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Abstract: High density lipoprotein (HDL) cholesterol has traditionally been considered the “good
cholesterol”, and most of the research regarding HDL cholesterol has for decades revolved around
the possible role of HDL in atherosclerosis and its therapeutic potential within atherosclerotic
cardiovascular disease. Randomized trials aiming at increasing HDL cholesterol have, however,
failed and left questions to what role HDL cholesterol plays in human health and disease. Recent
observational studies involving non-cardiovascular diseases have shown that high levels of HDL
cholesterol are not necessarily associated with beneficial outcomes as observed for age-related
macular degeneration, type II diabetes, dementia, infection, and mortality. In this narrative review,
we discuss these interesting associations between HDL cholesterol and non-cardiovascular diseases,
covering observational studies, human genetics, and plausible mechanisms.

Keywords: Alzheimer’s disease; blindness; diabetes; drusen; epidemiology; genetics; high-density
lipoprotein; infection; mortality

1. Introduction

High density lipoprotein (HDL) cholesterol has traditionally been considered the
“good cholesterol”, because high plasma HDL levels are strongly associated with low risk
of atherosclerotic cardiovascular disease (ASCVD) [1], and because the particle is involved
in reverse cholesterol transport—the flux of cholesterol from the periphery to the liver for
fecal excretion [2]. The first large population-based study to show an inverse relationship
between circulating HDL cholesterol concentrations and ASCVD was a cross-sectional
study from 1976 [3]. In the 1980s, prospective cohort studies confirmed these findings,
however the association was attenuated when adjusting for non-HDL cholesterol [4]. The
strong inverse relationship between HDL cholesterol levels and ASCVD subsequently
led to the hypothesis that clinical trials increasing HDL cholesterol concentrations would
reduce risk of ASCVD.

The association between low HDL cholesterol and ASCVD has now firmly been estab-
lished as non-causal after the publication of the Mendelian randomization studies [5–7],
genetic consortia data [8–10], and several failed HDL cholesterol-increasing trials [11–16].
Cholesterol ester transfer protein (CETP) inhibitors, in specific, have either shown adverse
effects, no effects, or small beneficial effects on cardiovascular outcomes, the latter possi-
bly explained by the additional reduction in non-HDL cholesterol (cholesterol content in
the atherogenic lipoproteins: low-density lipoprotein (LDL) cholesterol, triglyceride-rich
lipoproteins, and lipoprotein(a)) [11–16]. This non-causal effect of HDL cholesterol is in
stark contrast to the well-established causal effect of high levels of LDL cholesterol (“bad”
cholesterol) on ASCVD risk, which is robustly supported by decades of evidence from
human genetics, animal studies, observational epidemiology, and randomized clinical
trials [17,18].

Int. J. Mol. Sci. 2021, 22, 4547. https://doi.org/10.3390/ijms22094547 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-4084-5027
https://doi.org/10.3390/ijms22094547
https://doi.org/10.3390/ijms22094547
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22094547
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22094547?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 4547 2 of 16

Interestingly, recent studies have shown that high plasma HDL cholesterol levels
are associated with disadvantageous outcomes such as cardiovascular disease, infectious
diseases, age-related macular degeneration (AMD), and increased mortality [19–25]. These
developments have impelled a reconsideration of the HDL hypothesis and challenged the
widely recognized “good cholesterol” label. In this narrative review, we will discuss estab-
lished and recent findings on HDL cholesterol and its associations with AMD, dementia,
type II diabetes, infections, and mortality by summarizing results from observational and
human genetic studies and by summarizing plausible mechanisms.

2. Age-Related Macular Degeneration

AMD is a disease causing severe visual loss and blindness in the elderly population.
AMD is pathologically characterized by drusen, which are deposits that accumulate ex-
tracellularly in the area between the retinal pigment epithelium and Bruch’s membrane,
as well as by choroidal neovascularization, with vessels disruptively invading the retina.
Collectively, this leads to local inflammation and immune reactions [26,27]. Plasma lipids
and lipoproteins have been hypothesized to play an important role in the development
of AMD, since drusen are composed of at least 40% lipids consisting of mainly esterified
cholesterol and phosphatidylcholine [28,29].

2.1. Observational Studies

Numerous independent observational studies have explored the relationships between
plasma HDL cholesterol levels and risk of AMD in different populations. Studies report
either high or low HDL cholesterol levels to be associated with increased risk of AMD, or
find no associations [29,30]. Overall, however, most studies point towards the conclusion
that high plasma HDL cholesterol levels are related to increased risk of AMD [29,30]. A
recent study including 30,953 individuals from the EYE-RISK and European Eye Epidemi-
ology Consortia demonstrated that high plasma HDL cholesterol levels were associated
with any type of AMD. Higher HDL cholesterol levels were associated with increased risk
of particularly early AMD and drusen [23]. Per 1-mmol/L increase in HDL cholesterol,
a 1.21 odds ratio (95% confidence interval 1.14–1.29) for AMD was observed. Interest-
ingly, extra-large HDL particles with higher total lipid and phospholipid content were
also reported as seeming to be drivers in the association with AMD [23]. Another recent
study, the largest prospective study to date (including 106,703 individuals from the general
population) supported these findings. Both high plasma concentrations of apolipoprotein
A1 (apoA1) and HDL cholesterol were associated with increased risk of AMD, with the first
being a stronger marker of AMD than the HDL cholesterol level [31]. Individuals in the
highest versus the lowest quartile of apoA1 and HDL cholesterol levels had hazard ratios
for AMD of 1.40 (1.20–1.63) and 1.22 (1.03–1.45), respectively. Both of these two recent
studies concomitantly found an inverse relationship between non-HDL cholesterol (the
cholesterol content in triglyceride-rich lipoproteins, LDL, and lipoprotein(a)) and AMD
risk [23,31]. Interestingly, a recent cross-sectional study has for the first time reported a
correlation between high HDL cholesterol and diabetic retinopathy. Larger and prospective
studies would, however, be helpful to further investigate the relationship between HDL
cholesterol and risk of diabetic retinopathy [32]. A limitation of observational study designs
are that they do not provide answers in relation to causality. Genetic studies are, however,
able to illuminate potential causal mechanisms by discovering specific genes associated
with AMD.

2.2. Human Genetics

Early studies examining genes mutated in rare Mendelian forms of AMD have pro-
vided insight into the causes of AMD [33]. Variations in the fibulin gene family were
demonstrated to be related with AMD, genetic variants in the Stargardt Disease Gene (ATP-
Binding Cassette transporter A4 (ABCA4)) were more commonly found in AMD cases than
in controls, and linkage studies suggested that chromosome 1q25-32, which harbors the
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factor H gene, was associated with AMD [34–36]. However, variation in these genes only
explains a small fraction of the total heritability of AMD. In 2005, four separate candidate
gene studies examined selected single-nucleotide polymorphisms (SNPs), and found that
variation within the complement factor H gene on chromosome 1 represented the most
significant predisposition to AMD [37–40]. Throughout the last decade, genome-wide
association studies (GWAS) have succeeded in identifying novel disease susceptibility
genes for AMD [41–43]. A GWAS is an approach used in genetic research to screen for
associations between genetic variants and specific diseases throughout the genome. By
genotyping the majority of common SNPs in each individual, every SNP is tested for a
difference in allele frequency between the cases and the controls. Importantly, in relation
to cholesterol and lipoprotein metabolism, apolipoprotein E (APOE) [41], hepatic lipase
(LIPC) [44], ATP-binding cassette subfamily A member 1 (ABCA1) [42], and cholesterol
ester transfer protein (CETP) [41,45] have been implicated in AMD susceptibility.

Mendelian randomization studies use genetic variants, which are fixed at conception,
as instrumental variables to explore the causal relationship between potentially modi-
fiable risk factors and disease in observational data. Mendelian randomization limits
the potential biases which are often seen in observational studies, thus minimizing con-
founding and reverse causation [46]. Through Mendelian randomization studies, a causal
relationship between high plasma HDL cholesterol levels and high risk of AMD has been
suggested [47,48]. This suggested association was convincing when high HDL cholesterol
was caused by genetic variants in CETP and APOE [23,48,49]. However, for LIPC, geneti-
cally low HDL cholesterol was associated with increased AMD risk [48]. These findings
suggest the existence of a complex relationship between HDL cholesterol concentrations
and/or particle size and their role in AMD risk. Han et al. further suggested that genet-
ically predicted high levels of total cholesterol, LDL cholesterol, apolipoprotein B, and
non-HDL cholesterol were associated with low AMD risk [47]. It is not known whether
these genetic associations are driven by the specific genetic variants associated with high
HDL cholesterol and low LDL cholesterol e.g., variants in CETP and APOE.

2.3. Mechanisms

The retinal pigment epithelium (RPE) forms the outer layer of the blood-retina barrier
and handles the influx of large quantities of lipids and cholesterol both from the phagocy-
tosis of the outer segments of the photoreceptor and from the endocytosis of lipoproteins
from the choriocapillaris [50]. HDL particles have been suggested to be a deliverer of mi-
cronutrients essential for the health of the retinal pigment epithelium [28]. HDL cholesterol,
with apoA1 as its major apolipoprotein component, delivers cholesterol to the retina via
scavenger receptors, and low-density lipoprotein (LDL) cholesterol delivers cholesterol
via members of the LDL receptor family (Figure 1) [51–53]. Cholesterol is subsequently
internalized through the RPE and effluxed to the apical side via ABCA1 transporters
into the interphotoreceptor matrix to acceptors as apoA1 and apoE. Upon the action of
lecithin:cholesterol acyltransferase (LCAT), free cholesterol on the nascent HDL particles is
converted into cholesterol esters. HDL is thus transformed into larger and more mature
HDL particles by LCAT, while LIPC hydrolyzes phospholipids and thus remodels the HDL
particles (Figure 1) [44,54,55].

Classical apolipoprotein B (apoB)-containing LDL particles, as known from the cir-
culation, are absent in the retina, and it has therefore been suggested that CETP has
a role in transferring esterified cholesterol between lipoproteins and the photoreceptor
membranes [51]. Photoreceptor discs are lipid-rich, and HDL may work as a transporter
of cholesterol and phospholipids between the RPE and the interphotoreceptor matrix,
supporting their synthesis and degradation [51]. The RPE maintains its lipid balance
by transporting lipoproteins back to Bruch’s membrane. These lipoproteins have a high
abundance of esterified cholesterol and are comprised of both apoA1 and apoB, resem-
bling the LDL cholesterol particle except for the content of apoA1 [56]. A large amount
of esterified cholesterol, perhaps through CETP inhibition, might act as a barrier for lipid
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transport through an ageing retina, facilitating the formation of deposits or drusen in
Bruch’s membrane. Interestingly, a recent study analyzing apoA1-containing lipoproteins
isolated from the Bruch’s membranes of elderly human donor eyes found a unique pro-
teome distinct from HDL, isolated from plasma of the same donor. The most remarkable
difference was the higher concentrations of apoB and apoE, which bind to glycosaminogly-
cans. The authors hypothesized that this interaction promotes lipoprotein deposition onto
the glycosaminoglycans of Bruch’s membrane, contributing to RPE dysfunction [57].
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Figure 1. Suggested mechanism of lipid transport in the retina. ABCA1 = ATP-binding cassette transporter A1;
ApoA1 = apolipoproten A1; ApoE = apolipoprotein E; CE = cholesterol ester; CETP = cholesterol ester transfer protein;
HDL = high-density lipoprotein; LCAT = lecithin:cholesterol acyltransferase; LIPC = hepatic lipase; LDL = low-density
lipoprotein; LDL-R = LDL-receptor; SR-BI = scavenger receptor BI. HDL cholesterol, with apoA1 as its major apolipoprotein
component, delivers cholesterol to the retina via scavenger receptors, and low-density lipoprotein (LDL) cholesterol delivers
cholesterol via members of the LDL receptor family. Cholesterol is subsequently internalized through the RPE and effluxed
to the apical side via ABCA1 transporters into the interphotoreceptor matrix to acceptors as apoA1 and apoE. Upon the
action of lecithin:cholesterol acyltransferase (LCAT), free cholesterol on the nascent HDL particles are converted into
cholesterol esters. HDL is thus transformed into larger and more mature HDL particles by LCAT, while LIPC hydrolyzes
phospholipids and thus remodels the HDL particles. Classical apolipoprotein B-containing LDL particles as known from
the circulation are absent in the retina, and it has therefore been suggested that CETP has a role in transferring esterified
cholesterol between lipoproteins and photoreceptor membranes. Photoreceptor discs are lipid-rich, and HDL may work
as a transporter of cholesterol and phospholipids between the RPE and the interphotoreceptor matrix, supporting their
synthesis and degradation. The RPE maintains its lipid balance by transporting lipoproteins back to Bruch’s membrane.
These lipoproteins have a high abundance of esterified cholesterol and are comprised of both apoA1 and apolipoprotein B,
resembling the LDL cholesterol particle except for the content of apoA1. A large amount of esterified cholesterol, perhaps
through CETP inhibition, might act as a barrier for lipid transport through an ageing retina, facilitating the formation of
deposits or drusen in Bruch’s membrane.

CETP and LIPC genetically control the concentrations of lipid and phospholipid
content in HDL particles, and higher concentrations of extra-large HDL particles have
been linked to AMD [23]. Phospholipids encompass the outer shell of the lipoprotein
and therefore the high phospholipid content of extra-large HDL is likely related to the
larger particle size. Inhibition of CETP, however, not only leads to higher levels of HDL
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cholesterol but also lower levels of non-HDL cholesterol. Therefore, whether it is the
circulating high HDL cholesterol, the low non-HDL cholesterol, or local changes in the
cholesterol transport and esterification mechanisms in the eye which cause AMD remains
to be determined.

3. Dementia

Dementia is a devastating neurodegenerative disease and one of the major causes of
disability and dependency among older people, currently affecting more than 50 million
people worldwide [58]. Alzheimer’s disease is the most common form of dementia, fol-
lowed by vascular dementia and mixed dementia, the latter displaying elements of both
Alzheimer’s disease and vascular dementia [58,59]. Dementia leads to slowly progressing
memory loss that advances to deficits in higher intellectual functions and cognitive abilities.
These deficits typically affect multiple domains, including language, increasing confusion,
personality and behavior changes, and loss of the ability to execute everyday tasks [59].
Dementia often has a subtle onset of symptoms over years and prodromal phases can last
for decades [60].

3.1. Observational Studies

Cross-sectional studies in general find that low HDL cholesterol levels are associated
with increased cognitive impairment [61,62]. Results from prospective cohort studies are
conflicting, with both low and high levels of plasma HDL cholesterol being associated
with dementia risk [63–68]. Reported associations of total and LDL cholesterol are also
conflicting. However, some evidence suggests that high levels of total cholesterol in midlife
are associated with increased risk of dementia, while high levels in late life are not, as
expected due to reverse causation [69]. Reverse causation is when the disease itself causes
an alteration in the modifiable trait of interest. As with several modifiable risk factors, late-
life measurements often reflect reverse causation, confusing the real impact of risk factors.
Many of these studies were indeed conducted in elderly subjects with the simultaneous
presence of several risk factors, increasing the possibility of confounding and reverse
causation. A recent prospective cohort study from 2019 found that high HDL cholesterol
levels were associated with cognitive decline [68]. One study showed that a specific
HDL subclass—the concentration of cholesterol esters to total lipids in large HDL—was
associated with increased risk of dementia and Alzheimer’s disease [65]. However, this
finding not supported by another prospective cohort study [63]. Collectively, results from
observational studies within this field are discrepant.

Very high levels of plasma HDL cholesterol have recently been reported to be as-
sociated with cardiovascular disease, AMD, infections, and mortality [19–25]. Whether
very high levels of HDL cholesterol are linked to dementia is still unknown, as no large
prospective study exists examining plasma levels of HDL cholesterol covering both extreme
levels and the risk of dementia and its subtypes. Studies including larger sample sizes,
longer follow-up times, and analyses stratified on sex are warranted.

3.2. Human Genetics

The apolipoprotein E (APOE) gene ε4 allele stands out as an impressive signal for
the increased risk of late-onset Alzheimer’s disease, as identified in 1993 [70] and since
confirmed worldwide [71]. The role of APOE in the peripheral lipid metabolism is well-
established, and the common APOE ε2/ε3/ε4 polymorphism is associated with all major
lipid and lipoprotein traits, including plasma HDL cholesterol levels [72].

ABCA1 is the active transmembrane molecule mediating the transport of cholesterol
across cell membranes, with the primary function being to efflux cellular cholesterol onto
lipid-poor apoA1 in the circulation, and apoE in the brain. Homozygotes for a loss-of-
function mutation in ABCA1 have Tangier disease, a disease associated with the virtual
absence of HDL and apoA1 in the plasma, with cholesterol accumulation in tissues, and
with case reports of familial dementia [73]. In 2015, it was clearly demonstrated in a
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cohort of 91,726 individuals that a low-prevalence loss-of-function mutation in ABCA1 was
significantly associated with low plasma apoE levels, and with high risk of Alzheimer’s
disease and cerebrovascular disease [74]. Meta-analyses of GWAS data have now identified
more than 70 loci which contribute to the risk of sporadic Alzheimer’s disease [75–78]. In
the most recent and largest GWAS study including 49,589 Alzheimer’s disease cases and
63,575 controls, ABCA1 was detected as a novel hit associated with Alzheimer’s disease,
thus confirming the previous candidate gene study [78].

Using the principles of Mendelian randomization, no causal associations between
Alzheimer’s disease and genetically low or high HDL cholesterol levels have been ob-
served [79,80]. However, for some exposures including HDL cholesterol, Mendelian
randomization is not always ideal at exploring extreme phenotypes, because conventional
Mendelian randomization assumes a linear exposure–outcome association and gives a
mean causal effect assumed to be true throughout the scale of the continuous exposure. Fur-
thermore, taking pleiotropy into account will be an important matter for future Mendelian
randomization studies within this field.

Whether HDL cholesterol is causally associated with other types of dementia remains
to be determined. GWAS studies on vascular dementia and frontotemporal dementia are
available. However, they suffer from low power with a limited number of cases, and the
subgroups are heterogeneous, limiting the accuracy of gene categorization and pathway
analysis [81,82]. When powerful GWAS studies are available for these dementia subtypes,
Mendelian randomization analysis should be performed.

3.3. Mechanisms

ApoE is the main apolipoprotein in the brain. It is produced locally in the central
nervous system (CNS) and incorporated into HDL-like particles that are fundamental
for supplying cholesterol to neurons. A cornerstone in Alzheimer’s disease pathology is
the accumulation of amyloid-β into amyloid plaques in the brain tissue [83]. Cerebral
amyloid angiopathy is characterized by capillary and pericapillary amyloid-β depositions
in the brain, resulting in vessel wall fragility. Both Alzheimer’s disease and cerebral
amyloid angiopathy are strongly associated with the ε4 allele encoding the apoE4 isoform
of apoE, and the clearance process of apoE4-Aβ complexes from brain tissue through
capillary endothelial cells is less efficient than that of apoE3-Aβ and apoE2-Aβ [84]. In the
brain, ABCA1 lipidates apoE, facilitating the clearance of amyloid-β. Therefore, decreased
transendothelial apoE4-Aβ clearance might explain, at least partly, the association between
the ε4 allele, cerebral amyloid angiopathy, and Alzheimer’s disease, in individuals with an
ABCA1 loss of function mutation [74].

ApoA1, the main protein component of circulating HDL cholesterol, can enter the brain
via transport across the blood brain barrier or the blood cerebrospinal fluid barrier, and be
incorporated in the CNS in HDL-like particles [85]. HDL particles may be dysfunctional
when plasma HDL cholesterol levels are high, as seen in studies where genetically high
HDL cholesterol is due to loss of function variants in scavenger receptor BI, leading to
larger and more buoyant HDL particles [24,86]. Perhaps these particles are less efficient at
supplying the brain with apoA-I and other important co-factors. Since HDL holoparticle
uptake across endothelial structures at the blood-brain barrier is important [87], it is
therefore speculated whether high HDL cholesterol levels indicating dysfunctional HDL
particles play an important role in dementia pathogenesis.

4. Diabetes

Diabetes mellitus is a major public health problem and the worldwide diabetes preva-
lence is constantly rising, particularly in low- and middle-income countries, posing a
substantial health challenge worldwide [88]. In 2014, 422 million people suffered from dia-
betes globally [88]. Both type I and type II diabetes mellitus are associated with high risks
of developing complications such as retinopathy, neuropathy, nephropathy, and atheroscle-
rosis [88]. Type II diabetes, the most common form of the disease, is characterized by
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hyperglycemia, insulin resistance, and dyslipidemia. A large part of the disease burden
from diabetes mellitus arises from different vascular complications that are strongly asso-
ciated with diabetes mellitus, the pathological hallmarks of which include inflammation,
dysregulated angiogenesis, and atherosclerosis [89].

4.1. Observational Studies

It is broadly recognized that type II diabetes is often accompanied by dyslipidemia
including hypertriglyceridemia and low HDL cholesterol levels in plasma, together with
raised apolipoprotein B and the prevalence of small, dense LDLs [90,91]. Observational
studies have shown that low HDL cholesterol levels associate significantly with increased
risk of type II diabetes [92,93]. As a result of these consistent observational findings,
plasma HDL cholesterol elevation has been suggested as a therapeutic option to reduce
the risk of type II diabetes and the related vascular complications that come with the
diagnosis [94–96].

A growing interest in HDL as a potential therapeutic target for type 2 diabetes has
emerged [96–98]. In clinical trials, post hoc analyses of the cardiovascular outcome have
shown that both acute and long-term HDL-raising therapies (four major CETP inhibitors)
improved glycemic control and decreased the risk of new-onset diabetes [15,99–101].
Whether the effects observed with CETP inhibitors on the reduction of blood glucose
concentrations and the risk of diabetes are mediated via their effects on HDL cholesterol is
currently unclear, since the glycemic signals could also be due to pleiotropic effects of CETP
inhibition. Nevertheless, further studies are needed to clarify the relationship between
HDL cholesterol and type II diabetes.

4.2. Human Genetics

Large Mendelian randomization studies published between 2015–2016 have shown
discrepant results [102–104]. A large candidate gene study combining rare and common
variants in five key HDL cholesterol genes into a strong genetic instrument, reported that
genetically low HDL cholesterol was not associated with type II diabetes in the general
population [102]. By contrast, two two-sample Mendelian randomization studies using
GWAS data found evidence of an inverse association between genetically determined
HDL cholesterol and risk of type II diabetes, indicating a possible causal effect of HDL
cholesterol on risk of type II diabetes [103,104]. Despite testing for pleiotropy by applying
the Mendelian randomization–Egger method [104], the possibility of pleiotropy outside
the pathway cannot be entirely excluded. Pleiotropy is the association of genetic variants
with additional phenotypes in alternative disease pathways.

4.3. Mechanisms

In type II diabetes patients, abnormalities in glucose metabolism are suggested to be
related to impaired HDL function, which is mainly understood as the cholesterol efflux
capacity of the HDL particle. A recent study systematically characterized the structure–
function relationships of HDL in healthy individuals and patients with type II diabetes
or coronary heart disease. They reported that type II diabetes and coronary heart disease
are associated with different alterations in HDL: size distribution, protein and lipid com-
position, and function. Loss of very large HDL and gain of small HDL was observed in
patients with type II diabetes [105]. Adipose tissue insulin resistance endorses the release
of free fatty acids that are delivered to the liver, consequently driving hepatic triglyceride
production [106]. Hepatic insulin resistance then increases the release of very low-density
lipoproteins (VLDLs), rich in triglycerides [106]. This subsequent hypertriglyceridemia
drives the movement of triglycerides from the VLDLs to HDL particles in exchange for
cholesteryl esters, thus lowering HDL cholesterol concentrations [107,108]. Triglyceride-
rich HDLs are formed, and they are more susceptible to clearance, which then further
lowers not only HDL cholesterol levels, but also the number of HDL particles, suggesting
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a reduction in HDL functions [109]. However, these mechanisms primarily explain the
suggested mechanism in individuals already diagnosed with type II diabetes.

HDL is suggested to play a causal role in type II diabetes pathogenesis through
different pathways [110]. The cornerstone of obesity is increased adipose tissue content,
and it is suggested that HDL and apoA1 regulate adipose tissue content (Figure 2, upper
left part). Interestingly, polymorphisms in the APOA1 gene have been associated with
increased risk of developing obesity in humans [111]. Further, mice studies implicate
a potential anti-obesity effect of ApoA1. For instance, ApoA1-deficient mice have been
shown to have an increased fat content [112] whereas mice overexpressing ApoA1 have
decreased gain of white adipose tissue mass when fed with a high-fat diet [113].
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Figure 2. Suggested protective mechanisms of HDL for type II diabetes. ABCA1 = ATP-binding cassette trans-
porter A1; ABCG1 = ATP-binding cassette transporter G1; ApoA1 = apolipoproten A1; ER= endoplasmic reticulum;
HDL = high-density cholesterol. HDL may play a causal role in the pathogenesis of type II diabetes through different
pathways. (1) The cornerstone of obesity is increased adipose tissue content, and evidence suggests that HDL and apoA1
regulate adipose tissue content. Polymorphisms in the APOA1 gene have been associated with increased risk of developing
obesity in humans, and mice studies have implicated the potential anti-obesity effects of ApoA1. (2) HDL may also play a
role in insulin sensitivity and glucose uptake in insulin-sensitive tissues. Studies in humans have shown that reconstituted
HDL infusion leads to larger decreases of plasma glucose levels than placebo. Further, ApoA1 transgenic mice have shown
lower fasting glucose levels, and a recent study found that a short peptide RH54 derived from ApoA1 induced glucose
uptake in cultured muscle myotubes. (3) HDL is suggested to influence pancreatic β-cell function and survival. Deletion of
either ABCA1 or ABCG1 in β-cells in mice have resulted in increased intracellular cholesterol levels and hence impaired
insulin secretion. Incubation of cultured β-cells with ApoA1 is reported to increase cellular insulin by transcriptional
regulation, and ApoA1 has recently been found to prime β-cells to increase insulin secretion in response to high glucose
in rats. Lastly, the endoplasmic reticulum is suggested to be a driver in β-cell dysfunction and death. Data from studies
in humans and animal models suggest that HDL protects against the development of diabetes through inhibition of
endoplasmic reticulum stress and β-cell apoptosis.
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HDL may also play a role in insulin sensitivity and glucose uptake in insulin-sensitive
tissues (Figure 2, lower left part). This has, for instance, been shown in experiments in
patients with type II diabetes where a reconstituted HDL infusion led to larger decreases of
plasma glucose levels than placebo, an effect associated with increased insulin secretion [97].
In support of these findings, ApoA1 transgenic mice have shown lower fasting glucose
levels and improved glucose tolerance compared with wild-type mice [112,114], and a
recent study found that a short peptide RG54 derived from ApoA1 induced glucose
uptake in cultured muscle myotubes [115]. In support of this, absence of ApoA1 has led to
hyperinsulinemia and hyperglycemia in mice [112]. Another recent study showed that mice
treated with HDL or ApoA1 for three consecutive days displayed a reduction in glucagon
levels after hypoglycemic stimulus [116]. It is possible that HDLs exert a modulating role
in maintaining a normal glucose balance.

HDL has further been suggested to influence pancreatic β-cell function and sur-
vival (Figure 2, right part). The deletion of either ABCA1 or ABCG1 in β-cells in mice
have resulted in increased intracellular cholesterol levels and thus impaired insulin secre-
tion [117–119]. Robust evidence from the general population has not confirmed that these
findings in mice translate into increased risk of type II diabetes in humans [120]. Incubation
of cultured β-cells with ApoA1 leads to an increase in cellular insulin by transcriptional
regulation [121], and ApoA1 was recently reported to prime β-cells to increase insulin
secretion in response to high glucose in rats [122]. Endoplasmic stress is suggested to
be a driver in β-cell dysfunction and death—the latter a hallmark of diabetes develop-
ment. Data from studies in animal models and humans suggest that HDL protects from
the development of diabetes through the inhibition of endoplasmic reticulum stress and
β-cell apoptosis [110,123]. The molecular mechanisms underlying the potential beneficial
functions of HDLs in β-cells are largely unknown. Intriguingly, however, a recent study
found that a potential protective effect of HDL to reverse endoplasmic stress and β-cell
death may involve a complex cascade of the transport, generation, and mobilization of
oxysterols for the activation of the hedgehog signaling receptor Smoothened [124].

5. Infection

HDL might play an important role in both the innate and adaptive immunity
—mechanistically supported by the ability to modulate cholesterol availability in immune
cells [125]. One observational study found a U-shaped relationship between HDL choles-
terol levels and high risk of infectious diseases, whereas only low LDL cholesterol levels
were associated with high risk [25]. In this study, genetically higher HDL cholesterol, via
common variants in the genes encoding LIPC and CETP, also showed a trend towards
a lower risk of infectious diseases indicating a potential causal role of HDL cholesterol
levels [25]. In support of these findings, both observational and genetic data from the
UK Biobank found an inverse association between levels of HDL cholesterol and risk of
infectious diseases, whereas no genetic evidence for LDL cholesterol and risk was ob-
served. [126] A recent study of clinical genetics and humanized mouse models suggested
that inhibiting CETP improves outcome for individuals with sepsis [127]. As previously
stated, Mendelian randomization studies determine a linear relationship between the ge-
netic exposure and the outcome. Consequently, the U-shaped relationship found in one of
the observational studies [25] would therefore not necessarily be detected in a Mendelian
randomization study.

6. Mortality

The association between very high HDL cholesterol and high mortality has been
reproduced in several independent observational studies including different subpopula-
tions [128]. In general, studies report a U-shaped association between HDL cholesterol
levels and mortality in cohorts comprising between 97,166–1,764,986 individuals [19,21,22].
One smaller study exploring the effect of genetically determined HDL cholesterol showed
that genetically decreased activity in CETP (and thus genetically elevated HDL choles-
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terol) was associated with reduced mortality [129]. Decreased CETP activity is, however,
additionally related to decreased levels of triglycerides, LDL cholesterol, and non-HDL
cholesterol. Currently, there is thus no support for the concept that genetically elevated
HDL cholesterol is causally associated with increased risk of mortality, and more studies
addressing causality are required. Lastly, clinical trial evidence does not show that HDL
cholesterol-raising therapies decrease mortality risk as intended, but either points towards
the tendency of increased mortality or no effect [11,15,130].

7. Conclusions

HDL is a complex particle that varies greatly in size and composition, and it is
suggested to possess a range of potentially beneficial functions. For seven decades, HDL
cholesterol has been perceived as the “good cholesterol.” This narrative review discusses
the complex role of HDL and non-cardiovascular diseases, elucidating that high HDL
cholesterol levels are not consistently related to a good prognostic outcome (Figure 3).
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To summarize, high levels of HDL cholesterol have been established as a potential
causal risk factor for AMD via observational and genetic studies. Both low and high levels
of HDL cholesterol have been associated with dementia, and further studies are warranted
to understand these associations in depth. Whether HDL cholesterol may play a causal role
in type II diabetes remains to be determined. There are, however, interesting signals in both
experimental and human genetic studies that may indicate a causal relationship between
low HDL cholesterol levels and type II diabetes risk. In general, an inverse relationship
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between HDL cholesterol and infectious diseases is found, also supported by some genetic
studies. The association between very high HDL cholesterol and high mortality risk has
been reproduced in several observational studies, albeit with no convincing causal support
from human genetics and from randomized clinical trials (Figure 3).

Finally, it will be of major importance to determine whether these observational and
human genetic findings reflect whether HDL cholesterol concentrations are directly causing
the diseases, or whether HDL cholesterol concentrations in plasma mirror a local tissue-
specific effect of cholesterol transport or an effect of the size and composition of the HDL
cholesterol particle.
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