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Background: Pseudotyped virus systems that incorporate viral proteins have been widely employed for
the rapid determination of the effectiveness and neutralizing activity of drug and vaccine candidates in
biosafety level 2 facilities. We report an efficient method for producing severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) pseudovirus with dual luciferase and fluorescent protein reporters.
Moreover, using the established method, we also aimed to investigate whether Korean red ginseng
(KRG), a valuable Korean herbal medicine, can attenuate infectivity of the pseudotyped virus.
Methods: A pseudovirus of SARS-CoV-2 (SARS-2pv) was constructed and efficiently produced using
lentivirus vector systems available in the public domain by the introduction of critical mutations in the
cytoplasmic tail of the spike protein. KRG extract was dose-dependently treated to Calu-3 cells during
SARS2-pv treatment to evaluate the protective activity against SARS-CoV-2.
Results: The use of Calu-3 cells or the expression of angiotensin-converting enzyme 2 (ACE2) in HEK293T
cells enabled SARS-2pv infection of host cells. Coexpression of transmembrane protease serine subtype 2
(TMPRSS2), which is the activator of spike protein, with ACE2 dramatically elevated luciferase activity,
confirming the importance of the TMPRSS2-mediated pathway during SARS-CoV-2 entry. Our pseudo-
virus assay also revealed that KRG elicited resistance to SARS-CoV-2 infection in lung cells, suggesting its
beneficial health effect.
Conclusion: The method demonstrated the production of SARS-2pv for the analysis of vaccine or drug
candidates. When KRG was assessed by the method, it protected host cells from coronavirus infection.
Further studies will be followed for demonstrating this potential benefit.
© 2022 The Korean Society of Ginseng. Publishing services by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Effective drugs and vaccines are required to treat and prevent
infections caused by both emerging and re-emerging viruses.
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However, the handling of highly pathogenic viruses such as severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Middle
East respiratory syndrome coronavirus (MERS-CoV), avian influ-
enza, and Ebola requires biosafety level-3 or -4 laboratories. This is
a major hurdle for the development of vaccines and drugs against
viruses. The use of pseudoviruses helps avoid the handling of in-
fectious viruses, thus facilitating drug development in lower
biosafety level facilities [1,2]. Pseudoviruses have been used in the
detection and testing of neutralizing antibodies against various
viruses [3e9]. Furthermore, pseudoviruses serve as alternatives to
test vaccines, thus eliminating one of the major limitations in
vaccine development [10e13]. Among the many viruses, vesicular
stomatitis virus (VSV) and lentivirus vectors are the most utilized
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[14] owing to their rapid production rate and non-pathogenicity
[3,15,16]. Lentivirus vectors, mostly derived from human immu-
nodeficiency virus type 1 (HIV-1), have been employed to generate
pseudoviruses for NiV [10], MARV [17], CHIKV [18], and certain
influenza viruses [3,15]. In addition, SARS-CoV-2 [19e21], MERS-
CoV [4,22], SARS-CoV [23,24], Ebola [25], and LASV [26,27] pseu-
doviruses have been produced using both lentivirus and VSV-DG
pseudovirus systems.

Coronaviruses (CoVs) are enveloped viruses containing positive-
sense, single-stranded RNA. They can infect various natural hosts
depending on their subtype [28]. SARS-CoV-2 enters host cells
through affinity between the S1 unit of the spike protein and
angiotensin-converting enzyme 2 (ACE2) on the cell surface
[29,30]. The cellular protease, transmembrane protease serine
subtype 2 (TMPRSS2), is essential for the cleavage of the ACE2-
bound spike protein at the S1/S2 interface, which activates it to a
fusion-inducible state and enables the robust infection of lung cells
[31,32]. Cleavage of the SARS-CoV-2 S protein to S1 and S2 increases
the efficiency of viral entry, and determines virus infectivity
[19,22,33e36]. Thus, the spike protein is a viable and ideal target for
the development of vaccines and therapeutics and therefore is
often combined with a pseudovirus vector. To date, several pseu-
doviruses of SARS-CoV-2 (SARS-2pv) have been reported
[7,19,31,37e41]. However, a majority of the SARS-2pvs have been
produced only at low titers. Furthermore, most SARS-2pvs express
a single reporter gene, such as either a fluorescence protein or a
firefly luciferase reporter, whereas a dual reporter system simul-
taneously expressing both fluorescent protein and luciferase pro-
vides many useful features. Recently, two SARS-2pvs with dual
reporter systems have been reported, one based on VSVDG and the
other based on lentivirus [31,42]. In case of SARS-2pv, lentiviral
vectors have several advantages over VSV-based vectors. First,
lentiviruses possess a large transgene capacity that enables the
expression of large or multicistronic genes in target cells. Second, it
can efficiently infect and integrate its genome into both dividing
and non-dividing cells. Finally, lentivirus-based SARS-2pv is a
spherical particle similar to the native SARS-CoV-2, whereas VSV-
based SARS-2pv is bullet-shaped and displays different shapes
and distributions of spike proteins compared to native SARS-CoV-2
[43,44].

In this study, we constructed dual reporter systems with robust
infectivity using plasmids available in public domains, such as
Addgene. Lentivirus vector systems (pNL4.3, pCMVR8.74, and pHIV-
EGFP-Luc) available in the public domainwere tested for packaging
efficiency using vesicular stomatitis virus G glycoprotein (VSV-G)
before the construction of SARS-2pv using a spike protein. The two-
plasmid system comprising genes for packaging as well as dual
reporters in a single vector and VSV-G in the other vector showed
100-fold higher luciferase activity compared with that of the the
three-plasmid system, which harbors the packaging and reporter
genes in separate plasmids. The SARS-2pv is composed of a two-
plasmid system and was constructed with a plasmid encoding
the SARS-CoV-2 spike protein. Luciferase activity and fluorescence
intensity showed strong correlations, confirming the compatibility
of the two different reporters. In addition to the demonstration of
host cell-dependent infectivity of SARS-2pv, we also demonstrated
that chemical inhibitors against SARS-CoV-2 showed activity
comparable to previous results obtained with live viruses, and
Korean red ginseng (KRG) induced host cell resistance to SARS-2pv
infection. Moreover, mutations facilitating viral entry elevate SARS-
2pv infectivity. Our simple and efficient production of SARS-2pv is
useful for assessing the activity of vaccines and drug candidates for
SARS-CoV-2 (Fig. 1A).
2

2. Materials and methods

2.1. Cells and plasmids

Calu-3, HEK293T, and Vero cell lines were obtained from the
Korean Cell Line Bank (KCBL, Seoul, Korea). Calu-3 and Vero cell
lines were cultured in Dulbecco's modified Eagle's medium
(DMEM) with 10% fetal bovine serum (FBS), and 100 U/mL peni-
cillin, streptomycin, and fungizone at 37 �C in 5% CO2. HEK293T
cells were cultured in DMEMwith 10% FBS, and 100 U/mL penicillin,
streptomycin, and neomycin at 37 �C in 5% CO2.

The plasmid pNL4.3-mCherry-Luciferase was a gift from Dr.
Warner Greene (Addgene plasmid # 44965; http://n2t.net/
addgene:44965; RRID: Addgene_44965). Plasmid pCMVR8.74 was
a gift from Dr. Didier Trono (Addgene plasmid # 22036; http://n2t.
net/addgene:22036; RRID: Addgene_22036). The plasmid pHIV-
EGFP-Luciferase was a gift from Dr. Bryan Welm (Addgene
plasmid # 21375; http://n2t.net/addgene:21375; RRID: Addg-
ene_21375). Plasmids pCMV-ACE2, pCMV-TMPRSS2, and the full-
length codon-optimized S gene from SARS-CoV-2 (previously
2019-nCoV-2, S WT) in the pCMV vector were obtained from Sino
Biological, Inc. (Beijing, China). Plasmids pCMV-VSV-G and pCMV-
mVSV-G (H162R mutant) were kindly provided by the Korea
Institute of Science and Technology (KIST, Seoul, Korea). The
plasmid pS-CTD (a mutant S protein with a C-terminal ‘KxHxx’
motif for cytoplasmic tail mutation) was generated using the
primers 50-TGCTGAAAGGAGTGGCACTGGCCTACACCTGAATCT-30

and 50-AGATTCAGGTGTAGGCCAGTGCCACTCCTTTCAGCA-30 [45].
The plasmid pS-L452R (a mutant S protein with a C-terminal
‘KxHxx’ motif mutation and L452R) was generated using the
primers 50-GGCAACTACAACTACCGGTACAGACTGTTCAGG-30 and 50-
CCTGAACAG-TCTGTACCGGTAGTTGTAGTTGCC-30. The plasmid pS-
E484Q (a mutant S protein with a C-terminal ‘KxHxx’ motif muta-
tion and E484Q) was generated using the primers 50-CCATG-
TAATGGAGTGCAGGGCTTCAACTGTTAC-30 and 50-
GTAACAGTTGAAGCCCTGCACTCCATTACATGG-30. The plasmid pS-
E484Q þ L452R dual mutant was generated using both E484Q and
L452R primers.

2.2. Generation of transient 293T-ACE2 and 293T-ACE2-TMPRSS2

Transient HEK293T-ACE2 and HEK293T-ACE2-TMPRSS2 cells
were generated by transfectionwith pCMV-ACE2 or co-transfection
with pCMV-ACE2 and pCMV-TMPRSS2 plasmids, respectively.
Briefly, 4 � 106 HEK293T cells were transfected with each plasmid
using polyethyleneimine (PEI) MAX transfection reagent (Poly-
sciences, Warrington, USA) according to the manufacturer's in-
structions. These transient 293T-ACE2 and 293T-ACE2-TMPRSS2
cells were cultured in DMEM with 10% FBS, 100 mg/mL strepto-
mycin, 100 unit/mL penicillin, and 100 mg/mL hygromycin at 37 �C
in 5% CO2. The expression of ACE2 and TMPRSS2 was confirmed
using western blotting.

2.3. Production and titration of pseudotyped viruses

To generate VSVpv using a two-plasmid system, 4 � 106

HEK293T cells were co-transfected with 10 mg pNL4.3-mCherry-
Luciferase and 10 mg pCMV-VSV-G using the PEI MAX transfection
reagent. For the three-plasmid system,10 mg of pCMVR8.74,10 mg of
pHIV-EGFP-Luciferase, and 10 mg of pCMV-VSV-G were co-
transfected. For the production of SARS-2pv, 10 mg of pNL4.3-
mCherry-Luciferase and 10 mg of plasmids encoding SARS-CoV-2
spike protein (pS-WT, pS-CTMut, pS-CTMut L452R, pS-CTMut

http://n2t.net/addgene:44965
http://n2t.net/addgene:44965
http://n2t.net/addgene:22036
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E484Q, or pS-CTMut L452R/E484Q) were used, where pS-CTMut
has mutations at cytoplasmic tail of spike protein. Culture media
containing the transfection solution were removed, and fresh cul-
ture medium was added 8 h after transfection. At 48 h post-
transfection, the supernatant containing VSVpv or SARS-2pv was
harvested and filtered through a 0.45 mm filter. The filteredmedium
containing the pseudovirus was stored at �80 �C. When required,
the pseudotyped virus was pelleted using a 20% sucrose cushion
using ultra-centrifugation at 50,000 � g for 2 h. The supernatant
and sucrose layers were removed, and the resulting viral pellets
were resuspended in PBS.

Following this, target cells, HEK293T (1� 105 cells/well) cells for
VSV-Gpv and HEK293T-ACE2 cells and HEK293T-ACE2þTMPRSS2
cells (4 � 105 cells/well) for SARS-2pv were seeded into 24-well
plates and infected with 100 mL of the serially diluted pseudo-
typed viruses. When required, themediumwas supplementedwith
polybrene (5 mg/mL). After 48 h post-infection, the cells were lysed
with 50 mL lysis buffer (Promega, Madison, WI, USA), and relative
luminescence units (RLU) of luciferase activity were detected using
the Luciferase Assay Kit (Promega). All experiments were per-
formed at least three times and expressed as mean ± standard
deviation (SDs).
2.4. Characterization of the pseudotyped virus

Incorporation of the spike protein in the pseudotyped virus was
confirmed by western blotting and dot blotting. Both western blot
and dot blot were performed using the pseudotyped virus that was
concentrated through ultra-centrifugation. The pseudotyped virus
was lysed by adding 1% (v/v) Triton-X 100 and mixed with 6 � SDS
sample buffer. The mixtures were boiled for 10 min and subjected
to SDS-PAGE and western blot. For dot blotting, pseudotyped vi-
ruses lysed with 1% (v/v) Triton-X 100 were used. Pseudotyped
virus without spike protein or bovine serum albumin (BSA) was
used as a pseudotyped virus negative control. Western blotting was
performed with rabbit anti-SARS-CoV-2 antibody (Abcam,
ab272504) at a 1:2000 dilution as the primary antibody and goat
anti-rabbit IgG (Sigma Aldrich, a0545) at a 1:2000 dilution as the
secondary antibody. Dot blotting was performed with laboratory-
engineered anti-SARS-CoV-2 (receptor-binding domain) RBD anti-
body as the primary antibody and goat anti-human IgG Fc antibody
(Abcam, ab97225) as the secondary antibody.

The incorporation of reporter genes, mCherry, and luciferase
genes was confirmed by reverse transcription (RT)-PCR. The primer
50-CGGCTCCTGCTTCTGAGAGGGAG-30 was used to synthesize cDNA
for the incorporated viral RNAs. The amount of cDNAwas calculated
using quantitative real-time (qRT)-PCR. The primers 50-GATGA-
CAGCATGTCAGGGAGTG-30 and 50-AGCCCTTTTTCCTAGGGGCC-30

and HiPi real-time PCR 2x Master Mix with SYBR Green (Elpisbio,
EBT-1802) were used according to the manufacturer's instructions.
2.5. Preparation of the antiviral drugs

Camostat mesylate and remdesivir were dissolved in dimethyl
sulfoxide (DMSO) at a stock concentration of 100 mM. Hydroxy-
chloroquine sulfate (HQ) was dissolved in water to a stock con-
centration of 100 mM. Heparin was obtained from Galen (North
Haven, USA) and stored in water at a stock concentration of 1mM.
Fig. 1. Pseudovirus system with dual reporters. (A) Schematic diagram of preparation, inf
plasmid components for VSV-based two- and three-plasmids systems. Luciferase activity o
system (D) . (E) Comparison of luminescence of HEK293T cells infected by pseudoviruses
cells. Cells expressing mCherry (red) and EGFP (green) are shown. Scale bar ¼ 250 mm. (G) S
infected by serially diluted VSV-Gpv prepared with two-plamids system.
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Antibodies against SARS-CoV-2 were generated in the laboratory.
Korean red ginseng extracts were obtained from KT&G.

2.6. Pseudovirus inhibition assays

The target cells for each pseudotyped virus were seeded in 24-
well plates as described above. ~2 � 104 RLU of the pseudotyped
virus was used to infect each well. For the inhibition assay, 1 h
before infection, cells or pseudotyped viruses were pretreated with
antiviral drugs (camostat mesylate or remdesivir for cell pretreat-
ment and heparin for pseudotyped virus pretreatment). Luciferase
activity was measured 48 h after infection and the percentage of
luciferase activity was calculated using GraphPad Prism software
(version 6.0; GraphPad Software, San Diego, CA, USA).

3. Results and discussion

3.1. Dual reporter genes in a single plasmid enhance co-expression
in infected cells

Among the many lentivirus vectors employed in the literature,
three plasmids available from Addgene were compared for the
pseudovirus particle production. In the two-plasmid system, all
genes for packaging and dual reporters were incorporated into a
single plasmid, pNL4.3 [46], which simultaneously codes for Gag-
Pol proteins as well as the dual reporters luciferase and mCherry
(Fig. 1B). In the three-plasmid system, plasmid pCMVR8.74 codes
for Gag-Pol, whereas plasmid pHIV-EGFP-Luc encodes the dual
reporters luciferase and EGFP (Fig. 1B). Two pseudovirus systems
were compared using glycoproteins of vesicular stomatitis virus
(VSV-G) and dual reporters (Fig. 1B). To compare the efficiency of
pseudovirus production in each system, the luciferase activity was
measured following transfection of HEK293T cells with two or
three plasmids (Fig. 1C and D). When a reduction in luciferase ac-
tivity was observed in two-fold serially diluted pseudoviruses the
reduction was proportional to the dilution, regardless of whether
the pseudoviruses were produced using a two-plasmid or three-
plasmid system. Pseudoviruses of VSV-G (VSV-Gpv) prepared
from the two-plasmid system showed 53-fold higher luciferase
activity compared to that of the three-plasmid system (Fig. 1E). The
titer of VSV-Gpv produced using the two-plasmid system was as
high as 109 RLU/mL. When fluorescence microscopic images were
obtained to compare the expression of fluorescence proteins in
infected cells (Fig. G) the expression of mCherry by the cells
transfected with VSV-Gpv prepared using the two-plasmid system
showed greater efficiency compared to that of cells transfected
with VSV-Gpv expressing EGFP from the three-plasmid system.
These differences in luciferase activity and fluorescence intensity
are likely to arise from the transfection efficiency. The fluorescence
intensity of mCherry was linearly proportional to the titer of VSV-
Gpv (Fig. 1H), which is a useful feature when employed as an
assay system.

VSV-Gpv, produced using the two-plasmid system, was used to
assess the antiviral activity of the drugs (Fig. 2A). As pseudoviruses
have been widely used to evaluate the entry-blocking activity of
various drugs [47e49], we compared the activity of heparins and
liposomes embedded with ganglioside (lipo-G). Heparin binds to
VSV-G, thereby inhibiting infection [50]. In contrast, gangliosides
are receptors for the hemagglutinin of influenza viruses [51e53]. As
ection, and reporter-expression of the dual-reporter pseudovirus. (B) Comparison of
f HEK293T cells infected by serially diluted VSV-Gpv from two- (C) or three-plasmids
from each system. (F) Optical and fluorescence microscopic images of infected 293T
pectrophotometric measurements of fluorescence intensity (F$I.) of mCherry from cells



Fig. 3. Production and optimization of SARS-2pv through two-plasmids system. (A) Struct
plamid (pNL4.3) including dual reporters were used. (B) Western blot analysis for expression
(I) fractions of HEK293T cells transfected with or without env plamids. SARS-2pv with or wit
were detected. (C) The construct of cytoplasmic tail (CT)-mutated S protein (CTD) are shown
and transmembrane domain (TMD. The mutations on CT domain are in red. (D) Express
Luminescence of various cell types following SARS-2pv infection. Vero, Calu-3, HEK293T (
A2T2) were explored.

Fig. 2. Application of pseudovirus system with dual reporters for assessment of anti-
virals. (A) Luciferase activity analysis for the inhibition of pseudovirus infection by
heparin and lipo-G. (B) Comparison of luciferase activity in the absence and presence
of PB during infection. (C) Inhibition of pseudovirus infection with or without PB by
heparin.
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expected, heparin showed a moderate inhibitory effect on VSV-Gpv
(54% inhibition at 4 mM), whereas lipo-G did not affect pseudovirus
infection (Fig. 2A).

Polybrene (PB) facilitates viral infection via its positive charge.
VSV-Gpv infection was enhanced by 33% following supplementa-
tion with PB (Fig. 2B). However, the presence of PB slightly altered
the dose-response curve, thus reducing linearity (Fig. 2C). In sum-
mary, the two-plasmid system harnessing pNL4.3 enabled efficient
pseudovirus production with a high titer, enabling drug screening
through either of the dual reporters.
3.2. Pseudotyped SARS-CoV-2 with dual reporters

High-titer production of SARS-2pv was investigated through a
simple process using a two-plasmid system. Plasmids pNL4.3 and
pS-WT encoding dual reporters and spike (S) protein, respectively,
were co-transfected to produce SARS-2pv (Fig. 3A). HEK293T cells
transfected with pS-WT expressed S proteins on their membranes
(Fig. 2B). However, co-transfection of pNL4.3 did not result in the
incorporation of S proteins into the pseudovirus particles (Fig. 3B).
Thus, two alanine mutations on the cytoplasmic tail of the S pro-
tein, which ruin the endoplasmic reticulum (ER) retrieval signal,
were introduced to incorporate S proteins into the pseudovirus
particles (Fig. 3C) [37]. The incorporation of these mutations into
the plasmid (pS-CTMut), enabled incorporation of S proteins in the
pseudovirus particles, resulting in the generation of SARS-2pv.
ure of plasmid constructs. Env plasmid (pS) encoding spike protein and a packaging
and incorporation of wild type S proteins. Analysis of total (T), soluble (S), and insoluble
hout env plamsids were also analyzed. Both full-length S protein and cleaved S2 protein
. Expression of signal peptide (SP), receptor binding domain (RBD), fusion peptide (FP),
ion of ACE2 and TMPRSS2 in transfected HEK293T cells using western blotting. (E)
293T), ACE2-expressing 293T (293T-A2), and ACE2/TMPRSS2-expressing 293T (293T-



Fig. 4. Analysis of antiviral activity of anti-SARS-CoV-2 candidate drugs using SARS-2pv generated with two-plasmids system. (A) Optical and fluorescence microscopic images of
ACE2/TMPRSS2-expressing 293T cells infected by SARS-2pv. Scale bar ¼ 500 mm. (B) Evaluation of the inhibitory effect of heparin on pv infection using fluorescence imaging. 293T-
A2T2 cells only (mock) and infected cells treated with 0 (control), 1 mM, and 5 mM of heparin. Scale bar ¼ 100 mm. (C) Total fluorescence intensity analysis using ImageJ software. (D)
Evaluation of antiviral activity of four different drugs against SARS-2pv by measuring luminescence.
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The cell types were then optimized for infection with SARS-2pv
from the two-plasmid system (Fig. 3D and E). First, Vero cells
expressing angiotensin 2 (ACE2) only and Calu-3 cells expressing
both ACE2 and TMPRSS2 were compared for their susceptibility to
SARS-2pv. Calu-3 cells showed ~20-fold higher infection with
SARS-2pv compared to that of Vero cells. TMPRSS2-mediated direct
fusion, along with fusion in endosomes by cathepsin proteases is
essential for SARS-CoV-2 infection [29,31]. As Calu-3 cells grow
very slowly and require a long preparation time, HEK293T cells
were tested as the infection host cells. HEK293T cells transfected
with pCMV-ACE2 expressing only ACE2 were compared with cells
transfected with both pCMV-ACE2 and pCMV-TMPRSS2 (Fig. 3F).
HEK293T-ACE2 and HEK293T-ACE2/TMPRSS2 cells showed 2.1-
and 3.3-log higher luciferase activity, respectively, compared with
that of wild-type HEK293T cells. This infection efficiency was tens
of times higher compared to that of the Vero and Calu-3 cells. In
addition, the higher luciferase activity in HEK293T-ACE2 cells
provided an opportunity to analyze the TMPRSS2-independent
mechanism of infection with higher accuracy compared to that in
Vero cells (Fig. 3E).

3.3. Antiviral assays of anti-SARS-CoV-2 drugs using SARS2-pv

The antiviral effects of several SARS-CoV-2 drugs were analyzed
using SARS-2pv expressing dual reporters. First, the inhibitory ac-
tivity of heparin, which electrostatically binds to the S proteins of
SARS-CoV-2, was evaluated by measuring mCherry fluorescence.
HEK293T-ACE2/TMPRSS2 cells infected with SARS-2pv strongly
6

expressed mCherry protein, as observed using fluorescence mi-
croscopy (Fig. 4A). When heparin was supplemented during SARS-
2pv infection, mCherry expression was reduced in a concentration-
dependent manner due to entry inhibition (Fig. 4B). The total in-
tensity of each image could be quantified using the ImageJ software
(Fig. 4C).

Four repurposed drugs targeting each step of infection were
tested for their antiviral activity using SARS-2pv. TMPRSS2 inhibitor
(camostat) [54,55], RNA-dependent RNA polymerase (RdRp) in-
hibitor (remdesivir) [56,57], inhibitor of endosomal acidification
(hydroxychloroquine) [58,59], and SARS-CoV-2 entry blocker
(heparin) [60] were evaluated by measuring the luciferase activity
of infected HEK293T-ACE2/TMPRSS2 cells (Fig. 3D). Remdesivir
showed the greatest inhibitory effect, whereas hydroxychloroquine
and heparin exhibited moderate activity, consistent with previous
results [50e56]. These results show that the SARS-2pv with dual
reporters generated in this study provides a simple and quantita-
tive approach for the evaluation of antiviral activity of drugs by
measuring fluorescence and/or luciferase activity.
3.4. Korean red ginseng elicits cellular resistance against SARS-CoV-
2 infection

The protective effects of red ginseng against various viruses
have been previously suggested [61]. Furthermore, red ginseng has
been considered to possess beneficial effects against SARS-CoV-2
[62,63]. Here, we provide experimental evidence of the protective



Fig. 5. SARS-2pv inhibition by KRG. (A) Evaluation of direct inhibitory effect of KRG extract on SARS-2pv infection in transfected HEK293T cells. (B) Analysis of infectivity of SARS-
2pv on transfected HEK293T cells pre-adapted to KRG extract for 0, 1, 4, and 24 h. (C) Schematic diagram of KRG adaption assay in Calu-3 cells. (D) Analysis of infectivity of SARS-2pv
on Calu-3 cells pre-adapted to KRG extract. The arrows indicate KRG treatment time points.
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effect of Korean red ginseng (KRG, Panax ginseng Meyer) against
SARS-CoV-2, using the method established above.

SARS2-pv cells were incubated with KRG extract at 37 �C for 2 h,
which was then directly applied to HEK293T-ACE2-TMPRSS2 cells.
Media containing SARS-2pv and KRG extract were removed after 8
h of incubation in a CO2 incubator, followed by addition of fresh
media. When the luciferase activity wasmeasured following 48 h of
incubation, infectivity of SARS2-pv was reduced in a concentration-
dependent manner (Fig. 5A). A half inhibitory concentration of 0.75
g/L suggested a moderate inhibitory effect of KRG against SARS-
CoV-2 infection. Despite this moderate antiviral effects of KRG
against SARS2-pv it was unlikely that KRG would directly interact
with the virus in vivo for such a prolonged period, leading to further
investigation.
7

HEK293T-ACE2-TMPRSS2 cells were treated with 1 g/L KRG for
24 h. After removing KRG extract, the cells were infected with
SARS-2pv and luciferase activity was measured following 48 h of
infection. The infectivity of SARS-2pv gradually decreased
depending on the KRG treatment time (Fig. 5B). Following 24 h of
incubation, as high as 50% of the infectionwas protected even in the
absence of direct interaction between the virus and KRG. This result
indicated that KRG treatment elicited the resistance of cells to
SARS-CoV-2 infection.

Further analyses were performed using Calu-3 cells. Calu-3 cells
were treated with KRG extract (1 g/L), which was removed after the
designated time, followed by SARS-2pv infection and luciferase
measurement 48 h post infection. A time-dependent protective
effect was consistently observed (Fig. 5C and D). Infectivity was
only half that of untreated cells following 24 h of exposure to KRG.



Fig. 6. Effect of S protein mutation of VSV-Gand SARS-2pv on infectivity. (A) Protein constructs of wild type and H162R mutated VSV-G. (B) Comparison of the infectivity of VSV-Gpv
WT and H162R. Luminescence was measured from cells infected by serially diluted pseudovirus. The slope of fitter line was considered as criteria for comparison. (C) Four variants of
S proteins that were incorporated to SARS-2pv. Mutations on RBD (L452R or/and E484Q) in pS-CTMut. (D) Measurement and comparison of the infectivity of variants on 293T-A2T2
cells.
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Surprisingly, the protective effect was lost after 48 h of KRG treat-
ment, suggesting that the cellular state enabling the cell resistance
to virus infection returned to a normal state after a certain time of
exposure to KRG.When the Calu-3 cells were treated repeatedly for
96 h, they regained protective activity against SARS-2pv infection.
Thus, it is highly likely that KRG elicits a protective ability to cells
against SARS-CoV-2 infection, however, further investigation is
warranted to understand the molecular mechanisms by which this
resistance is acquired.

3.5. Analysis of the infectivity of mutants

The structures of envelope proteins of SARS-CoV-2, such as the
VSV-G and S proteins, determine the viral infectivity based on in-
teractions with host receptors. Therefore, point mutations were
introduced into the two pseudovirus particles to compare the effect
of mutations on the viral entry of the pseudovirus. The VSV-G
mutation H162R, which is located on the pH sensor domain, is
known to widen the pH range of membrane fusion [64]. Consistent
with previous reports, VSV-Gpv harboring the H162R mutation
(Fig. 6A) showed an 8.3-fold higher luciferase activity compared to
that ofWT VSV-Gpv (Fig. 6B). This is likely because VSV-Gpv H162R
can fuse with the endosomal membrane even at a weak acidic pH.

Many SARS-CoV-2 variants have been exposed to several mu-
tations in their S proteins. In particular, mutations in the receptor-
binding domain (RBD) have been reported to greatly increase
infectivity [65,66]. Therefore, we tested whether the mutations in
the established SARS-2pv showed a similar increase in infectivity
(Fig. 6C). Two mutations in RBD, L452R and E484Q, were inserted
into the S protein of SARS2-pv. The L452R mutation in S proteins is
involved in immune evasion and results in an increased infection
[65,67,68]. The E484Q mutation of S proteins increases the inter-
action with human ACE2 and stabilizes the conformation of RBD
[69e71]. Compared to theWT SARS-2pv, the L452R variant resulted
in a 2.8-fold higher luciferase activity, whereas the E484Q variant
did not improve infectivity (Fig. 6D). Remarkably, when both mu-
tations were introduced, the L452R/E484Q variant exhibited a 14.2-
8

fold improved infectivity compared to that of WT SARS-2pv. These
results suggest that the effects of mutations can be reliably re-
flected in the pseudovirus assay system established in this study.
4. Conclusion

Pseudoviruses of VSV and SARS-CoV-2 with dual reporters of
fluorescence protein and luciferase were established. The SARS-2pv
developed in this study were used to evaluate various antiviral
agents against SARS-CoV-2. KRG, which has been considered a
potential antiviral extract against various viruses, including SARS-
CoV-2, showed protective effects upon pre-adaptation of cells to
KRG extract. While the protective effect of KRG disappeared 24 h
after treatment, repeated supplementation with KRG extract
imparted cellular resistance to the virus, the mechanisms of which
warrant further research. Mutations known to increase the infec-
tivity of SARS-CoV-2 also elevated the expression of luciferase
when introduced into the SARS-2pv. Thus, the SARS-2pv estab-
lished in this study has been proven to act as a robust assay system
for the evaluation of various antivirals, protective medicines, and
viral mutations.
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