infection and other
common comorbidities such as diabetes and hypertension need
to be characterized in the relevant patient populations and
managed appropriately. That rifampin is a potent inducer of
multiple drug metabolizing enzymes and transporters is well
known and the effects of tuberculosis drugs on antiretrovirals
administered concurrently has been highlighted [92,93]. The
drug interactions affecting TB drug pharmacokinetics are less
well recognized. Perpetrator drugs may be within the multidrug
antituberculosis regimens or administered for comorbid condi-
tions. The interactions may be unanticipated, particularly for
some of the older drugs whose metabolic pathways have not
been well characterized.

Ritonavir-boosted protease inhibitors potently inhibit mul-
tiple drug disposition pathways and induce others.
Specifically, in settings with a high burden of tuberculosis,
they are widely used as the key component of antiretroviral
regimens in children under 3 years of age and in adults
on second line treatment. Concomitantly administered

ritonavir-boosted protease inhibitors result in markedly
increased rifabutin exposures. As a result, the dose of rifabutin
is reduced from 300 mg daily to 150 mg daily or three times
a week in adults in order to mitigate exposure-related adverse
effects [94–96]. The optimal dose in children has not been
established [97]. While multiple studies have evaluated the
effect of rifampin on antiretrovirals, few have evaluated rifam-
pin concentrations. However, a study among TB/HIV co-
infected patients in Mozambique found that neither efavirenz
nor nevirapine affected rifampin concentrations [98].
Conversely, while the number of patients on second-line anti-
retroviral treatment regimens was small, a South African study
suggests that rifampin exposures are increased by concomi-
tant lopinavir/ritonavir in the doubled doses used to over-
come the effect of rifampin on lopinavir concentrations [11].

Bedaquiline and its M2 metabolite are substrates of cyto-
chrome p450 3A4. As bedaquiline has a very long terminal half-
life, the extent of the efavirenz and lopinavir/ritonavir
interactions with chronic administration were only appreciated
when pharmacokinetic modeling was used to account the
cumulative effects [99–101]. The 5-fold increase in bedaquiline’s
clearance mediated by rifampin precludes their combined use
[101]. Efavirenz also induces the metabolism of bedaquiline
resulting in a 50% reduction in exposure with chronic use
[99]. Consequently, combination with efavirenz is avoided.
Conversely lopinavir/ritonavir inhibits bedaquiline’s metabolism
resulting in a 3-fold increase in exposures with long-term
administration, while M2 exposures are not substantially
affected [100,102]. Models predict that this interaction may
enhance efficacy without increasing toxicity, however, these
findings should be confirmed in clinical studies [103,104]. As
nevirapine has little impact on bedaquiline concentrations, it is
preferred if the integrase inhibitor dolutegravir is not available.

In cases of low levels of resistance to isoniazid, some
patients will fail to achieve sufficient isoniazid exposures
especially if they are also rapid acetylators [77]. The 30%
reduction in isoniazid exposures described by Bhatt et al. in
HIV infected tuberculosis patients administered efavirenz-
based antiretroviral treatment is therefore of concern [98].
The interaction has been confirmed in a second study among
patients with TB/HIV coinfection, in which induction of the
acetylation pathway was apparent, affecting predominantly
rapid and intermediate acetylators [14]. Cycloserine has been
reported to interfere with the absorption of isoniazid, but
this effect is poorly understood [105]. A recent study
described a 40% reduction in isoniazid in patients with multi-
drug-resistant tuberculosis(MDR-TB) when the drugs includ-
ing terizidone (which consists of two linked molecules of
cycloserine) are crushed and combined together with
water [106]. That terizidone may reduce the bioavailability
of isoniazid is supported by a recent study in children which
described an 80% reduction in isoniazid exposures when it
was administered as part of a terizidone-containing regimen
for MDR-TB treatment and compared to the peak concentra-
tion and AUC in children on the same dose of isoniazid in
a terizidone-sparing regimen for prevention of MDR-TB [107].
Studies to define within regimen drug-drug interactions are
critical for selection of the optimal doses and drug combina-
tions for emerging regimens to treat DR-TB.
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Moxifloxacin is conjugated in the cytosol to glucuronide and
sulfate metabolites. Concomitant rifampin reduces moxifloxacin
AUC by about 30% [108], which is likely to be clinically impor-
tant in patients on a daily dose of 400 mg daily [109]. This
interaction may have contributed to the failure of regimens
including moxifloxacin with rifampin, pyrazinamide, and isonia-
zid or ethambutol, to shorten the duration of tuberculosis
treatment [110,111]. A recent study found that efavirenz-
based ART, reduced moxifloxacin AUC by 30% in TB/HIV coin-
fected patients. During the cotreatment period, rifampin
mediated an additional 30% reduction in moxifloxacin expo-
sures [112]. The effect of efavirenz-mediated induction of UGT
on moxifloxacin exposures may be critical for patients with
drug-resistant tuberculosis. A recent study among South
African patients with MDR-TB found that the conservative
AUC/MIC target of 53 is not achieved in 15% and 75% of
patients with moxifloxacin MICs 0.12 and 0.25 mg/L, respec-
tively [49]. Should the substantial effect of efavirenz on moxi-
floxacin exposures be confirmed, adjusted doses of
moxifloxacin or alternative treatment strategies should be
evaluated.

While drug-drug interactions may be unanticipated, in vitro
methods should be used to screen drug combinations for
potential interactions. Combinations with potential for inter-
action should be confirmed and quantified in clinical pharma-
cokinetic studies. Ideally these should be conducted in patient
populations, accounting for changes over time due to induc-
tion of pharmacokinetic pathways and accumulation with
repeated doses, and in the context of the relevant environ-
mental, dietary and genetic factors. Alternative dosing or drug
strategies need to be sought for patients at risk of clinically
significant drug-drug interactions. As the extent of drug-drug
interactions in children may differ between children and
adults, and can be modified by formulation effects, dose
adjusting strategies employed to overcome an interaction
should be studied using appropriate formulations in the rele-
vant age groups [113].

7. Dose preparation and administration

When food considerably increases bioavailability, as for rifa-
pentine, bedaquiline, delamanid, and clofazimine among
other drugs, dosing advise is usually to take the medication
with food [114–117]. However, the diet of patients varies
considerably and as the burden of tuberculosis is greatest
among the socio-economically disadvantaged, scant food
may be available. It is therefore important that phase III stu-
dies (preferably with embedded pharmacokinetic-
pharmacodynamic studies) evaluate the drug under realistic
field conditions with respect to food intake.

Crushing of tablets before administration is common in
young children as suitable formulations are frequently not
available for those unable to swallow whole tablets. Adults
on regimens involving the ingestion of multiple drugs may
also prefer take their tablets crushed [106]. Crushing of tablets
before mixing with water may reduce bioavailability as was
demonstrated for rifapentine [118]. While formal studies of
medicine administration practices in the home are scant,

crushed tablets are frequently mixed together in water or
another vehicle before swallowing. Drugs may then interact
with other drugs or substances in the mixture, for example:
some fluoroquinolones are chelated by divalent cations such
as Fe++ and Ca++ [119,120]; certain sugars interact with the
absorption of isoniazid [121]; and, as discussed above, terizi-
done may interfere with the absorption of isoniazid.

There is a critical need to develop affordable formulations
suitable for children in high burden settings that also have
reliable bioavailability under field conditions. Emerging tech-
niques allow exploration of the potential for novel cost-
efficient formulations to improve drug delivery. Nanoparticle
formulations, for example, may potentially extend the product
shelf-life, improve safety and tolerability, enhance the phar-
macokinetic profile to optimize the key pharmacokinetic mea-
sures related to drug activity, and reduce pharmacokinetic
variability [122]. Moreover, more efficient absorption into the
systemic circulation may allow reduced content of the active
ingredient, thereby making the drug more affordable. In the
absence of formulations developed for solution, suspension or
mixing with food, the available formulations should be inves-
tigated for their suitability to be manipulated for use in young
children [123,124].

Appropriate FDC formulations are important for the long-
term implementation of these multidrug regimens. The rational
design of FDC combinations can be facilitated by model-based
tools. Svensson et al. developed a methodology integrating
information about the intended use population, the pharmaco-
kinetic properties of the drugs, their therapeutic targets, and
practical constraints which they applied to rifampin, isoniazid
and pyrazinamide thus synthesizing an optimal FDC for children
with tuberculosis [125]. Such tools can expedite more sustain-
able production of suitable formulations.

8. Laboratory error

While the extent to which inter-laboratory differences in the
measurement of drug concentrations in plasma and serum
contribute to pharmacokinetic variability between studies is
poorly understood. Participation in proficiency testing
schemes would facilitate attribution of pharmacokinetic varia-
bility between studies as well as pooling of studies to under-
stand geographic, genetic and environmental differences
between populations.

9. Conclusion

The pharmacokinetics of the antituberculosis drugs vary
widely in patients on recommended doses. The optimal drug
exposures based on pharmacokinetic-pharmacodynamic rela-
tionships within patients on multidrug regimens is the subject
of ongoing research and is beyond the scope of this review.
Here we have focussed on factors associated with variability in
drug exposures between patients and study populations. In
order to limit the number of patients at risk of a poor treat-
ment response or toxicity due to low or high drug exposures,
respectively, dosing should be adjusted by factors causing
clinically important changes in drug exposures.
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As smaller individuals have a higher dose requirement per
kilogram of fat free mass, the currently recommended
approach applying uniform mg/kg doses for the first-line regi-
men, results in lower drug exposures among small individuals,
wasted patients, and males. We used model-based simulations
to predict improved weight band-based doses of the first-line
antituberculosis regimen using the currently available FDCs.
While the potential effects of genetic variants on the disposi-
tion of most antituberculosis drugs has been incompletely
evaluated, the effect of NAT2 genotype on isoniazid concen-
trations is large and clinically important. Important drug-drug
interactions affecting the concentrations of several antituber-
culosis drugs have been identified. If confirmed the effects of
efavirenz on moxifloxacin and isoniazid exposures, and the
effect terizidone/cycloserine on isoniazid exposures, are likely
to be clinically important. Formulation quality, product pre-
paration and dose administration practices are poorly appre-
ciated sources of pharmacokinetic variability that can have
a large effect on drug exposures. For children in particular,
improved formulations should be developed. More effective
assurance of formulation quality is needed.

10. Expert commentary

A growing body of literature provides evidence that the
variability in drug concentrations among patients on stan-
dard regimens has clinically important consequences. We
identified various factors which should be addressed to
reduce the number of patients at risk of poor treatment
response or toxicity due to low or high drug exposures
respectively.

We propose a simplified approach to optimize dosing for
patients with DS-TB. By using the widely available FDCs in
the currently recommended weight bands the improved
doses could be implemented efficiently. One additional FDC
per dose in patients weighing under 55 kg results in more
equitable drug exposures across the weight bands and to
avoids underdosing of patients in the lowest two weight
bands. Similarly, weight-based doses for children should be
adjusted to avoid underdosing of children in the lower
weight bands.

Several further aspects require further research as well as
the development of approaches to address them:

Stratified dosing of isoniazid by NAT2 genotype would
improve dosing, especially in patients needing high doses
of isoniazid to overcome low levels of resistance, however,
testing of acetylator type is not available as part of routine
care.

Drug-drug interactions can result in substantially altered
drug exposure. They need to be identified and if clinically sig-
nificant, adjusted dosing strategies should be studied in adults
and children, respectively, unless suitable alternative regimens
are available. Should the effect of efavirenz on moxifloxacin and
isoniazid exposures and the effect terizidone/cycloserine on
isoniazid exposures be confirmed, adjusted doses to overcome
the interactions should be explored. The appropriate doses of
rifabutin for TB/HIV infected children cotreated with a boosted
protease inhibitor need to be defined.

Current mechanisms to assure the quality of antitubercu-
losis drug formulations are not adequate to prevent the
appearance of substandard products on the market and in
treatment programs to an alarming extent. Feasible ways
need to be developed and funded, to protect patients from
substandard products.

New technologies provide opportunities to optimize for-
mulations for adults and children. For many of the antituber-
culosis drugs, there is an urgent need for suitable pediatric
formulations to be developed.

11. Five-year view

Global recognition of the burden of tuberculosis has led to
a resurgence of research in the last two decades, which will
improve the use of drugs in regimens used for treatment and
to prevent transmission. Given its toll on children and preg-
nant women, optimization of drug use during pregnancy,
breastfeeding, and the early years of life are imperative. The
elderly are an expanding group neglected by pharmacokinetic
research. The use of concomitant medicines to control non-
communicable diseases is likely to increase in high burden
settings, hence the characterization and management of drug-
drug interactions with frequently prescribed drugs for these
conditions will become more urgent. The ongoing develop-
ment of new drugs for tuberculosis and HIV will necessitate
resources and capacity to ensure that drug-drug interactions
are identified and appropriately addressed.

Methods used to study the clinical importance of pharmaco-
kinetic variability in the context of multi-drug regimens are likely
to mature and gain wider credibility. In addition to the applica-
tion of modeling and simulations to optimize doses and drug
combinations for best treatment response in patient cohorts,
integration of in vitro, animal and clinical data is likely to be used
more widely to support pharmacokinetic-pharmacodynamic
models and extend their predictions to severe forms of disease
(such as tuberculosis meningitis) and special populations.
Studies evaluating the effects of drug pressure on changes in
the mycobacterial genome and gene expression will improve
our understanding of the importance pharmacokinetic variabil-
ity in the emergence of drug resistance.

Thus evidence-based definition of target drug exposure
ranges will support the development of dosing strategies
achieving target concentrations in a higher proportion of
patients. Moreover, for the less effective and more
toxic second-line regimens, characterization of important
pharmacokinetic-pharmacodynamic relationships for key
drugs driving efficacy and/or toxicity may support the need
for therapeutic drug concentration monitoring where this is
available and the development of field-friendly tests to sup-
port wider use of individualized dosing.

Using currently available technologies, the development of
better formulations for adults and children may enormously
improve drug delivery through more efficient absorption and
improved acceptability. Evidence of the cost effectiveness of
improved formulations would support the necessary investments.
None-the-less there will be an ongoing need for more effective
measures to ensure the quality of antituberculosis drug products.
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Key issues

● The variability in drug concentrations among patients on
standard regimens has clinically important consequences.

● Weight band-based doses for adults and children need to
be adjusted to account for the increased clearance per
kilogram of body weight in smaller people.

● Stratified dosing of isoniazid by NAT2 genotype would
improve dosing, especially in patients needing high doses
of isoniazid to overcome Mycobacterium tuberculosis with
low levels of isoniazid resistance.

● Drug-drug interactions can result in substantially altered
drug exposure. They need to be identified, and if clinically
significant adjusted dosing strategies should be studied.

● Renewed efforts are needed to assure the quality of anti-
tuberculosis drug formulations.

● New technologies should be leveraged to improve formula-
tions for adults and children.
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