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Abstract

Metastatic involvement of the skeleton is a frequent consequence of advanced prostate cancer. 

These skeletal metastases cause a number of debilitating complications and are refractory to 

current treatments. New therapeutic options are being explored, including conditionally replicating 

adenoviruses (CRAds). CRAds are engineered to selectively replicate in and destroy tumor cells 

and can be “armed” with exogenous transgenes for enhanced potency. We hypothesized that a 

CRAd armed with osteoprotegerin (OPG), an inhibitor of osteoclastogenesis, would inhibit the 

progression of prostate cancer bone metastases by directly lysing tumor cells and by reducing 

osteoclast activity. Although prostate cancer bone metastases are predominantly osteoblastic in 

nature, increased osteoclast activity is critical for the growth of these lesions. Ad5-Δ24-sOPG-Fc-

RGD is a CRAd that carries a fusion of the ligand-binding domains of OPG and the Fc region of 

human IgG1 in place of the viral E3B genes. To circumvent low tumor cell expression of the 

native adenoviral receptor, an arginine-glycine-aspartic acid (RGD) peptide insertion within the 
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viral fiber knob allows infection of cells expressing αv integrins. A 24-base pair deletion (Δ24) 

within viral E1A limits replication to cells with aberrant retinoblastoma cell cycle regulator/tumor 

suppressor expression. We have confirmed that Ad5-Δ24-sOPG-Fc-RGD replicates within and 

destroys prostate cancer cells and, in both murine and human coculture models, that infection of 

prostate cancer cells inhibits osteoclastogenesis in vitro. In a murine model, progression of 

advanced prostate cancer bone metastases was inhibited by treatment with Ad5-Δ24-sOPG-Fc-

RGD but not by an unarmed control CRAd.
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Advanced prostate cancer exhibits a propensity for metastasis to the skeleton, and thus a 

majority of patients with late-stage disease will be diagnosed with bone metastases (1, 2). 

The growth of metastatic cells in bone disrupts normal bone physiology and structure (3) 

and causes a range of serious complications, including pain, pathological fractures and 

spinal cord compression (2, 4). Current treatments with surgery, radiotherapy, chemotherapy 

and bisphosphonate administration may slow disease progression, but are associated with 

deleterious side effects (5) and are often not curative. In light of the above, new therapies for 

this disease are urgently needed.

One new class of anticancer agents is comprised of conditionally replicating adenoviruses 

(CRAds) based upon human serotype 5 (6). These are adenoviruses that have been 

engineered to selectively replicate within cancer cells, thereby amplifying the input dose of 

virus and destroying the infected tumor cells by lysis. Through multiple rounds of selective 

infection, replication, lysis and spread, CRAds have the potential to destroy tumors while 

sparing normal tissue. However, clinical trials have shown that while CRAds are safe to 

administer (7), their potency must be improved before the full potential of this treatment 

modality can be realized.

One strategy to increase the efficacy of a CRAd is to employ it as a platform for the delivery 

of a therapeutic transgene. Due to viral replication, an “armed” CRAd amplifies the input 

dose of the transgene and can exert an antitumor effect by multiple mechanisms of action. A 

variety of armed CRAds directed against a range of malignancies has been described, and it 

is clear that the inclusion of a rationally-selected transgene enhances the potency of a CRAd 

(8). An armed CRAd intended for prostate cancer bone metastasis will therefore be most 

effective when it has been selected in consideration of tumor-bone interactions. Prostate 

cancer bone metastases involve a disruption of normal bone homeostasis and influence the 

bone microenvironment in ways that are not fully understood. Prostate cancer cells produce 

a variety of factors including bone morphogenetic proteins, endothelin 1, and insulin-like 

growth factors that induce the growth of lesions which are predominantly osteoblastic in 

their behavior (9). However, both blastic and lytic processes are involved, and thus 

osteoclasts also contribute to lesion growth (10). Prostate cancer cells can mediate osteoclast 

formation both directly and indirectly (11), largely through the interaction of receptor 

activator of NF-κB ligand (RANKL) on osteoblasts with its receptor RANK on osteoclast 
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precursors. It has been shown that blockade of the RANK/RANKL interaction inhibits the 

progression of prostate cancer bone metastases (12), even those which are osteoblastic in 

nature (13, 14). This interaction can be disrupted by the normal bone protein osteoprotegerin 

(OPG), which is a soluble decoy receptor for RANKL (15, 16). OPG is secreted by 

osteoblasts and bone stromal cells as a key mediator of normal bone homeostasis; it prevents 

the binding of RANKL with RANK to inhibit osteoclast differentiation/activation and 

promote bone formation. Several studies have demonstrated that OPG inhibits the 

progression of prostate cancer bone metastases (13, 17–21). We therefore hypothesized that 

a CRAd armed with OPG would reduce the growth of prostate cancer bone metastases by 

two means: direct lysis of tumor cells due to viral replication, and a reduction in tumor 

burden by the inhibition of osteoclastic bone resorption by OPG.

We have previously constructed and described the armed CRAd used in this study, 

designated Ad5-Δ24-sOPG-Fc-RGD (22). Cancer-selective replication is conferred by 

means of a 24 base pair deletion in the E1A gene (23) which yields a protein unable to bind 

and inactivate the retinoblastoma tumor suppressor/cell cycle regulatory protein and restricts 

efficient viral replication to neoplastic cells. To enhance tumor cell transduction, this armed 

CRAd also includes a fiber knob with an RGD peptide insertion in the HI loop (24). This 

modification directs initial binding of the virus to αvβ3 and αvβ5 integrins, which are 

involved in prostate cancer bone metastasis (25, 26), and thus overcomes the deficiency of 

the native coxsackievirus and adenovirus receptor (CAR) on prostate cancer cells (27). This 

armed CRAd carries a transgene encoding the RANKL-binding domains of OPG fused to 

the Fc portion of human IgG1. It therefore lacks the domains of OPG that bind tumor 

necrosis factor-related apoptosis-inducing ligand (28), precluding its ability to act as a 

survival factor for prostate cancer cells (29). We have previously shown that the expression 

of OPG-Fc does not alter the selectivity of replication of the parent CRAd in experiments 

involving normal human epithelial cells and human liver slices (22).

MATERIALS AND METHODS

Cells

The human prostate cancer cell lines LNCaP (30, 31) and PC-3 (32) were purchased from 

the American Type Culture Collection (ATCC; Manassas, VA). The human prostate cancer 

cell line C4-2B, a subline of LNCaP with enhanced propensity for bone metastasis, was a 

gift from Dr. Leland Chung. ST2 murine bone marrow stromal cells (33) were from the 

Riken Cell Bank, Japan. ST2 cells were propagated in α-minimum essential medium (α-

MEM) and both the LNCaP and PC3 prostate cancer cells were cultured in Roswell Park 

Memorial Institute (RPMI) 1640 medium. C4-2B cells were cultured in T-Medium 

(Invitrogen, Carlsbad, CA). These media were supplemented with 10% (v/v) heat-

inactivated fetal bovine serum (FBS; Invitrogen), L-glutamine (2 mM), penicillin (100 

U/ml) and streptomycin (100μg/ml). All cell lines were cultured at 37 °C in a humidified 

atmosphere, with ST2 cells maintained at 8% CO2 and all others at 5% CO2. Except where 

otherwise noted, media and supplements were from Mediatech (Herndon, VA).

A C4-2B cell subline which stably expresses luciferase (C4-2B-LUC) was generated by 

transduction of the cells with a lentiviral vector encoding the firefly luciferase gene, as 
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follows. 293GPG cells were cultured in Dulbecco’s Modified Eagle Medium supplemented 

with 10% (v/v) heat-inactivated FBS, tetracycline, puromycin, G418, and penicillin/

streptomycin as described previously (34). These cells were maintained exclusively in the 

laboratory of Xu Feng, Ph.D., in accordance with a materials transfer agreement. A plasmid, 

pMX-puro-Luc, was prepared by the insertion of firefly luciferase cDNA into the BamHI 

and NotI restriction sites of the pMX-puro retroviral vector. Then, 293GPG cells were 

transiently transfected with this vector using Lipofectamine Plus reagent (Invitrogen). Virus 

supernatants were collected at 48, 72, and 96 h after transfection and then pooled. C4-2B 

cells were then infected with the viral supernatant for 24 h in the presence 8 μg/mL 

Polybrene (hexadimethrine bromide). The infection medium was then replaced with cell 

culture medium and cells were allowed to recover for 24 hours before selection with 2 

μg/mL puromycin.

Viruses

The wild-type human adenovirus serotype 5, Adwt300, was purchased from ATCC. The 

tropism-modified control virus Ad5-RGD has wild-type E1 and E3 regions as well as an 

RGD peptide in the HI loop of the fiber knob and was previously generated in our laboratory 

(22). The two unarmed control CRAds used in this study, Ad5-Δ24 and Ad5-Δ24RGD, each 

have a 24 base pair deletion in the CR2 region of E1A and have been described previously 

(35). The tropism-modified control CRAd, Ad5-Δ24RGD, also has an RGD peptide in the 

HI loop of the fiber knob. The two armed CRAds used in this study, Ad5-Δ24-sOPG-Fc and 

Ad5-Δ24-sOPG-Fc-RGD, each carry a transgene encoding the extracellular domain of 

human osteoprotegerin (amino acids 1–201 (15)) fused to the Fc portion of human IgG1 

(28). The transgene is in place of the E3B region of the genome, under native expression 

control elements. The construction of these CRAds, as well as that of the E1-deleted 

replication-deficient control vectors Ad-CMV-sOPG-Fc-RGD and Ad-CMV-OPG-Fc-RGD, 

which expresses full-length OPG, has been detailed previously (22).

Expression of sOPG and viral genes

Monolayers of C4-2B cells in 24-well plates were infected with Ad5-Δ24-sOPG-Fc, Ad5-

Δ24-sOPG-Fc-RGD or Adwt300 at a multiplicity of infection (MOI) of 0.1 infectious units 

(IU) per cell in RPMI 1640 with 2% (v/v) FBS. Cells were incubated for 1 h at 37 °C before 

the infection mixtures were removed and replaced with serum-free growth medium with 

supplements. At various intervals post-infection (4, 8, 12, 24 and 36 h), medium was 

collected, and cell lysates were harvested by the addition of buffer RLT (RNeasy Mini Kit; 

Qiagen, Valencia, CA) to the wells. Samples were stored at −80 °C until they could be 

further processed.

Total cellular RNA was isolated from lysate samples using an RNeasy Mini Kit (Qiagen), 

according to the manufacturer’s instructions. Purified RNA samples were then subjected to 

real-time quantitative reverse transcriptase PCR analysis using a LightCycler 480 system 

(Roche Diagnostics, Indianapolis, IN). Samples from cells infected with the armed CRAds 

were assayed for the expression of sOPG-Fc, whereas samples from cells infected with 

Adwt300 were assayed for expression of the E3B genes 14.7k and RIDβ (primer sequences 

previously published) (22). All samples were analyzed for expression of E3 gp 19k, 
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adenovirus death protein (ADP) and fiber. Expression of human glyceraldehyde-3-

phosphate dehydrogenase was used as a control. Results are expressed as copy number/ng of 

total RNA.

Secretion of sOPG-Fc

Monolayers of LNCaP and C4-2B cells in 24-well plates were infected with Ad5-Δ24-

sOPG-Fc or Ad5-Δ24-sOPG-Fc-RGD as above, before the infection mixtures were removed 

and replaced with serum-free growth medium with supplements. Medium samples were 

collected at various intervals post-infection (24, 36, 48 and 60 h) and stored at −80 °C. After 

the final time point, samples were thawed and concentrated to 1/10 of the original volume 

using a Microcon centrifugal filter device (Millipore, Bedford, MA) and centrifugation at 

14,000 × g. The presence of sOPG-Fc was determined by SDS-PAGE followed by 

immunoblotting using a goat anti-human OPG primary antibody (Sigma-Aldrich, St. Louis, 

MO) diluted 1:1000 and a rabbit anti-goat alkaline phosphatase-conjugated secondary 

antibody (Jackson ImmunoResearch, West Grove, PA), diluted 1:4000. Blots were 

developed with 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium (BCIP/NBT; 

Sigma-Aldrich).

Viral DNA replication in cell lines

Monolayers of C4-2B cells in 24-well plates were infected with Adwt300, Ad5-Δ24, Ad5-

Δ24RGD, Ad5-Δ24-sOPG-Fc or Ad5-Δ24-sOPG-Fc-RGD at an MOI of 0.1 IU per cell. At 

2, 4 and 6 days post-infection, 200μl samples of medium were harvested and stored at 

−20°C until further processing. DNA was then purified from the medium samples using a 

QIAamp DNA Blood Mini Kit (Qiagen). Samples were analyzed by quantitative real-time 

PCR on a LightCycler 480 system (Roche Diagnostics) for the presence of the Ad5 E4 gene 

(primer sequences previously published (22)), as an indicator of viral replication (36). 

Results are expressed as copy number/ng of total DNA.

Cytopathic effect

In order to assay oncolytic potency qualitatively, monolayers of C4-2B, LNCaP and PC3 

cells in 24-well plates were infected with Ad5-Δ24-sOPG-Fc-RGD and each of the 

replicating control viruses at MOIs of 1, 0.1 and 0.01 IU per cell. After 8 days, the viability 

of the cells was determined by staining the monolayers with 1% (w/v) crystal violet (Fisher 

Scientific) in 70% (v/v) ethanol for 1 h. Plates were washed in tap water to remove excess 

dye.

Osteoclast formation

The ability of the armed CRAds to inhibit osteoclast formation was assayed in both murine 

and human cells, using in vitro osteoclastogenesis assays that are detailed elsewhere and 

summarized here (22, 33). In the murine system, bone marrow macrophages were isolated 

from 4- to 8-week-old female athymic nude Foxn1nu mice (Harlan, Indianapolis, IN) and 

cocultured in a 10:1 ratio with ST2 murine bone marrow stromal cells in α-MEM containing 

10% (v/v) FBS, 1 × 10−8 M 1,25-dihydroxyvitamin D3 (Biomol Research Laboratories Inc., 

Plymouth Meeting, PA) and 1 × 10−6 M dexamethasone (Sigma-Aldrich). After a 24 h 
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recovery phase, porous (0.4 μm pore size) Transwell® inserts 12 mm in diameter (Corning; 

Corning, NY) containing monolayers of C4-2B cells that had been infected immediately 

prior to transfer at an MOI of 0.1 IU per cell with each of the CRAds or Ad-CMV-OPG-Fc-

RGD, diluted in RPMI 1640 with 2% (v/v) FBS for 1 h, were added to these cocultures. 

Cultures were maintained in α-MEM supplemented with 10% (v/v) FBS, 1 × 10−8 M 1,25-

dihydroxyvitamin D3 and 1 × 10−6 M dexamethasone.

In the human system, bone marrow macrophages were isolated from fresh human bone 

marrow purchased from Lonza (Lonza Walkersville, Walkersville, MD) and prepared as 

previously described (37). These cells were plated in 24 well plates and cultured in α-MEM 

containing 10 % FBS (v/v) supplemented with 10 ng/ml macrophage colony-stimulating 

factor and 25 ng/ml recombinant human RANKL (R & D Systems, Inc.) for 48 h to allow 

attachment. Then, monolayers of C4-2B cells cultured on porous (0.02μm pore size) 10 mm 

diameter Anopore® inserts (Nalge Nunc International; Rochester, NY), which had been 

infected immediately prior to transfer with each of the CRAds or Ad-CMV-sOPG-Fc-RGD, 

as above, were transferred to the 24-well plates. The cultures were maintained in α-MEM 

containing 10 % FBS (v/v) supplemented with macrophage colony-stimulating factor and 

RANKL.

The cocultures were maintained in their respective osteoclastogenic media, with conditioned 

medium being harvested from each well and replaced with 1 ml fresh medium every 3 days. 

At the completion of each experiment, the inserts carrying prostate cancer cells were stained 

with crystal violet. Samples of conditioned medium from day 9 were assayed for the 

presence of the osteoclast-specific protein tartrate-resistant acid phosphatase 5b (38) 

(TRAP5b) as an indicator of osteoclast formation, using a MouseTRAP or BoneTRAP 

ELISA kit (Immuno-diagnostic Systems Inc., Fountain Hills, AZ) for murine and human 

osteoclasts, respectively.

Murine model of prostate cancer bone metastasis

Animal experiments were performed in accordance with federal and institutional guidelines 

for animal care. Osteoblastic lesions were established by the injection of 5 × 105 C4-2B-

LUC cells into the left tibiae of 4- to 5-week-old male Fox Chase SCID® beige mice 

(Harlan) (39). Cells were prepared for injection by detachment with Versene™followed by 

two washes in phosphate buffered saline (PBS) and a final resuspension in PBS at 2.5 × 107 

cells/ml. Aliquots of 20 μl (5 × 105 cells) of single cell suspension were loaded into BD 

Micro-Fine™ IV needle (28 G) insulin syringes (3/10 cc; BD Consumer Healthcare, Franklin 

Lakes, NJ), which were kept on ice until the animals were ready for injection. Forty-five 

mice were anesthetized with 2% (v/v) isoflurane (MWI, Meridian, ID) gas at a flow rate of 

0.5–1 L/min per mouse and were injected with cells in the proximal end of the left tibia. 

After 33 weeks, the mice were randomly divided into 3 treatment groups. Mice from two 

treatment groups were given intratibial injections of 2 × 106 IU of either Ad5-Δ24-sOPG-

Fc-RGD (n = 7) or Ad5-Δ24RGD (n = 7) in a total volume of 20 μl of PBS. The third group 

of animals was injected with PBS only (n = 6). Three weeks after treatment, the mice were 

sacrificed, as were three additional age-matched control naïve mice. The left tibia of each 

was dissected and preserved in 10% (w/v) neutral buffered formalin (Fisher Scientific).
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Tomography

For the determination of the 3-D architecture of the trabecular bone, mouse tibiae were 

analyzed by micro computed tomography (μCT), using a Scanco μCT40 desktop cone-beam 

scanner (Scanco Medical AG, Brüttisellen, Switzerland). Tibiae were placed vertically in 12 

mm diameter scanning holders. Scans were performed at the following settings: 6 μm 

resolution, 70 kVp, 114 μA with an integration time of 200 ms. Scans were automatically 

reconstructed into 2-D slices, and the region of interest was outlined in each slice using the 

μCT Evaluation Program (v5.0A, Scanco Medical).

The scan of the trabecular bone was performed below the growth plate, and each scan 

consisted of 209 slices of which 100 were used for analysis. A region of interest was drawn 

on each of the 100 slices just inside the cortical bone, to include only the trabecular bone 

and marrow. Trabecular bone was thresholded at 247, to distinguish it from the marrow. The 

3-D reconstruction was performed on the region of interest which only contained trabecular 

bone; no cortical bone was present in these regions of interest. Data was obtained on total 

volume (TV) of the scanned area, the volume of trabecular bone (BV) within that area, 

BV/TV, trabecular bone density, trabecular number, separation and thickness.

Statistical analysis

Student-Fisher t tests were used to analyze data from in vitro osteoclast formation assays. 

For the tomography data, a Kruskal Wallis test was used as a non-parametric alternative to 

ANOVA, to examine overall differences between the four groups. Since all outcomes were 

marginally or highly significant overall, pair wise comparisons between groups were done 

via Wilcoxon Two-Sample tests, to identify outcomes that were significantly different 

between treatments. There was no adjustment for multiple testing since these are hypothesis 

generating experiments. In all analyses, differences were considered significant when P ≤ 

0.05.

RESULTS

Characterization of a tropism-modified, sOPG-Fc-armed CRAd in prostate cancer cells

The genomes of the viruses used in this study are depicted in Figure 1. Ad5-Δ24-sOPG-Fc-

RGD is a tropism-modified CRAd that expresses an sOPG-Fc fusion gene from the E3B 

region of the adenovirus genome. The sOPG-Fc transgene replaces the native E3B genes 

(RIDα, RIDβ and 14.7k) and was placed under native gene expression control elements. 

This CRAd retains expression of the E3-11.6k adenovirus death protein (ADP) for efficient 

lysis of infected cells and includes an RGD-modified fiber knob for enhanced transduction 

of tumor cells, as well as a Δ24-modified E1A gene for cancer-selective replication. An 

sOPG-Fc-armed CRAd with native tropism, Ad5-Δ24-sOPG-Fc, was included as a control 

for infectivity. Other control viruses include Ad5-Δ24 and Ad5-Δ24-RGD, unarmed CRAds 

with native and modified tropism, respectively. Ad5-RGD is a tropism-modified control 

virus that is otherwise syngeneic with the wild-type adenovirus Adwt300.

In a previous study, we demonstrated in breast cancer cells that the expression of sOPG-Fc 

from a CRAd mimicked that of the replaced native E3B genes, in both timing and amount 
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(22). Hence, we first wished to confirm these findings in prostate cancer cells. We selected 

for analysis the C4-2B cell line, which is a subline of LNCaP with an enhanced propensity 

for bone metastasis in vivo. C4-2B cells were infected with Ad5-Δ24-sOPG-Fc, Ad5-Δ24-

sOPG-Fc-RGD or Adwt300 and cell lysates were analyzed by quantitative reverse 

transcriptase PCR at multiple time points post infection. The sOPG-Fc transgene was 

expressed late in the infection cycle, at levels similar to that of the 14.7k gene from 

Ad300wt (Figure 2a). Also, the expression of ADP from Ad5-Δ24-sOPG-Fc and Ad5-Δ24-

sOPG-Fc-RGD is similar to that from Adwt300 in both timing and amount (Figure 2b). 

Together, these data indicate that the sOPG-Fc transgene is efficiently expressed in prostate 

cancer cells in a manner consistent with its placement in the adenoviral genome, and that the 

expression of surrounding viral genes is not altered.

To confirm that prostate cancer cells infected with the armed CRAds secrete sOPG-Fc into 

the medium, monolayers of both LNCaP and C4-2B cells were infected with Ad5-Δ24-

sOPG-Fc-RGD or with Ad5-Δ24-sOPG-Fc. At multiple time points post infection, samples 

of conditioned medium were subjected to immunoblotting with an OPG-specific primary 

antibody. In samples from infected C4-2B cells, sOPG-Fc was detected in the medium 

beginning at 36 h postinfection (Figure 2c). LNCaP cells released sOPG-Fc into the medium 

at 24 h and 36 h when infected with Ad5-Δ24-sOPG-Fc-RGD or with Ad5-Δ24-sOPG-Fc, 

respectively (Figure 2d). In both cell lines, sOPG-Fc protein increased in amount until 60 h 

postinfection. These results confirm that prostate cancer cells infected with the armed 

CRAds efficiently secrete sOPG-Fc.

Expression of sOPG-Fc does not enhance the oncolytic potency of a CRAd in prostate 
cancer cells

We next sought to confirm that prostate cancer cells would support the replication of a 

CRAd armed with sOPG-Fc. Monolayers of C4-2B cells were infected with both the 

tropism-modified and -unmodified armed CRAds, their respective unarmed control CRAds, 

or with wild-type adenovirus. Conditioned medium was harvested 2, 4 and 6 days post 

infection, and DNA isolated from the samples was analyzed by quantitative real time PCR 

for the adenovirus E4 gene, as an indicator of viral replication. Both of the sOPG-Fc-armed 

CRAds replicated efficiently in the C4-2B cells, at levels similar to the unarmed CRAds and 

Adwt300 (Figure 3a). Thus, it is evident that the expression of sOPG-Fc from a CRAd does 

not enhance adenoviral replication in prostate cancer cells. To determine whether the 

expression of sOPG-Fc inhibits the ability of a CRAd to efficiently lyse infected prostate 

cancer cells, a panel of prostate cancer cells was infected with Ad5-Δ24-sOPG-Fc-RGD or 

control viruses. This panel included lines with low levels of CAR expression (C4-2B (40) 

and PC3 (41)) as well as a line expressing high levels of CAR (LNCaP (42)). After 8 days 

the monolayers were stained with crystal violet, in a qualitative assay for oncolytic potency. 

As indicated by the cleared wells resulting from viral oncolysis, all viruses were sufficiently 

potent to completely destroy the monolayers of each cell line at an MOI of 0.1 (Figure 3b). 

While most viruses completely destroyed the monolayers at the lower MOI of 0.01, the 

tropism-modified armed CRAd exhibited reduced oncolytic potency in comparison to its 

unarmed control. This result indicates that the expression of OPG does not enhance the 

potency of an armed CRAd in prostate cancer cells in vitro. This is not unexpected, since 
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our hypothesis predicts that the additional antitumor effect of OPG expression would be 

manifested only in the bone microenvironment. Considered together with the viral 

replication data, these experiments demonstrate that the expression of sOPG-Fc from a 

CRAd does not enhance viral replication or oncolytic potency in prostate cancer cells.

CRAds armed with sOPG-Fc inhibit osteoclast formation in vitro

Both murine and human cell culture systems were used to determine whether prostate cancer 

cells infected with the armed CRAds would inhibit osteoclast formation while 

simultaneously being lysed by viral replication. Monolayers of C4-2B cells were established 

on permeable cell culture inserts and then infected with the unarmed control CRAds, Ad5-

Δ24 and Ad5-Δ24RGD, and both of the armed CRAds, Ad5-Δ24-sOPG-Fc or Ad5-Δ24-

sOPG-Fc-RGD. Additional wells infected with tropism-modified, E1-deleted replication-

deficient control vectors expressing OPG-Fc (murine experiment) or sOPG-Fc (human 

experiment) from the CMV promoter were included as controls for viral replication. The cell 

culture inserts containing the infected cells were then added either to cocultures of murine 

bone marrow macrophages and ST2 bone marrow stromal cells, or to cultures of human 

bone marrow macrophages in recombinant soluble RANKL-containing medium. In both 

experiments, cultures were maintained in osteoclastogenic medium and thus were expected 

to form osteoclasts within 7–10 days. On day 9, conditioned medium samples were analyzed 

by an ELISA for the osteoclast-specific protein TRAP 5b as an indicator of osteoclast 

formation. In both the murine (Figure 4a) and the human (Figure 4b) experiments, wells 

containing armed CRAds with either tropism-modified or wild-type fibers inhibited the 

formation of osteoclasts relative to their respective unarmed control CRAd platforms (P < 

0.05 for all pairwise comparisons) or to the replication-defective vectors. In addition, Ad5-

Δ24-sOPG-Fc-RGD inhibited the formation of osteoclasts to a greater extent than did Ad5-

Δ24-sOPG-Fc in the murine cell coculture (P < 0.05). The monolayers containing the C4-2B 

cells were stained with crystal violet in order to assay cell viability. As shown for the murine 

experiment in Figure 4c, the cells were destroyed by the CRAds, indicating that tumor cell 

lysis occurs simultaneously with suppression of osteoclast formation. Overall, these findings 

support our hypothesis that an sOPG-Fc-armed CRAd can inhibit the growth of prostate 

cancer bone metastases by directly lysing tumor cells and by blocking the formation of 

osteoclasts.

A tropism-modified CRAd armed with sOPG-Fc inhibits prostate cancer bone metastasis in 
vivo

We next wished to demonstrate that the tropism-modified, armed CRAd, Ad5-Δ24-sOPG-

Fc-RGD, could inhibit the growth of prostate cancer bone metastases in vivo more 

effectively than its unarmed control CRAd, Ad5-Δ24RGD. Osteoblastic bone metastases 

were established in male SCID beige mice by the injection of C4-2B-LUC cells into the left 

tibiae. Subsequently, a subset of mice developed rapidly-growing tumors that impaired 

locomotion and were removed from the study in accordance with institutional regulations. 

The remaining mice developed slow-growing tumors, which became palpable at 

approximately 9 weeks and continued to increase in size over the duration of the study. In 

this experiment, tumor size did not correlate with bioluminescence quantification and thus 

the imaging was not continued. After 33 weeks, the mice were randomly divided into three 
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cohorts and treated by the intratibial delivery of Ad5-Δ24RGD or Ad5-Δ24-sOPG-Fc-RGD, 

or given PBS only as a control. Three weeks following treatment, the mice were sacrificed 

and the tibiae were harvested and analyzed by μCT. The tibiae of three additional age-

matched naïve mice were also harvested and examined as examples of normal bone. The 

average ratio of trabecular bone volume to the total analyzed volume (BV/TV), surface area 

of trabecular bone, and the density of the trabecular bone for each treatment group were then 

determined from the μCT data.

Mice in the PBS and Ad5-Δ24RGD treatment groups exhibited a loss of trabecular bone, 

whereas mice treated with Ad5-Δ24-sOPG-Fc-RGD displayed a trabecular structure which 

more closely resembled that of the naïve control mice. Images of representative tibiae from 

each treatment group are shown in Figure 5. Comparison of group averages revealed a 

number of trends. Whereas naïve mice had a BV/TV ratio of 0.0644, mice treated with PBS 

had ratio of 0.0223 and those treated with Ad5-Δ24-RGD had a ratio of 0.0246, representing 

decreases of 65% and 62%, respectively (Figure 6a). In contrast, the BV/TV ratio of Ad5-

Δ24-sOPG-Fc-RGD treated mice (0.0496) was double that of the PBS and Ad5-Δ24-RGD 

groups, and had decreased only 23% versus the naïve group. Similarly, as shown in Figure 

6b, mice treated with the armed CRAd displayed a trabecular bone surface area which more 

closely resembled the naïve mice (2.6982 versus 3.1104 mm2) than did that of the PBS- 

(1.5437 mm2) or Ad5-Δ24-RGD-treated mice (1.37 mm2). Although the observed trends did 

not reach statistical significance by Wilcoxon Two-Sample analysis, similar findings were 

also observed in the examination of trabecular bone density (not shown).

In aggregate, these data show that a CRAd armed with sOPG-Fc inhibits the progression of 

prostate cancer bone metastases and preserves normal bone architecture more effectively 

than does an unarmed control CRAd, but further titration of experimental conditions will 

need to be performed to maximize clinical efficacy.

DISCUSSION

We have designed an armed CRAd for bone metastases that targets both the metastatic 

tumor cell and the bone microenvironment. Prostate cancer commonly metastasizes to the 

skeleton (1, 2) where it relies on increased osteoclast activity (10, 11). Thus, we 

hypothesized that an sOPG-Fc-armed CRAd would be effective against this disease. Here, 

we have confirmed that sOPG-Fc is expressed and secreted from prostate cancer cells 

infected with Ad5-Δ24-sOPG-Fc-RGD, and that viral replication and tumor cell lysis are not 

enhanced by this expression. We showed that Ad5-Δ24-sOPG-Fc-RGD inhibits 

osteoclastogenesis while simultaneously lysing prostate cancer cells. Finally, we have 

shown that Ad5-Δ24-sOPG-Fc-RGD more effectively controls the growth of established 

bone lesions in vivo than does Ad5-Δ24RGD, by more effectively preserving the normal 

bone architecture. Altogether, these results supported our hypothesis that a CRAd armed 

with OPG can inhibit the growth of prostate cancer bone metastases by directly lysing tumor 

cells and by reducing osteoclast formation and activation.

We focused most of our studies on the C4-2B cell line, which is a bone metastatic derivative 

of the LNCaP line and establishes osteoblastic lesions in vivo (43, 44). We also included for 
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analysis LNCaP cells, which were derived from a lymph node metastasis, and PC3 cells, 

which were isolated from a bone metastasis. We observed similar levels of gene expression, 

viral replication and oncolytic potency between the tropism-modified and wild-type tropism 

CRAds in these cell lines. The fact that each of these lines expresses CAR, with C4-2B (40) 

and PC3 cells (41) expressing low but detectable levels and LNCaP cells expressing high 

levels (42) may explain these results. Although our in vitro experiments did not show a clear 

advantage in the use of the tropism-modified armed CRAd over its wild-type fiber control, a 

study by Rauen et al. showed that the expression of CAR in prostate tumors is inversely 

correlated with tumor stage/aggressiveness (27). Interestingly, CAR was detected in the four 

bone metastasis specimens analyzed but expression was not uniform. Regardless, the RGD 

tropism modification does not preclude binding of the virus to CAR (24). Therefore, the 

RGD-modified armed CRAd, with its expanded tropism, would likely be a more effective 

therapeutic than an isogenic CRAd with wild-type fibers. In our osteoclastogenesis 

experiments, cell death was observed in C4-2B cells infected with the non-replicative 

control vector. We speculate that this may have resulted from a toxic effect by some 

mechanism unrelated to replication; the reason for this cell death was not determined. 

Considered together with the oncolytic potency experiments, however, the data nonetheless 

show that an OPG-armed CRAd is capable of simultaneously destroying tumor cells by lysis 

while mediating an inhibition of osteoclastogenesis, consistent with our previous findings 

(22).

For our in vivo experiment, we developed a C4-2B cell line which stably expresses 

luciferase. Our intention was to monitor tumor growth non-invasively by bioluminescence 

imaging. However, tumor luciferase expression did not correlate with tumor growth, and 

thus we were unable to rely upon imaging for tumor monitoring. This lack of correlation 

may have been due to the long time frame of the experiment, which may have allowed for a 

loss of luciferase expression. We observed the C4-2B tumors to be slow growing in vivo, 

which has been noted by others using this line (44–48). As in other intra-osseous murine 

models of prostate cancer bone metastases, progression is typically observed over periods of 

weeks to months, particularly in studies employing the LNCaP line and its derivatives (39, 

44, 49–53). At the conclusion of our experiment, we observed extensive trabecular bone 

destruction rather than osteosclerosis, as indicated by an overall loss of trabecular bone in all 

treatment groups. This effect was also reported by Chanda et al., in a study demonstrating 

that intratibial tumors of C4-2B cells converted from an osteoblastic to an osteolytic 

phenotype after 6 months in vivo (48). In a rat model of prostate cancer bone metastasis, 

Lynch et al. showed that osteoclast numbers increased in mixed lesions up to 4 weeks, when 

the experiment was concluded (54). This suggests that after an initial osteoblastic phase, the 

constant upregulation of osteoclast activity leads to an overall loss of bone in mature lesions. 

The biphasic growth of prostate cancer bone metastases may account for the contradictory 

roles of OPG in their development. Prostate cancer cell lines, including PC3, LNCaP (29) 

and C4-2B (55), express OPG. This expression may promote tumor cell survival and bone 

formation initially, but is nonetheless insufficient to prevent the eventual loss of bone in 

mature lesions.
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We intended to treat well-established tumors and therefore administered treatment at week 

33. By treating established tumors, this was a more challenging model but one that more 

closely represented a clinical scenario. A variety of studies have examined the potential of 

OPG for the treatment of bone metastases of prostate cancer in murine models. These 

include studies in which OPG expression within a prostate cancer bone lesion inhibited both 

osteoblastic (19) and osteolytic (48) tumor progression and others involving the use of 

recombinant OPG (17, 18, 20, 53, 56) in intratibial models of prostate bone metastases. In 

these models, which include the osteolytic PC3 model (14, 20) and the osteoblastic LNCaP 

(18) and C4-2B (17) models, it has consistently been shown that the administration of 

recombinant OPG to tumor-bearing mice significantly reduces the growth of established 

intratibial lesions, but does not inhibit the growth of prostate cancer cells in vitro or the 

growth of subcutaneous xenografts. Two reports have implicated extracellular calcium in the 

growth of prostate cancer bone metastases (57, 58), suggesting that the inhibition of bone 

resorption by factors such as OPG, by means of calcium depletion, may contribute to a 

reduction in prostate cancer bone metastasis. However, because OPG does not affect 

proliferation of prostate cancer cells, and is not directly cytotoxic, it is unlikely that OPG 

administration alone would be sufficient to eliminate established metastases. Regarding 

safety, it is possible that the expression of OPG from a CRAd could influence the 

surrounding normal bone, with the most likely effect being a transient increase in bone 

formation. However, OPG was safely given to multiple myeloma and breast cancer patients 

in a Phase I trial (59).

For both tumor cell implantation and delivery of the CRAds, we utilized intratibial injection 

(39). This method is frequently employed in models of prostate cancer bone metastasis, as 

systemic and orthotopic prostate cancer models do not efficiently establish bone metastases 

(44, 60). This delivery method may have limited the antitumor effect that we were able to 

achieve, as the small size of the intratibial compartment limited the amount of virus that 

could be injected. Intratibial injection was a practical necessity, however, because the 

systemic delivery of adenovirus is unfeasible from a clinical standpoint, as intravenously 

delivered adenoviruses are largely sequestered by the liver (61). As work continues in the 

field of adenoviral targeting, this problem may be overcome in the future. In the μCT 

analysis of the tumor-bearing tibiae, we observed a wide variability within treatment groups 

that prevented the observed trends from reaching statistical significance. This limitation of 

the intratibial tumor model has been reported by others (62). Although the observed trends 

were consistent across all measurements, larger treatment groups would have made 

statistical significance easier to attain. However, it is also likely that, due to inherently 

variable growth rates of tumors in vivo, unacceptably large numbers of mice might have 

been necessary, suggesting that better animal models are an additional requirement to move 

the field forward. Finally, this study was designed to examine certain endpoints. An 

expanded study in which samples are harvested at specific time points to examine dynamic 

changes in viral replication and tumor/bone interactions would reveal valuable information 

that would guide the clinical application of this CRAd.

We have demonstrated the potential utility of an sOPG-Fc-armed CRAd as a treatment for 

prostate cancer bone metastases. A number of studies have been published regarding the use 
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of oncolytic viruses for prostate cancer and have been reviewed by Fukuhara et al. (63). In 

particular, studies involving CRAds in models of prostate cancer bone metastasis (64, 65), 

including one employing the C4-2B model (66) and one in which CRAds armed with a 

soluble transforming growth factor beta receptor II-Fc fusions are used in a PC3 model (67), 

have underscored the potential for this treatment strategy. This report, however, is the first to 

evaluate an armed CRAd designed specifically for the bone microenvironment in a model of 

prostate cancer bone metastases. Furthermore, it is likely that this CRAd, Ad5-Δ24-sOPG-

Fc-RGD, will also be effective against other malignancies that metastasize to the skeleton 

such as lung, thyroid, or renal carcinomas.
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Abbreviations

ADP adenovirus death protein

BV bone volume

CAR coxsackievirus and adenovirus receptor

CRAd conditionally replicating adenovirus

μCT micro computed tomography

FBS fetal bovine serum

IU infectious unit

MEM minimum essential medium

MOI multiplicity of infection

OPG osteoprotegerin

PBS phosphate buffered saline

RANK receptor activator of nuclear factor (NF) kappa B

RANKL RANK ligand

RPMI Roswell Park Memorial Institute

TRAP5b tartrate-resistant acid phosphatase 5b

TV total volume
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Fig. 1. 
The genomes of the viruses used in this study are represented schematically. By convention, 

the adenovirus genome is depicted as having (from left to right): a left inverted terminal 

repeat (LITR) containing the packaging signal (ψ), the early 1 (E1) gene, E3A region, 

adenovirus death protein (ADP), E3B region (containing the receptor internalization and 

degradation alpha [RIDα], RIDβ and 14.7k genes), fiber gene, E4 gene, and right inverted 

terminal repeat (RITR). For clarity, additional adenoviral genes are not shown. 

Modifications made to specific viruses, as indicated, include a 24-base pair deletion within 

E1 (Δ24), replacement of E3B with an sOPG-Fc fusion gene, and the inclusion of a RGD 

peptide within the knob domain of the fiber
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Fig. 2. 
Characterization of armed CRAds. a, b, C4-2B prostate cancer cells were infected with Ad5-

Δ24-sOPG-Fc, Ad5-Δ24-sOPG-Fc-RGD or Adwt300. At the indicated times post-infection, 

total cellular RNA was extracted and subjected to quantitative reverse transcriptase PCR to 

detect expression of: a, the sOPG-Fc gene (for cells infected with Ad5-Δ24-sOPGFc or 

Ad5-Δ24-sOPG-Fc-RGD) or the 14.7k gene (for cells infected with Adwt300); and b, the 

ADP gene. c, d, Secretion of sOPG-Fc by infected C4-2B (c) and LNCaP (d) cells. At the 

indicated times post-infection, conditioned medium was harvested and subjected to 

immunoblot analysis using an anti-OPG primary antibody

Cody et al. Page 19

Lab Invest. Author manuscript; available in PMC 2013 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Oncolytic potency of the armed CRAds. a, C4-2B prostate cancer cells were infected with 

Adwt300, Ad5-Δ24, Ad5-Δ24RGD, Ad5-Δ24-sOPG-Fc or Ad5-Δ24-sOPG-Fc-RGD. The 

conditioned culture medium was harvested at 2, 4 and 6 days post-infection. DNA was 

extracted and subjected to Q-PCR to detect the E4 gene as a measure of viral DNA 

replication. Results are the means ± SD of duplicate determinations. Representative results 

of 3 separate experiments are shown. b, a panel of prostate cancer cell lines was infected at 

the indicated MOIs. Eight days post-infection, viable cells were fixed and stained with 

crystal violet. Representative results of 3 separate experiments are shown
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Fig. 4. 
CRAds armed with sOPG-Fc simultaneously lyse prostate cancer cells and inhibit osteoclast 

formation in vitro. C4-2B cells were infected with the indicated adenoviruses and grown on 

inserts overlaying cocultures of murine osteoclast precursors and ST2 bone marrow stromal 

cells (a), or human osteoclast precursors and RANKL (b). At day 9, an ELISA was 

performed to detect TRAP5b, an osteoclast marker protein. Results are means ± SD of 

duplicate determinations. Significant differences (P < 0.05) versus uninfected (*), unarmed 

CRAd (†), non-replicative vector (#), and armed CRAd with native tropism (‡) are 

indicated. Representative results of 2 separate experiments are shown. c, Viable prostate 

cancer cells on the inserts were fixed and stained with crystal violet
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Fig. 5. 
An sOPG-Fc-armed CRAd inhibits the progression of bone metastases of prostate cancer in 

vivo more effectively than does an unarmed CRAd. Intratibial tumors of C4-2B-LUC 

prostate cancer cells were established in SCID mice and treated with either Ad5-Δ24-sOPG-

Fc-RGD, Ad5-Δ24RGD or PBS. Shown are μCT images of the proximal tibiae of three 

representative mice from each treatment group
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Fig. 6. 
SCID mice bearing intratibial tumors of C4-2B-LUC were administered intratibial injections 

of Ad5-Δ24-sOPG-Fc-RGD, Ad5-Δ24RGD, PBS, or left untreated as controls. Tibiae were 

harvested at sacrifice and subjected to μCT. Analysis of μCT images was performed to 

determine the ratio of total volume to trabecular bone volume (a) and trabecular bone 

surface area (b). Shown are the group means ± SD, n = 3 (control), 6 (PBS), 7 (Ad-

Δ24RGD) and 7 (Ad-Δ24-sOPG-Fc-RGD)
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