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Abstract: The frequency and intensity of droughts are increasing in many parts of the world as a
result of global climate change and human activity, posing a serious threat to regional ecological
security. The climate in the middle reaches of the Yellow River Basin (MRYRB) has been warm and
dry in recent years, with frequent droughts. In order to investigate the temporal trend of drought,
and reveal the resistance of vegetation to drought in the MRYRB, this study used remotely-sensed
vegetation index products (MODIS-NDVI and SPOT-NDVI) and the standardized precipitation
evapotranspiration index (SPEI). The results indicated that: (1) drought intensity showed a weak
upward trend in the study area from 2000 to 2018, with linear growth rates of SPEI at temporal scales
of 1, 3, 6, 9 and 12 months of −0.002, 0.0034, 0.0198, 0.0234, and 0.0249, respectively; (2) drought was
positively correlated with vegetation in most areas (97.6%), and vegetation was most affected by
drought on long-term time scales (9 and 12 months); (3) with the extension of drought, vegetation
resistance index decreased, then gradually recovered after the end of the drought. Forest had the
longest resistance duration of 260 days, while grassland and cultivated land had resistance durations
of only 170 days. This study adds to the understanding of vegetation’s ability to withstand drought,
and these findings provide evidence to support drought response in the MRYRB.

Keywords: drought characterization; correlation coefficient; vegetation resistance; SPEI; NDVI

1. Introduction

Drought is a condition relative to some long-term average condition of balance be-
tween rainfall and evapotranspiration in a particular area [1]. Human activities cause
an increase in the concentration of carbon dioxide and other heat-trapping gases in the
atmosphere, which in turn leads to an increase in surface temperature and global warming,
and the frequency and intensity of droughts will continue to increase by the end of the
21st century, especially in arid regions [2,3]. The composite drought hot spot map by
Samiul et al. [4] draws attention to the negative effects of drought, which not only restrict
social and economic development but also cause a series of ecological and environmental
problems such as water shortages, soil degradation, sandstorms, and desertification [5].
Therefore, it is critical to carry out drought assessments and investigate drought evolution
and response relationships as a result of climate change.

Vegetation provides important ecosystem services related to human well-being, biodi-
versity and carbon cycling, and is an important component of terrestrial ecosystems [6,7].
Vegetation is characterized by adaptation to its environment, and therefore, close mon-
itoring of vegetation spectral characteristics is of ecological importance [8,9]. Studies
based on field experiments and remote sensing methods have shown that drought has
a significant negative impact on vegetation growth, and is affected by drought duration
and intensity [10,11]. During a drought, vegetation growth slows down or the vegetation
dies, which threatens regional ecological security [12,13]. Therefore, understanding the
response of vegetation to drought is critical in the context of climate change, and further
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understanding of how drought affects vegetation ecosystems can help people cope with
rising drought stress and provide scientific guidance for water resource allocation and
drought prevention [14].

Quantifying drought characteristics helps to assess drought events, and drought in-
dexes are one of the most effective tools for identifying and describing drought events in a
timely manner [15]. The standardized precipitation evapotranspiration index (SPEI) can be
used to define the severity of drought at various time periods, to efficiently monitor drought
and to quantify drought episodes [16]. SPEI considers both temperature and precipitation
and is able to detect the effects of evapotranspiration and temperature changes on global
warming [17], which is widely used by climatologists in climatology research [18,19]. For
example, SPEI was analyzed by Nejadrekabi et al. [20] using the Getis-Ord-Gi statistics to
determine the SPEI values that form clusters and identify areas at high risk of drought;
Sharma et al. [17] used geospatial techniques to generate the SPEI drought map of Tripura,
Northeast India in 1985 to describe the severity of the drought. The normalized difference
vegetation index (NDVI) is a feedback variable in the ecosystem that is used to indicate
vegetation growth and vegetation cover changes. It is one of the most well-known veg-
etation indexes and is produced from observed reflectance in the red and near-infrared
sections of remotely-sensed spectra [21–23]. Currently, the most easily accessible global
remote sensing NDVI data are the Moderate Resolution Imaging Spectroradiometer NDVI
(MODIS-NDVI) and the SPOT-VEGETATION NDVI (SPOT-NDVI), both of which have
been widely used. The MODIS-NDVI has the advantages of high spectral resolution and
high spatial resolution, while the SPOT-NDVI is specially designed for vegetation and
surface observation and has a higher temporal resolution.

In arid and semi-arid areas, response relationships between vegetation and drought
based on correlation analysis have been assessed using NDVI and SPEI. For example,
Zhao et al. [19] investigated the response of vegetation at different time scales to sea-
sonal water stress on the Loess Plateau, China, using maximum Pearson correlations.
Xu et al. [24] examined drought responses and drought resistance of vegetation in north-
ern China among different biome types and climatic zones using Spearman correlation
analysis. These two studies indicated that drought inhibits vegetation growth. However,
the relationship between vegetation and drought cannot be clearly demonstrated with a
simple correlation analysis, and the response mechanism of vegetation to drought has to be
investigated further.

Vegetation can improve its resistance to drought by changing its structure and physio-
logical characteristics in a process of long-term adaptation to the environment. Vegetation
resistance index is used to assess vegetation’s ability to maintain its original characteristics
during droughts, which can be measured using a vegetation index. Vegetation with higher
resistance can effectively mitigate the harmful effects of drought on an ecosystem [25,26].
However, most studies to date have been limited to the calculation of simple correlations
between drought indexes and vegetation indexes in order to assess ecosystem resistance to
drought, and these have focused primarily on spatial distributions of correlations [27,28].
Vegetation resistance is mostly determined by the nature of climate anomalies, but the
various degrees of drought disturbance and the delayed effects of drought on vegetation
have not yet been fully taken into account in current studies. Vegetation resistance is
influenced by the physiological structure of vegetation types as well as by drought du-
ration and intensity, but there is little research on long-term changes in resistance across
different vegetation types. Therefore, this study uses the high temporal resolution of the
SPOT-NDVI to study the change in vegetation resistance on a 10-day scale in relation to a
specific drought event.

Due to the rapid growth of the population and economy, the ecological environment in
the middle reaches of the Yellow River Basin (MRYRB) is fragile, with a long-term decrease
in river runoff and a rise in average temperature, the environment has gradually changed
from a natural environment to a human-influenced environment which is very prone to
drought [29]. In recent years, the frequency and intensity of drought events in the MRYRB
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have shown increasing trends and droughts have become the main factor restricting the
further development of the MRYRB, manifested primarily in regional ecological security,
social and economic development, and industrial and agricultural production [30–32].

Thus, the aims of this study are: (1) to reveal the temporal characteristics of drought,
and vegetation responses to drought, in the MRYRB on different time-scales; (2) to assess
the temporal change of vegetation resistance index during the development of a drought
event and determine the resistance duration to drought based on vegetation characteristics;
(3) to discuss the causes for the spatial heterogeneity of the response relationship between
vegetation and drought. It is hoped that the results can strengthen disaster management in
terrestrial ecosystems and provide a theoretical basis for responding to climate change in
the MRYRB.

2. Materials and Methods
2.1. Study Area

The MRYRB spans between 32◦–42◦ N and 104◦–112◦ E, with a total area of approx-
imately 3.44 × 105 km2 (Figure 1). It belongs to the arid, semi-arid, and semi-humid
climatic zones, with four distinct seasons. Precipitation and temperature have significant
seasonality and show an uneven distribution in both time and space. The average annual
precipitation is about 480 mm, with more than 70% falling from June to September and the
average annual temperature ranges from 8 ◦C to 14 ◦C. Most areas of the MRYRB contain
loess soil, with weak erosion resistance and high infiltration capacity. The main types of
coverage are forest, grassland and cultivated land, accounting for 20.4%, 35.1%, and 37.1%
of the total area, respectively (Figure 1a). Since the implementation of the Three-North
Shelterbelt Project in the 1990s, the regional ecological environment has improved to a
certain extent. Restricted by the inherent natural climatic conditions, the frequency of
drought disasters in the study area is increasing. In addition, relevant studies have shown
that under the background of RCP 8.5, longer-lasting droughts will occur in the future in
the MRYRB [33,34].

Figure 1. The spatial distribution of vegetation types (a) and geomorphic types (b) in the middle
reaches of the Yellow River Basin (MRYRB).

2.2. Data
2.2.1. Remote Sensing Data

MODIS-NDVI and SPOT-NDVI datasets were used in this study. The time series of
the monthly MODIS-NDVI dataset (MOD13A3) had a 1 km resolution and was down-
loaded from the website of the US National Aeronautical Space Agency (NASA) (https:
//ladsweb.modaps.eosdis.nasa.gov, accessed on 1 May 2021). The data covered the period
from 2000 to 2018. The 10-day maximum SPOT-NDVI (SPOT-VEGETATION NDVI) syn-
thesis images at 1 km spatial resolution were obtained from the Copernicus Global Land
Service (https://land.copernicus.eu/global/products/ndvi, accessed on 29 January 2022)

https://ladsweb.modaps.eosdis.nasa.gov
https://ladsweb.modaps.eosdis.nasa.gov
https://land.copernicus.eu/global/products/ndvi
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for 2010–2012, which has removed the effects of clouds, ice and snow [35]. The monthly
MODIS-NDVI data was utilized to demonstrate the distribution of water stress and vegeta-
tion correlations, whereas the 10-day SPOT-NDVI data was employed to characterize the
vegetation resistance index temporal variation.

A 1 km land-cover classification product from 2018 was obtained from the Resource
and Environment Science and Data Cloud Platform (http://www.resdc.cn/, accessed
on 1 March 2021). The dataset was built using high-resolution remote sensing satellite
imagery data, unmanned aerial vehicles and ground survey observation systems. The
comprehensive evaluation accuracy of the first level categories of this dataset was above
93% [36]. The obtained land-cover data are summarized and reclassified into 6 categories:
grassland, forest, cultivated land, construction land, water body and others (Figure 1a).
The study in this paper focuses on grassland, forest, and cultivated land.

A geomorphic type of data was from the Chinese 1:1,000,000 Geomorphic Atlas, which
is divided into four primary types: plain, tableland, hill and mountain (Figure 1b).

A digital elevation model (DEM) with 90 m resolution was provided by the Geospatial
Data Cloud site, Computer Network Information Center, Chinese Academy of Sciences
(http://www.gscloud.cn, accessed on 25 October 2021) (Table 1).

Table 1. The information of datasets used in this study.

Name Source Time Resolution

MODIS-NDVI the US National Aeronautical Space Agency 2000–2018 1 km
SPOT-NDVI Copernicus Global Land Service 2010–2012 1 km
Land-cover Resource and Environment Science and Data Cloud Platform 2018 1 km

Geomorphic type Chinese 1:1,000,000 Geomorphic Atlas - -
DEM Geospatial Data Cloud - 90 m
SPEI Climate Research Unit 2000–2018 0.5◦ × 0.5◦

2.2.2. Standardized Precipitation Evapotranspiration Index (SPEI)

SPEI product datasets for the time scales of 1, 3, 6, 9 and 12 months came from
the Climate Research Unit (CRU) (https://digital.csic.es/handle/10261/202305, accessed
on 25 October 2021) with a spatial resolution of 0.5◦ × 0.5◦ for the period 2000–2018,
representing short (1 and 3 months), medium (6 months), and long (9 and 12 months) time
scales, respectively. This multi-scalar metric represents either a water surplus or deficit
for a given month [37]. Studies have confirmed the reliability of this dataset and have
previously applied it to drought-related research [38]. The data set was resampled to match
the 1 km spatial resolution of the vegetation indices using the Resample Tool of the ArcGIS
software package.

2.3. Methods
2.3.1. Vegetation Resistance

As discussed above, the vegetation resistance index (Ω) is one of the most widely used
approaches to describe the response of vegetation to climate disturbances and is suitable
for ecosystems with a high sensitivity to stress [39,40]. It is calculated as follows:

Ω =
Yn∣∣Ye − Yn

∣∣ (1)

where Yn and Ye represent the mean value of an NDVI during normal years (mean across
all non-drought years) and the NDVI value during the occurrence of drought, respectively.
The maximum and minimum of Ω are ∞ and 0. Ecosystems with greater Ω are more
resistant than others. The resistance index used in this study is unitless, and thus can be
directly comparable across biomes with varying productivity levels.

http://www.resdc.cn/
http://www.gscloud.cn
https://digital.csic.es/handle/10261/202305
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The time from the start of the drought to the time of the disturbance of vegetation
was recorded as the vegetation resistance duration to drought. Its calculation formula is
as follows:

T = Tβ − Tα (2)

where T represents the vegetation resistance duration, Tα and Tβ represent the time when
the drought started and vegetation was disturbed, respectively. The non-drought value
was defined as the baseline to assess drought impact against, i.e., when an NDVI continuity
became lower than the baseline, this indicated that a drought had disturbed vegetation.

2.3.2. Analysis Methods

To calculate the trend in variable using the linear tendency method [41]. In this study,
the variable is SPEI. The formula is as follows:

y = a + bx (3)

where y is the time series of SPEI, x is the corresponding time series; the regression coeffi-
cient b represents the linear trend, and a is a constant. The value of b greater than 0 implies
an increasing trend.

Pearson correlation (PC) is an index to measure the degree of correlation between two
variables [42]. In this study, the annual correlation coefficient of SPEI and NDVI in image
pixels at different time scales was calculated, and the spatial distribution characteristics of
the correlation coefficient between vegetation and drought were analyzed. Its calculation
formula is as follows:

R =
∑n

i=1[(xi − x)(yi − y)]√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

(4)

where R represents the PC, xi and yi represent the NDVI and SPEI values in the ith year, x
and y are the mean values of SPEI and NDVI. The maximum correlation coefficient was
used in order to avoid a small number of outliers as a result of interference.

In arid and semi-arid areas, in order to highlight the vegetation situation and eliminate
the interference of abnormal factors, the Maximum Value Composite (MVC) method was
adopted to obtain the annual NDVI image [43], and its calculation formula is as follows:

M = Max(NDVIi) (5)

where M is the maximum NDVI, NDVIi is the NDVI in the ith month. The maximum NDVI
image can reflect the annual variation of vegetation more clearly.

In order to detect overall trends in the NDVI from 2000 to 2018 in our study area,
a least-squares linear regression model was applied and fitted to the multi-year NDVI
dataset [14], i.e.,:

Slope =
n ×

n
∑

i=1
i × NDVIi −

(
n
∑

i=1
i
)(

n
∑

i=1
NDVIi

)
n ×

n
∑

i=1
i2 −

(
n
∑

i=1
i
)2 (6)

where n is the number of years (n = 19), and i is an integer ranging from 1 to n. The NDVIi
represents the NDVI for the ith year, while the Slope represents the trend of the NDVI
during 2000–2018. If the value of Slope is greater than zero, this implies that vegetation has
improved.

3. Results
3.1. Drought Characterization in the MRYRB

The results of the linear trend analysis showed that drought severity in the MRYRB
has increased slightly from 2000 to 2018 (Figure 2). The linear growth rates of SPEI at
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time scales of 1, 3, 6, 9 and 12 months were −0.002, 0.0034, 0.0198, 0.0234, and 0.0249,
respectively, all of which passed the significance test (p < 0.01). With the exception of a time
scale of 1 month (SPEI-1), SPEI on other scales exhibited an increasing tendency, and the
trend increased with increasing time scale.

Figure 2. Temporal variation of SPEI at different time scales (blue line) and percentage of arid region
areal cover (yellow bars) from 2000 to 2018. Time scales were 1 month (SPEI−1), 3 months (SPEI−3),
6 months (SPEI−6), 9 months (SPEI−9) and 12 months (SPEI−12).

In terms of individual years (Figure 2), in 2003 there was a significant rise in precip-
itation and the entire region was free of drought. However, all other years experienced
varying degrees of drought. The drought changes in the 2000–2018 basins alternate, and
the year pairs with the most noticeable dry-wet alternation were 2004–2005, 2009–2010, and
2011–2012. If the observed trends continue, drought duration and severity will continue to
increase in the MRYRB. This is consistent with the observation of Liu et al. that warm-dry
is the dominant climate feature in the region, and that alternating high-frequency warm-
humid, warm-dry, and warm-normal changes will become the mainstream climate feature
in the 21st century under the projected conditions of climate change scenarios RCP2.6,
RCP4.5, and RCP8.5 [33].

3.2. Spatial Distribution of the Correlation between NDVI and SPEI

Most image pixels in the MRYRB had a positive correlation between MODIS-NDVI
and SPEI, accounting for 97.6% of the study area. Correlations were particularly high in
Gansu Province and the Ningxia Hui Autonomous Region, where correlation coefficients
were greater than 0.5 (Figure 3a). Only 2.4% of the pixels in the study area exhibited
negative correlations, and these were mainly located in the Guanzhong Plain and in some
regions of Henan Province. These regions have a higher level of economic development
and urbanization, they are heavily influenced by human activity, and climate change has
less of an impact on such urbanized land. In general, the vegetation showed a positive
response to drought in the west and center of the MRYRB, but a weak negative response to
drought in other regions, and our results match those of Zhang et al. [44].

The response sensitive areas of NDVI to SPEI at temporal scales of 1, 3, 6, 9 and
12 months accounted for 2.4%, 3.5%, 23.8%, 31.0%, and 39.3% of the study area, respectively,
indicating that the annual NDVI of MRYRB was most affected by SPEI at 12 months
(SPEI-12) (Figure 3b). The areas sensitive to 3 and 6 months were mainly distributed in
grassland and cultivated land areas with significant growth cycles. The time scale at which
the forest was sensitive to drought stress was mainly 9 months and above, and the forest
was not susceptible to short-term water stress. The correlation coefficients between NDVI
and SPEI in the eastern and central parts of the study area were lower than those in the
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western part, but the corresponding time scales in the eastern and central regions were
higher than those in the western part of the study area.

Figure 3. (a) The spatial pattern of the maximum correlation coefficient between NDVI and SPEI for
the period of 2000–2018. (b) The time-scales at which the maximum correlation coefficient between
NDVI and SPEI were obtained.

3.3. Vegetation Resistance during Typical Drought Events

The winter-spring drought from October 2010 to February 2011 was selected as a
typical drought event by the Bulletin of Flood and Drought Disasters in China [45]. This
drought involved 8 provinces and nearly 100,000 ponds. The precipitation decreased by
more than 50% from October onwards, and terrestrial water storage declined. Drought
quickly spread in mid-November, reaching a climax in early February the following year,
and affecting an area of around 7434 hectares. As temperatures rose and precipitation in-
creased around mid-February, the drought began to ease. The drought impact is quantified
by comparing the difference in vegetation activity between drought years and baseline
conditions [46]. Considering the climate change in the MRYRB in the past two decades, the
period 2011–2012 was selected to represent conditions without drought and was used as
the baseline period representing normal conditions.

3.3.1. Variation Trend of the Vegetation Resistance Index

The lowest limit of the vegetation resistance index was determined by finding the
minimum resistance of different vegetation types (Figure 4). The temporal variations of the
resistance index in three vegetation ecosystems (forest, cultivated land, grassland) were not
consistent. Forest resistance began to fall in the second month of the drought, remained at
about 0.5 from early December to early February, and then began to rise in mid-February
until it returned to normal while grassland and cultivated land recovered faster. Similar
to forest resistance, grassland resistance fluctuated in the second month of the drought,
remained at 0.5 from early December to mid-March, then began to rise in late March. The
recovery duration was longer than that of the forest, and the recovery rate was slower.
At the start of the drought in October, the resistance of cultivated land fluctuated as it
was influenced by human activity, and the resistance did not always reduce. Resistance
unexpectedly increased in late November, fluctuated, reduced and then gradually returned
to normal by mid-March.

The resistance index of cultivated land was lower than that of forest and grassland
during the drought (Figure 4). Forest had the lowest resistance index of 0.279 in the middle
of December, grassland had the lowest resistance index of 0.169 in the middle of January,
and cultivated land had the lowest resistance index of −1 in late January and early February.
The maximum and minimum values for cultivated land occurred later than those of forest
and grassland. The sudden rise in resistance for cultivated land in late November may
have been caused by the artificial irrigation of crops. As February is the green season of
winter wheat in the MRYRB, the continuous growth of water demand led to vegetation
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resistance on cultivated land reaching its lowest value. Due to the dry winter environment,
limited vegetation coverage and lower NDVI values on cultivated land due to winter and
spring droughts, drought resistance was unfavorable during this period. The resistance
of forest and grassland fluctuated dramatically at the end of the drought period, whereas
the resistance of cultivated land stayed low and then recovered slowly in the non-growing
season with increasing soil evaporation. During a drought event, the vegetation resistance
index generally fluctuated, even diminished, and then gradually returned to normal after
the peak of the drought.

Figure 4. Temporal variation of drought resistance in three different vegetation types (forest, cul-
tivated land, grassland) from October 2010 to June 2011. Time is expressed as month, day (i.e.,
1001−1 October 2010; 0621−21 June 2011). Shading area indicates the period of drought. Droughts
started in early October (1001), reached a peak in early February (0201) and began to ease in late
February (0221).

3.3.2. The Vegetation Resistance Duration to Drought

Extraction of drought areas based on SPEI images, and comparison of NDVI in drought
areas to baseline show that drought had little effect on the overall NDVI seasonal variation.
However, the NDVI showed a dramatic decrease during the middle and late stages of
drought development compared with normal years (Figure 5). The lowest NDVI value
occurred in the later winter of 2010. The NDVI of grassland and cultivated land exhibited a
similar decreasing pattern during drought but the magnitude of decrease was larger than
forest. In late November and early January, the NDVI of grassland was lower than the
baseline. By late March, the NDVI of grassland had dropped significantly compared to the
same time the previous year. Drought caused severe damage to grassland, and the grassland
was able to withstand the drought event for 170 days (1 October 2010–11 March 2011).

The NDVI of cultivated land during the drought period was lower than corresponding
baseline values for the first time in late October, lower than the baseline in mid-November
and early January again, and significantly lower than the baseline from late March onwards.
Hence the resistance duration was 170 days (1 October 2010–11 March 2011), which was
consistent with the resistance duration of grassland, but the time of fluctuation was earlier
than that of grassland, and the frequency of fluctuation was higher than that of grassland.
As the root systems of grassland and cultivated land are shallow and water storage capacity
is low, the resistance duration to drought was reduced.

In mid-November, early January, mid-February, and late February, the NDVI of forest
varied and was lower than the baseline. After experiencing a chronic water shortage
environment, NDVI values began to be much lower than baseline values from mid-June,
and resistance duration was 260 days (1 October 2010–11 June 2011), which was longer
than for grassland and cultivated land. With established roots, a forest may be more able to
maintain development by extracting soil water when precipitation decreases, which result
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in smaller variations of NDVI during the drought. Therefore, forest resistance duration
was longer.

Figure 5. Temporal variation of NDVI in different vegetation types. (a,b) grassland, (c,d) cultivated
land, (e,f) forest. (a,c,e) Variation of NDVI in 2010–2011 compared to baseline and (b,d,f) anomalies
of NDVI in 2010–2011 relative to baseline. Time is expressed as month day (i.e., 1001−1 October 2010;
0621–21 June 2011). Shading area indicates the period of drought. Baseline condition is represented
by the NDVI of 2011−2012.

4. Discussion
4.1. Response of Different Geomorphic Types to Drought

According to previous studies, the response of vegetation to drought is influenced
by geomorphic types, and hence uneven spatial distribution is evident [19,47,48]. The
MRYRB runs through the heart of the Loess Plateau, and there are numerous tributaries
due to tectonic movement, the geomorphic types of the region feature considerable spatial
variability. Plain, tableland, hills and mountains make up the majority of the basin. The
response of vegetation to drought is influenced by changes in lithology, soil, and hydrology
among different geomorphic types [49,50]. Correlation coefficients between vegetation and
drought were calculated for different geomorphic types (Figure 6a). The vegetation in hill
regions was the most drought-susceptible. Except for a few aberrant values, the majority
of the correlation coefficients between vegetation and drought in this area were between
0.28 and 0.44, and all correlation coefficients were positive. The plain region had the lowest
correlation coefficients, with a maximum of 0.73 and a minimum of −0.19. The maximum
correlation coefficients between vegetation and drought were similar for both mountain
and plain regions. Each geomorphic type was more vulnerable to medium and long-term
water deficits when considering the response time scale (Figure 6b). However, plain and
tableland also show reactions to short-term water deficits.

The multi-pore soil structure, vertical joint development, robust permeability and
rich calcium carbonate properties of the loess soil in the MRYRB make it more suited for
vegetation growth and a wide number of weathering products produce thicker soil and
have a high capacity for water storage. The small size and large surface area of Loess soil
particles improve their ability to absorb ions as well as improve their water storage capacity,
lowering vegetation’s reliance on precipitation. As a result, the MRYRB was mainly affected
by the SPEI on a 12-month time scale.

Owing to the high altitude in mountain and hill regions, the response of vegeta-
tion growth to drought is mainly affected by surface temperature, snow cover, and en-
ergy [51,52]. Temperature plays a decisive role in vegetation growth, and energy is a key
limiting factor. A large amount of snow can result in possible excess water and reduced
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soil water loss [53]. As a result, these regions may be vulnerable to the twin effects of water
and energy scarcity, and they can withstand short-term water shortages.

Figure 6. The maximum correlation coefficient of different geomorphic types: (a) Box−and−whisker
plots (25th to 75th percentiles at the ends of the box. Median is indicated with a horizontal line in the
interior of the box. Maximum and minimum values are at the ends of the whiskers); (b) Proportions
with the maximum correlation at different time scales by geomorphic types.

The response relationship between vegetation and drought in low-altitude environ-
ments such as plains and tablelands is influenced by population density. Human activities
such as urbanization and grazing degrade vegetation biomass, vegetation cover and several
soil functional indicators, increasing drought sensitivity [54]. As a result, a short-term
drought will also jeopardize the region’s ecological system’s security.

4.2. Divergent Resistance of Different Vegetation Types

The maximum correlation coefficients between NDVI of various vegetation types
and SPEI at different time scales were calculated, and the difference in response for the
various vegetation types was investigated (Figure 7). Drought had a similar impact on both
cultivated and grassland areas. In terms of response time, grassland and cultivated land
had the strongest responses to medium time scales (6 months), with the highest correlation
coefficients of 0.793 and 0.825, respectively. The maximum correlation coefficient between
forest NDVI and SPEI at a time scale of one month was only 0.591, whereas the maximum
correlation coefficient between forest NDVI and SPEI at a 9-month time-scale was 0.839. In
short-term (1 and 3 months) drought events, the correlation coefficient between NDVI and
SPEI of grassland and cultivated land was higher than that of the forest, and a short-term
water deficit could easily affect the growth of cultivated land and grassland. Forest was
more sensitive to long-term droughts, and the longer the time scale, the more sensitive the
forest was to drought.

It has been shown that a forest can experience higher drought risks than grassland and
cultivated land. The endurance capacity of vegetation to drought events is linked to both
the degree of the drought damage and the physiological properties of the vegetation. In a
water-scarce environment, vegetation responds to drought primarily by collecting water
from the soil through its roots. We found that grassland NDVI showed a gradual decrease
compared to baseline during the drought event (Figure 5b). Grassland is shallow-rooted
vegetation with periodic growth, which is consistent with observed cycle NDVI variation.
A leaf with a short life has a faster photosynthetic rate than a leaf with a longer life, and
such a leaf mostly obtains water from surface or shallow soil water. Precipitation is a crucial
element impacting grassland response to drought [55]. A grassland ecosystem may respond
quickly to proper growth conditions, making it vulnerable to short-term meteorological
droughts [56].
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Figure 7. Maximum correlation coefficient between NDVI and SPEI for different vegetation types.

In this study, there were obvious spatial differences within grassland ecosystems
(Figure 3). The southern part of the MRYRB contains sparse grasslands and woody sparse
grasslands, which experience hot, seasonal arid climate conditions. Such vegetation will
experience growth for long periods with a lack of water every year. Hence, they have
developed cold and drought tolerant characteristics and were slightly less responsive to
drought than the general grassland [57].

The cultivated land showed a strong drought response to SPEI at a 6-month time-scale
and its resistance was the worst (Figure 4). In the winter-spring drought of 2010–2011, the
cultivated land resistance duration was 170 days, this indicates that it was more sensitive
to climate change (Figure 5c). The cropping ecosystem in the MRYRB consists of two crops
a year, and the crops are mainly wheat, corn, and soybeans, whose roots cannot access
deep groundwater and whose water use efficiency is affected by human activities. Drought
resistance of cultivated land is affected by a number of field management practices such
as irrigation and fertilization strategy and new planting technology, which influence the
water absorption capacity of crop roots and leaf photosynthesis and transpiration rates [58].
Crop growth is closely related to soil texture and light and heat conditions. In areas with a
high level of urbanization, water is no longer the most important factor limiting vegetation
growth. However, precipitation is still the main limiting factor of crop growth in dry areas.
The growth status of grassland and cultivated land is closely related to the intensity and
duration of drought. In the monitoring of drought events, attention should be paid to the
status of low and shallow root vegetation to prepare for drought disasters in advance [59].

With a lagging effect, drought in winter and spring can directly affect the canopy
growth and carbon balance in the early summer area, making the NDVI continuum in
summer woodlands lower than the baseline (Figure 5e). Forest exhibits a higher ability to
maintain fundamental metabolism and productivity in the face of a severe water shortage
by changing stomatal openings to prevent excessive water loss [60,61]. The canopy of a
forest is developed, giving it an advantage over cultivated land and grassland in terms
of water vapor transmission and interception. The canopy increases evaporation at the
canopy surface while successfully reducing evaporation of soil water. When precipitation
drops, the moisture content of the air drops, the soil loses water, and tree roots reach
deeper into the soil for water. However, as a drought deepens and persists, the deep soil
moisture will decrease and the forest will not be able to obtain the water needed for normal
growth. The growth status will then change significantly. For example, the leaf area and
canopy coverage may decrease, and the photosynthetic capacity of the vegetation will be
affected [62].

The mixed forest in the study area is mostly distributed at the forest edge, where the
correlation between NDVI and SPEI is lower, but the response time scale is longer. This is
due to the high canopy, the low variation range of temperature and surface temperature
in the forest, low wind speed, low evaporation and mutual promotion of tree species that
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increase water use efficiency and improve the drought resistance of mixed forest. The
MRYRB also contains a considerable number of broad-leaved forests, whose growth is
mostly influenced by solar radiation, and the utilization rate of light energy increases the
resistance of broad-leaved forests to drought [63]. When drought occurs, broadleaf forests
remove the old leaves and keep the new ones, resulting in a high light use efficiency.

4.3. Impact of Ecological Project Construction on Vegetation Resistance

Substantial economic growth has resulted in serious ecological environmental contam-
ination in the MRYRB. The rapid economic development and use of land have exacerbated
the depletion of natural vegetation during the modern period. Furthermore, the region’s
loess soil is readily eroded, with a low vegetation cover, and hence the ecological security
of the study area cannot be ignored [64,65]. Since 1999, China has been carrying out the
“Grain to Green” project in order to improve the natural environment, and this has caused
the MRYRB to rapidly green-up (Figure 8).

Figure 8. NDVI variation trend in the MRYRB from 2000 to 2018. The crosshatch indicates that the
trend is statistically significant at the 95% confidence level based on t−test.

Vegetation in 14.8% of the region has obviously improved (0.06 < Slope; R = 0.297),
25.8% of the areas have improved moderately (0.04 < Slope < 0.06; R = 0.305), 39.1% of
the areas have improved slightly (0.02 < Slope < 0.04; R = 0.340), 20.1% of the areas have
essentially remained unchanged (0 < Slope < 0.02; R = 0.358), only 0.2% of the areas have
become degraded (Slope < 0; R = 0.146). These last areas are mainly distributed in areas
with rapid urban development, and areas containing natural pastures such as Inner Mon-
golia. Animal husbandry is mainly distributed in central and western Inner Mongolia and
northern Shaanxi. Here, overgrazing can lead to the degradation of grasslands, which can
deteriorate when the number of livestock exceeds the carrying capacity of the grasslands.
In this study, it was found that the maximum correlation coefficients were low in the areas
with obvious vegetation improvement. An increase in forest area is one of the main reasons
for the increase in NDVI as the high regional vegetation coverage results in low surface
temperature and small evapotranspiration, so the response to drought is slow, and hence
the maximum correlation coefficients of ecological improvement areas are lower.

The implementation of ecological engineering can promote the improvement of veg-
etation status, while the inappropriate occupation of cultivated land and the unplanned
expansion of construction areas can lead to sporadic vegetation degradation in the study
area [51,66]. These findings suggest that improving land-use efficiency, optimizing land use
structures, strengthening cultivated land structure protection, promoting cultivated land
structure improvement, and high-quality cultivated land construction, as well as alleviating
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the pressures of economic growth on the vegetation ecosystem, should be prioritized in
future ecological restoration projects.

5. Conclusions

In this study, NDVI and SPEI time series were used to reveal the spatial distribution
of the response of vegetation to drought in the MRYRB, analyze the temporal variation of
resistance to drought, and verify the resistance duration of vegetation to drought in typical
drought events. The main conclusions were as follows:

1. Drought intensity in the study area showed a weak increasing trend. The linear
growth rates of SPEI-1, SPEI-3, SPEI-6, SPEI-9, and SPEI-12 were 0.002, 0.0034, 0.0198,
0.0234 and 0.0249, respectively.

2. NDVI and SPEI were positively correlated in most areas (97.6%) of the MRYRB. Only
2.4% of the area showed negative correlations. Vegetation was most affected by
drought on long-term time scales (9 and 12 months). The most influential time scale
was shorter in areas with a higher maximum correlation coefficient.

3. The resistance of vegetation decreased during drought, and gradually returned to its
original level after the end of the drought. During a drought event, grassland and
cultivated land (as shallow-rooted vegetations) had shorter resistance durations (i.e.,
around 170 days), while forest had a resistance duration of about 260 days.

Vegetation resistance to drought is caused by a variety of factors. This study focused
on the resistance of different vegetation types, and the results suggest the important
role of forests in delaying drought under the scenario of future global warming and
frequent droughts.
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