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Abstract

targets makes this prohibitively expensive.

constructed from the PubChem database.

Drug discovery

Background: Drug discovery and development has been aided by high throughput screening methods that detect
compound effects on a single target. However, when using focused initial screening, undesirable secondary effects
are often detected late in the development process after significant investment has been made. An alternative
approach would be to screen against undesired effects early in the process, but the number of possible secondary

Results: This paper describes methods for making this global approach practical by constructing predictive models
for many target responses to many compounds and using them to guide experimentation. We demonstrate for
the first time that by jointly modeling targets and compounds using descriptive features and using active machine
learning methods, accurate models can be built by doing only a small fraction of possible experiments. The
methods were evaluated by computational experiments using a dataset of 177 assays and 20,000 compounds

Conclusions: An average of nearly 60% of all hits in the dataset were found after exploring only 3% of the
experimental space which suggests that active learning can be used to enable more complete characterization
of compound effects than otherwise affordable. The methods described are also likely to find widespread
application outside drug discovery, such as for characterizing the effects of a large number of compounds or
inhibitory RNAs on a large number of cell or tissue phenotypes.

Keywords: Active learning, Machine learning, Drug development, Polypharmacology, Computational biology,

Background

Drug discovery and development is a lengthy process
that begins with the identification of potential drug tar-
gets and ends after testing in clinical trials. The targets
are generally identified through basic science studies as
being critical components affected in a disease. Once a
target protein has been identified, the goal is to identify
drug-like compounds that either increase or decrease its
activity. High throughput screening (HTS) and high con-
tent screening (HCS) are frequently used to ascertain
the effects of many compounds on a target. However,
even with automation, screening a large experimental
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space can be expensive (especially for HCS). One ap-
proach to reducing the need for experimentation is to
generate a model for compound effects in silico, a process
referred to as virtual screening. There are two common
methods [1]. During a quantitative structure activity rela-
tionship (QSAR) analysis, molecules are checked for the
presence or absence of specific structural elements. The
vector describing a molecule is referred to as a “finger-
print.” QSAR methods have been used to make predic-
tions about the activity of compounds on target proteins
[2,3]. Molecular docking is an alternative method that
requires knowledge of the structure of both target and
compound [4,5]. Computer simulations are run in which
the target and compound are forced into contact and the
interaction energy between the target and compound mol-
ecule estimated. These methods take into consideration
features of the target protein and potential drugs. Beyond
virtual screening, efforts have also been made to apply
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machine learning techniques to the wealth of information
available in the PubChem database, paying particular
attention to the gross imbalance of active to inactive com-
pounds [6,7] in efforts to make accurate predictions of the
effects of compounds on targets.

These predictive studies consider the effects of many
compounds on one (or a small number) of targets in
order to identify promising compounds for further devel-
opment. However, it is not uncommon in drug develop-
ment for previously unknown effects to be discovered
after significant investment in a potential drug, resulting
in relatively high attrition rates in later phases or even
after drug release [8]. These side effects are not discovered
earlier because screening is for desired effects of com-
pounds on a single target protein without considering
whether compounds have undesired effects on other
targets. This suggests that early drug screening should
consider a larger portion of the compound-target effect
space [9]. Ideally, we would have knowledge of the whole
experimental space of compounds and targets (which we
can represent as a matrix with rows for each target (~10%)
and columns for each compound (~10%).

By having knowledge of all effects of all compounds,
much more informed decisions could be made about
which compounds to advance through the development
process (including the possibility that a desired drug
should have more than one effect as well as minimal side
effects). However, measuring the full matrix would require
on the order of 10’ measurements, the cost of which
would be prohibitive. An alternative is clearly needed.

As with single targets, predictive modeling methods
for the larger space have also been described. Chemoge-
nomic approaches have been developed that concurrently
consider the similarity of compounds and the similarity of
ligands to make predictions for unknown associations
between proteins and compounds [10]. Furthermore,
methods have been developed that allow for the identifica-
tion of compounds with a desired effect profile across
multiple targets by using evolutionary methods to
generate compounds to be tested [11]. These polyphar-
macological methods make predictions for the effects of
compounds across multiple targets. Using text mining
methods, clinical outcome records have also been ana-
lyzed to predict effects [12]. Inverse docking methods have
been developed as well which start with a compound and
measure the interaction energy between the compound
and multiple proteins [13].

Building any of these predictive models requires data
for at least a subset of all possible experiments. This is
typically all data currently available, or new results for a
human-specified subset thought to be representative. In
approaches like those mentioned above, machine learning
methods are then used to predict results for a large set of
compounds, and a small number of these are tested. In
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most cases, the process stops after this, and selected com-
pounds are advanced to further development. However,
the process can be made iterative, so that information
from the additional experiments may be used to improve
the model, make new predictions and select more experi-
ments to execute [14]. This type of approach is referred to
as active learning in the machine learning literature. In
active learning, rather than being chosen in advance,
experiments are iteratively selected to most improve the
accuracy of the predictive model. In the context of drug
development, this should require fewer experiments to
make accurate predictions (of both desired and undesired
effects) allowing for more effective decisions and reduced
late-phase attrition [9]. While active learning is widely
used in some fields, there have been only limited applica-
tions to biological problems [15-21].

Active learning consists of three phases performed in a
loop (as illustrated for the work described here in
Figure 1). A campaign of experiments can be initialized
either using prior results from literature or databases or
by randomly selecting a batch of experiments from an
experimental space. (1) A model is generated to represent
the currently available data. (2) From that model, expe-
riments are selected for execution that are expected to
improve the model. (3) The set of experiments is executed
and the resulting data are combined with previously
collected experimental data. The loop then continues
from Step 1 until either a desired accuracy of predictions
is achieved or a specified budget has been exhausted.
There have been limited previous applications of active
learning to the drug discovery process. In these efforts,
compound activity was considered to be binary (active
or inactive) and effort was focused on only a single
target [22,23].

The most important difference of the work described
here from previous approaches is our emphasis on active
machine learning to simultaneously model the effects of
many compounds on many targets. To demonstrate the
utility of active learning for drug discovery in the con-
text of multi-target modeling, we combined two model-
ing approaches to make predictions about activities for
large numbers of combinations of compounds and targets.
Our model uses features developed for virtual screening
to describe compounds, and features from sequence ana-
lysis to describe target proteins. As a part of this effort, we
did not endeavor to make the most accurate predictive
model possible. Rather, we investigated the utility of apply-
ing active learning in combination with predictive models
in order to efficiently discover active compound-target
pairs. In tests using data from the PubChem database, we
found that active compound-target pairs could be discov-
ered as much as twenty-four times faster using active
learning than by random selection of experiments. The
algorithms we describe are also computationally efficient,
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Figure 1 An active learning pipeline for an experimental space with N proteins and M compounds. (a) A round of active learning

begins with the data for all of the experiments that have been observed so far. (b) A separate model is constructed for each protein using the
compound features to make predictions for the effect of each compound on the activity of that protein. This is illustrated for Protein 2 for which
regression using the observed experiments for Compounds 2 and 5 predicts that Compound 4 would show an activity of 6. This model is
referred to as CFO. (c) A separate model is constructed for each compound using the protein features to make predictions for the effect of that
compound on the activity of each protein. This is illustrated for Compound 4 for which regression using the observed experiments for Proteins 4
and N predicts that Protein 2 would show an activity of 2. This model is referred to as PFO. (d) For the CCT approach, if predictions from both
methods are available, they are averaged. (In the early rounds when no experiments may have been observed for a given protein or compound,
predictions from both models may not be possible). (€) The complete set of observations and predictions is shown, and experiments that would
be chosen for the next round of acquisition by different methods are shown (greedy selection would pick the experiments with the highest
predicted values, while density selection would pick experiments for compounds and proteins that are most different from those previously
selected). The results for the chosen experiments will be added to those observed so far to begin the next round of active learning.
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making application to very large experimental spaces
practical.

Results

Dataset

To evaluate our proposed approaches, we chose to use
existing experimental results for assays on many targets
and many compounds. We therefore began by assembling
a large set of compound effect scores from PubChem
(http://pubchem.ncbinlm.nih.gov). In total, compound ac-
tivity scores for 177 assays were assembled. Of these
assays, 108 were from in vitro assays and 69 were from
in vivo assays. Of the 600,000 compounds in PubChem
across the 177 assays, an average of 30% had a reported
activity score for a given assay. (We do not know but
assume that the missing values are approximately missing
at random.) Of these, we created a dataset of all assay data
for 20,000 randomly-chosen compounds, resulting in a
system with 3.5 million possible experiments (the distribu-
tion of scores across all compounds and assays is shown
in Additional file 1). All combinations of target and com-
pound with scores above 80 or below —80 were marked as
hits. (Note that each PubChem assay includes its own
rank score cutoff above which a chemical is considered to
be “active”. Our cutoff of 80 is more stringent than that
used for most assays.) Information on the assays, com-
pounds and their respective features, can be found in the
Additional files 2 and 3.

Model definition

As an initial approach to constructing a predictive model,
we explored using linear combinations of features. Given
the large numbers of features involved, lasso regression
[24] was used because it allows for efficient feature selec-
tion for linear regression models. We note that while the
assay scores may be non-linearly related to true activity,
and while estimates of true activity may be obtained by
further manipulation or testing, we expect them to be
good approximate predictors of which combinations of
compounds and targets will show high activity.

Three approaches to prediction of the assay scores
were used. The first approach used compound features
only (CFO) to predict the activity of each compound in
a given assay (analogously to QSAR). Using lasso regres-
sion, compound features were selected that were strongly
indicative of the activity of a compound on a single target.
A regression model was learned for each individual target
allowing for the selection of compound features unique to
a target (Figure 1b and Equation 1). The second approach
used protein features only (PFO) to predict the effect on
each target of a given compound. When considering
all experiments which involved a single compound,
lasso regression allowed us to select features of the target
protein which were indicative of the likelihood for a target
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to be affected by that single compound (Figure 1c and
Equation 2). The third approach made a combined com-
pound-target (CCT) prediction by averaging the two
predictions for each compound-target combination
(Figure 1d and Equation 3).

Evaluating model performance

We first sought to determine how accurately these
models could predict target-compound hits as a function
of how much training data was available. To do this, we
randomly sampled a sequence of experiments in batches
of 384 experiments until 3% of the experimental space
had been sampled (note that each combination of assay
and compound was considered independently when selec-
ting random experiments). As each experiment was sam-
pled, we combined it with all previous experiments from
that sequence to train a model and evaluated its ability to
predict hits for all remaining data.

A receiver-operator characteristic (ROC) curve was
calculated for each of these models by varying the classi-
fication threshold to predict a hit (note that only the
prediction threshold was varied; the definition of an actual
hit as having an absolute value above 80 was unchanged).
Finally, the area under the ROC curve was calculated for
each set of predictions. This process was repeated ten
times for each of the three prediction approaches de-
scribed above (CFO, PFO and CCT). The means and
standard errors of the area under the ROC curve for the
ten trials for each prediction approach are shown in
Figure 2. Two methods can be considered to generate
random predictions for comparison to these results. The
simplest would be to randomly choose predictions from
the set of all scores for all assays. Because these are
globally random, the area under the ROC curve is clearly
expected to be 0.5. All of our methods perform better than
this. A more demanding baseline was therefore used, in
which scores were randomly chosen from those for all
compounds for a given target. The predictions from this
sort of random predictor are expected to be more accurate
than randomizing across all observations (since targets
with a lot of hits will be randomly predicted to have a lot
of hits), thus it is a more stringent standard for com-
parison. Predictions using CFO or using CCT performed
better than random by this standard (Figure 2). This is
despite the fact that less than 0.1% of the combinations
were active according to our definition.

We also considered which features were more inform-
ative than others. To make a single set of predictions
across the entire space of 20,000 compounds and 177 tar-
gets requires the training of 20,177 lasso regression
models. The final models trained at 3% of the experimen-
tal space (from Figure 2) were analyzed and the propor-
tion of models where the coefficient for each feature was
non-zero was calculated. To determine the magnitude of
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Figure 2 Evaluation of prediction methods with increasing
amounts of randomly selected training data. Ten random
sequences of experiments were used to select data used for training
regression models. After each experiment was chosen, a ROC curve
was constructed by gradually raising the threshold on the predicted
assay score at which an experiment was considered to be positive.
The mean and standard error of the area under the ROC curve for
prediction of positive experiments after each experiment is plotted
for each regression method. The prediction methods shown are:
within target random prediction in red, regression using protein
features only (PFO, cyan), regression using compound features only
(CFO, blue) and CCT (green).

the effect of a feature on prediction, the mean absolute
coefficient for each feature (only when it was selected)
was calculated. For targets, the most frequently selected
features (and those with the largest coefficients) were the
amino acid compositions. For compounds, the most fre-
quently selected feature was “Group Ila (Alkaline earth)”
and the feature with the largest absolute coefficient was
“4 M Ring”. Further details on other features are provided
in the Additional file 3.

We also were interested in how applicable a trained
model would be to a new target or a new compound.
We utilized the same random sampling approach de-
scribed above. However, for each of the ten trials, the
experimental results were held out for a unique 10% of
all targets or compounds and a ROC curve was calcu-
lated for only the held out experiments. The result of
this process is that when targets are held out entirely,
only PFO models can be used and likewise when com-
pounds are held out entirely, only CFO models can be
used. The results (Figure 3) show that when holding out
entire compounds, relatively accurate predictions can be
made about activities from the remainder. As expected
from the results in Figure 2, the predicted activities for
held out targets are much less accurate. Both, however,
perform better than random prediction (AUC = 0.5). The
results confirm that the regression approach can capture
important information about compound effects, even when
no information about a compound is provided during

Area under ROC
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Figure 3 Evaluation of prediction methods for held out targets
or compounds with increasing amounts of randomly selected
training data. Ten random sequences of experiments were used to
select data from compounds or targets not held out and used for
training regression models. After experiments were chosen, a ROC
curve was constructed by gradually raising the threshold on the
predicted assay score at which an experiment was considered to be
positive. The mean and standard error of the area under the ROC
curve for prediction of positive experiments from held out targets
or compounds are plotted for held out compounds (blue) or
targets (cyan).

training. The fact that scores could be predicted better for
new compounds than for new targets may be due to the
fact that data was available for many more compounds
than targets (and thus there is a higher chance that the
model has already seen a similar compound than that it
has seen a similar target).

Active learning simulation

Given that our modeling approach performed better
than random at predicting relative activity scores, we
next determined whether it could be used to successfully
drive an active learning process (i.e., to find hits faster
than expected at random or maximize predictive accuracy
rapidly). For this, simulations were run for an experimen-
tal space of all 177 assays (129 unique protein targets) and
all 20,000 compounds. For this experimental space, rank
scores from actual experiments executed were available in
PubChem for 1,043,300 experiments out of 3,540,000
possible experiments. Experiments selected during simu-
lations were restricted to those for which results were
available; requests from an active learner for other experi-
ments were skipped.

To initialize a simulation, all experimental results were
hidden from the active learner as if they had never been
executed. A set of 384 experiments were selected randomly
for “execution.” During the execution phase (Figure la),
results from selected experiments were “revealed” and used
for training of a predictive model (Figure 1b-d). A new
batch of experiments was then selected using one of a
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number of active learning methods (illustrated in Figure le
and described in Methods). Finally, the data for the
selected experiments were added to the pool of previ-
ously selected data and the loop continued until 3%
of the possible experimental space was explored. Each
round consisted of the selection of 384 experiments.
Ten separate simulations were run for each experiment
selection method, each starting out with a different set of
initial experiments. At each round, the discoveries (com-
binations whose absolute activity score was greater than
or equal to 80) were counted, and the mean count and
associated standard error recorded as a function of the
fraction of experimental space so far explored.

We first considered a greedy active learning approach
in which unobserved experiments that had the greatest
predicted effect (inhibition or activation) were selected
for measurement in the next round. This greedy approach
was used in combination with CCT, single regression with
predictions from compound features for each protein
target (CFO) and single regression with predictions from
protein target features for each compound (PFO). For
comparison, a random selection method was also inclu-
ded. As shown in Figure 4, the greedy CCT method
performed better than the other methods using less
sophisticated predictive models. After exploration of 3% of
the experimental space, an average of approximately 38%
of possible discoveries were made. Results for the single
regression approaches are also shown. As might be expec-
ted from the results in Figure 2, results for prediction
from target features only are nearly the same as for
random selection. Results using CFO are much better,
but CCT performs even better. This may be considered
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Figure 4 Active learning to discover compound-target hits.
Experiments were selected which had the largest absolute
predictions. The average number of discoveries and standard error
for 10 separate trials are shown. The selection methods were
random selection (red), CCT with greedy selection (green), greedy
selection with single regression using only compound features for
prediction (CFO, cyan) and greedy selection with single regression
using only target features for prediction (PFO, blue).
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surprising given that CFO performed better than CCT
when measuring the accuracy of predictions based on the
area under the ROC curve in Figure 2. However, the pri-
mary reason is that at high thresholds, predictions using
CCT had a higher true positive rate than those of CFO
giving the results in Figure 4. For the entire set of predic-
tions across many thresholds, CFO predictions performed
better as shown in Figure 2.

The rate of discovery for the greedy method using
CCT decreased as the simulations progressed. Exploration
of the experimental space with the greedy algorithm was
limited to regions of the feature space which were predic-
ted to have large activities. We considered the possibility
that this limited the system’s ability to learn a better
model, and that this could be overcome by acquiring data
in regions where few observations have been made or
where the model predictions were uncertain. Therefore, a
“density-based” approach was also tested which selected
experiments so as to explore the experimental space effi-
ciently without regard to predicted values or experimental
results. In this approach experiments were tested which
were most similar to the unobserved experiments and
least similar to observed experiments [25]. A variation on
this idea, diversity sampling, was also tested, along with
uncertainty sampling in which experiments with the high-
est uncertainty of their prediction were selected. Results
for these approaches are shown in Additional file 4. The
uncertainty-based selection method performed much
better than random but not as well as CCT with greedy
sampling. Density-based and diversity-based sampling
performed similarly to random selection. These three
classical active learning methods are generally designed to
select experiments for execution which will yield the most
accurate model, while the results in Additional file 4 are
for finding hits. We therefore considered the accuracies of
the models for each method by calculating the area under
the ROC curve (as previously described for Figure 2). As
shown in Additional file 5, all selection methods, except
for uncertainty sampling, resulted in an initial peak accur-
acy followed by a slight, gradual reduction in the accuracy
of the models. The better performance of uncertainty
sampling compared to CCT with greedy sampling is con-
sistent with the opposite result in Additional file 4. This is
because uncertainty sampling does not prefer finding hits
over non-hits.

Because uncertainty, diversity and density-based selec-
tion methods were designed to select experiments which
would yield a more accurate predictive model, we also
tested hybrids of greedy CCT with each of these methods.
These hybrid methods were designed to concurrently
improve the predictive model and confirm predictions
generated by the increasingly accurate predictive model.
The hybrids with density and diversity performed worse
than greedy CCT by itself (Additional file 6) but the
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hybrid with uncertainty sampling performed slightly better
(Figure 5).

We also considered the possibility that the decrease in
rate of learning for greedy CCT was due to excessive
testing of a given target for new discoveries after all of
them have already been revealed. To address this possibil-
ity, we developed a modified approach (which we termed
“limited memory”) in which only information from a given
number of previous rounds was used in the model gener-
ation and active learning process. Any requests from the
active learner for experiments previously selected and
subsequently hidden were skipped. As shown in Figure 5,
limiting memory to only the previous 5 or 10 rounds
yields significant improvement in the discovery rate.
Almost 60% of discoveries were made after only 3% of the
experimental space was explored. We also found that
limiting memory in the context of hybrid uncertainty
methods also improved the quality of the predictive model
as measured by the area under the ROC curve in Figure 6.

For reasons of computational time, we restricted our
analysis to 20,000 compounds. It was therefore of inter-
est to estimate how performance might change if more
compounds were included. As a preliminary indication
of this, we performed simulations for smaller sets of
compounds. The results (Additional file 7) show that
the learning rate is significantly worse for 5,000 com-
pounds than for 20,000, but that it is not much different
for 10,000 than 20,000. This suggests performance for
larger sets might be as good or better.

Discussion and conclusions
We have described a pipeline for executing experiments
driven by an active learning system and demonstrated
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Figure 5 Discovery rates for improved active learning
approaches. The average number of discoveries and standard error
for 10 separate trials are shown. The methods were random choice
(red), greedy CCT (green), greedy CCT-uncertainty hybrid (blue), and
greedy selection-uncertainty hybrid using memory limits of five
(cyan) and ten rounds (magenta).
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Figure 6 Accuracy of models constructed using sampling by
active learning approaches. A CCT model was trained using all
experiments chosen by each selection method up to a given round.
The mean and standard error of the area under a ROC curve for
each selection method is plotted versus the fraction of experiments
performed up to that round. The methods were random choice
(red), greedy CCT (green), greedy CCT-uncertainty hybrid (blue),
and greedy selection-uncertainty hybrid using memory limits of five
(cyan) and ten rounds (magenta).

that it can result in the rapid discovery of compounds
which affect target proteins using a set of heterogeneous
assays. We found that the selection of experiments based
only on predictions calculated using compound features
(predicting the effect of a compound on a single target)
performed significantly better than the selection of ex-
periments based only on predictions from target features
(predicting the sensitivity of a target protein to a single
compound). Decent performance of the prediction models
using compound features is to be expected given past
results with QSAR approaches to modeling compound
activity on a given target. The comparatively poor per-
formance of the protein models could be a result of mul-
tiple issues: poor features, limited data, and heterogeneous
data sources. The system included only features that could
be calculated from sequence information, and it is likely
that this feature set could be improved by the inclusion of
features calculated from protein structural information.
Some assays utilized in this study included high content
screening assays in which living cells were imaged to
measure the effects of compounds. These types of experi-
ments are inherently more complex than simple binding
assays and may have been poorly represented by features
only describing a single target protein within the complex
system. Both types of models performed better than ran-
dom prediction and combining them yielded accurate
models that could be utilized to rapidly make new discov-
eries. Previously, ensembles of predictors have yielded
good results and the performance of these combined
models may be caused by the same effect. Importantly,
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the addition of memory limitations to these models fur-
ther improves the discovery rate. In this experiment, only
information from 177 assays was used. As information
from more assays becomes available, predictive models
are expected to improve.

There are at least five factors to be considered in
applying active learning approaches to problems such as
compound screening. First, whether to use a priori mea-
sures of similarity between compounds or targets must be
decided. The advantage of using them is that predictions
can be made even before any data are acquired, but the
disadvantage is that they may be biased towards previously
explored compounds or targets. In separate work, we have
described approaches for using modeling and active learn-
ing without such features [26]. Second, the method for
choosing experiments to perform should reflect the goals
of the campaign. As we have illustrated here, uncertainty
sampling can be used to learn an accurate predictive
model very efficiently. However, when the goal is not to
learn an accurate predictive model of the whole space, but
rather something such as just finding hits, we have also
illustrated how hybrid experimentation selection methods
can prove very beneficial. With hybrid methods, a portion
of the experiments are chosen so as to learn an accurate
predictive model and the remainder of the experiments
are chosen to take advantage of the improved predictive
model to accomplish the desired goal. Further, we have
shown that limiting the memory of the active learning
system can result in further improvements in efficiency by
avoiding exploration of areas of the experimental space in
which most relevant information has already been dis-
covered. Third, computational complexity is an important
consideration in practical use of active learning methods.
Methods that model the entire space at once are theoret-
ically preferable [27,28], but they can require prohibitively
extensive computation for problems with thousands of
targets and millions of compounds. In such cases, the
methods we have described here can provide a faster alter-
native. Fourth, the logistics of the types of experimenta-
tion to be undertaken need to be considered. For example,
in this study with the batch size we chose, 3% of the
experimental space would have required approximately 80
rounds of experimentation. For some types of experi-
mentation, a large number of small rounds may not be
practical and thus larger batch sizes could be used in
fewer rounds.

Finally, the primary goal of the active learning process
is to reduce the experimentation required to complete
an objective. In order for those reductions to be realized
one needs to determine when to stop running experi-
ments. This is an ongoing area of study, but progress
has been made in our prior work [26]. In the current
study, we observed that the discovery was high as the
first 1.5% of the experimental space was explored and
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then decreased (but still occurred at a substantial rate).
To explore whether the learning would continue or
would plateau, we continued the simulations past 3% for
the best method (greedy-uncertainty hybrid with 10
round memory limit). The learning rate continued at a
rate about 2-3 times as fast as for random sampling and
did not reach a plateau (data not shown). Extrapolating
the learning rate predicts that it would find all hits after
sampling approximately 20% of the experimental space.

It is worth noting that while simultaneous consideration
of multiple targets and multiple compounds may increase
the number of experiments needed to find a compound
that affects a single target, it may be expected to decrease
the average number of experiments per target when used
to simultaneously conduct campaigns for multiple targets.

The selection of an appropriate batch size is an import-
ant consideration for the utilization of an active learning
system. If there is a significant setup cost for a set of
experiments (as is typically the case for HTS and HCS),
then larger batches are preferable. If on the other hand,
setup costs are low and a short time is required to execute
the experiments relative to computational time to update
the model, a smaller batch size would be preferable.

In conclusion, the work presented here provides a prac-
tical, scalable approach to the specific problem of learning
a combined model for the effects of many compounds on
many targets and demonstrates that the model can be
combined with active machine learning methods to dra-
matically reduce the number of experiments needed to
find compounds with desired target effects. Many varia-
tions on the approaches described here can be considered,
including different predictive models, different feature sets
and different active learning algorithms (such as informa-
tion-theoretic scoring [27,28]). An exhaustive evaluation
of these variations is beyond the scope of this paper,
but we have firmly established that significant impro-
vement in learning rates can be achieved. We believe
active learning will be particularly important as drug
development efforts increasingly consider variation among
cell types and among individuals. The size of this ex-
perimental space clearly precludes exhaustive experi-
mentation. The paradigm of exploring combinatorial
experimental spaces through active learning is also
widely applicable in biomedical research beyond drug
discovery. This includes any study that seeks to deter-
mine the effects of large numbers of perturbations
(such as genomic variation or exposure to compounds
or inhibitory RNAs) on large numbers of molecular, cellu-
lar or histological behaviors (such as enzyme activities,
cell shapes or motility, protein expression or localiza-
tion). As the size of the experimental space grows,
exhaustive experimentation becomes more impractical
and active learning may be expected to provide even
greater benefit.
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Methods

Data preparation

Each assay from the PubChem database [29] contains
gene target information, chemical identifier information
and activity scores for all compounds tested in the assay.
Various features describing the primary structure of
the target protein were calculated using ProtParam [30],
Protein Recon (http://reccr.chem.rpi.edu/Software/Protein-
Recon/Protein-Recon-index.html) and Prosite [31]. In
total, each assay was described by 388 features which
described the target protein of that assay. All non-binary
features were z-scored. The compounds in the assays were
described with 1559 binary features calculated using Open-
Babel [32] (http://openbabel.org). Assays from PubChem
targeting human proteins with more than 15,000 com-
pounds tested were manually annotated. For each assay, it
was determined what type of effect was being detected for
the target (inhibition, excitation, etc.) and the nature of the
activity scores reported. The selected assays are found in
Additional file 8. Only assays whose activity scores were
scaled with a measured effect from the compound were
kept for simulation. Activity scores were rescaled if neces-
sary to a maximum of 100. For all assays testing for in-
hibition, scores were made negative. From the ~600,000
possible compounds, 20,000 were selected randomly for
use in simulations of the active learning processes. The
selected compounds are found in Additional file 9.

Predictive model

Lasso regression

Linear regression models were trained with the following
equations where Y, and X, are the vector of activity
scores and matrix of compound features respectively
from all executed experiments with protein p. The re-
gression coefficients learned using lasso regression on
the compound features to predict activity across target
p are found in f,. This method allows us to predict the
effects from compounds on a single protein based on the
features of that compound. Additionally, Y; and X, are
the vector of activity scores and matrix of protein features
respectively from all executed experiments with com-
pound d. The regression coefficients learned using lasso
regression on the protein target features to predict activity
on all protein targets for compound d are found in S,.
These prediction methods are illustrated in Figure 1b-c.

Y, =X,B, (1)
Yo=XaB, (2)

Lasso selects a set of features that gives a fit where
|B| <s. The penalty s was selected using cross validation
for each linear regression model. Predictions made using
only Equation 1 or 2 use compound features only (CFO)
or protein features only (PFO) respectively. A combined
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prediction for the single compound tested in the single
assay, Y(4,), was calculated by taking the mean of the
predictions from Equations 1 and 2 which is illustrated in
Figure 1d. We refer to this approach as the combined
compound-target (CCT) model.

Yap) = (Yap + Ypa)/2 (3)

All regression models were trained using the Least
Angle Regression method [33] implemented in SciKits
(http://scikits.appspot.com). Penalties (s) were tested be-
tween 10™* and 10* Penalties were selected which mini-
mized the mean squared error of five-fold cross validation
within the training data for each model in each round of
active learning.

Selection methods

Greedy selection algorithm

Experiments were selected which had the greatest abso-
lute value of predicted rank score (Y(4,)). In some cases,
no information was available to make a prediction for
an experiment. If no prediction could be made from
available data for an experiment, that experiment was
predicted to have a rank score of zero. All experiments
with equivalent predicted values were treated in random
order.

Uncertainty sampling selection algorithm

For each assay, five CFO models were learned by sub-
sampling the results available from observed experiments
in that assay. For each unobserved experiment in an assay,
a prediction is made using each of the five CFO models.
Likewise, for each compound, five PFO models were
learned by subsampling the results available from ob-
served experiments for that compound. Across all unob-
served assay in each compound a prediction was made
using each PFO model. As a result, each unobserved
experiment had five CFO predictions and five PFO pre-
dictions. Twenty-five predictions were calculated for each
experiment by calculating the mean of each pair of CFO
prediction and PFO prediction. If a model was impossible
to calculate because there were no results from testing a
compound d or no results from testing an assay p, only
predictions from a single model were used. Experiments
were selected which had the largest standard deviation of
predictions because those were the experiments for which
the model had the least confidence in prediction.

Density-based selection algorithm

Each experiment (target, compound) was represented
by a single feature vector formed by concatenating the
target features and the compound features for that experi-
ment. For computational efficiency, a maximum of 2000
observed and 2000 unobserved experiments were used.
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Among the two thousand unobserved experiments, selec-
tions were made using a density-based sampling method
[25] which attempted to choose experiments which were
most distant (Euclidian distance) from already observed
experiments and least distant from unobserved experi-
ments. No predictions from a learned model were utilized
for this selection method.

Diversity selection algorithm

Each experiment was represented by a single vector
formed by concatenating the target features and the
compound features for that experiment. A random set
of 4000 experiments was clustered using the k-means
algorithm (with k being the size of the batch desired, in
our case 384). The experiment nearest to each centroid
was selected for execution. No predictions from a learned
model were utilized for this selection method.

Hybrid selection algorithms

For each round, half of the experiments were selected
using one method and half were selected using another
method.

Memory limited selection algorithms

When a predictive model was learned from observed
data using Lasso regression, memory limitations were
applied such that only experiments observed from the
last m rounds of selection were used for training the
predictive model.

Availability of supporting data
The data supporting the results of this article are included

within the article and its additional files.

Additional files

Additional file 1: Histogram of observed assay scores. Scores range
from =100 to 100 with negative scores indicating inhibitory effects and
positive scores indicating activation effects. Scores of zero indicate no
effect. Experiments with scores between =5 and 5 comprised 80% of
the entire set. Less than 0.01% of scores were greater than 80 or less
than —80.

Additional file 2: Descriptions of Target Protein Features and their
Relevance. The feature identifiers (Feature), feature source (Source)

and feature descriptors (Description) are given in the spreadsheet. To
determine the utility of features, a CCT model was trained for each of ten
randomly selected subsets of 3% of all experimental results available.

The result was that a regression model was trained for each compound
(Figure 1c) which used target features to predict activity. For each
feature, the proportion of regression models for which that feature was
selected was calculated (SelectionFrequency) as well as its mean absolute
coefficient (MeanAbsoluteBeta).

Additional file 3: Descriptions of Compound Features and their
Relevance. The feature identifiers (Feature), feature source (Source),
feature descriptors (Content) and query string (PatternQuery) are given
in the spreadsheet. To determine the utility of features, a CCT model
was trained for each of ten randomly selected subsets of 3% of all
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trained for each target (Figure 1b) which used compound features to
predict activity. For each feature, the proportion of regression models for
which that feature was selected was calculated (SelectionFrequency) as
well as its mean absolute coefficient (MeanAbsoluteBeta).

Additional file 4: Evaluation of compound-target hit discovery for
different active learning methods. The average number of discoveries
and standard error for 10 separate trials are shown. The methods were
random choice (red), CCT with greedy selection (green), uncertainty
sampling (blue), density-based sampling (cyan) and diversity selection
(magenta).

Additional file 5: Evaluation of predictions for different active
learning methods. After each batch of experiments was chosen, a ROC
curve was constructed by gradually raising the threshold on the
predicted assay score at which an experiment was considered to be
positive. The mean and standard error of the area under the ROC curve
for prediction of positive experiments after each experiment is plotted for
each regression method. The methods were random choice (red), CCT
with greedy selection (green), uncertainty sampling (blue), density-based
sampling (cyan) and diversity selection (magenta).

Additional file 6: Evaluation of compound-target hit discovery for
different hybrid active learning methods. The average number of
discoveries and standard error for 10 separate trials are shown. The
methods were random choice (red), CCT with greedy selection (green),
hybrid greedy-uncertainty sampling (blue), hybrid greedy-density-based
sampling (cyan) and hybrid greedy-diversity selection (magenta).

Additional file 7: Evaluation of compound-target hit discovery rates
for compound libraries of different sizes. Simulations were run using
CCT with greedy selection for the exploration of 2% of the experimental
space with subsets of the compounds of various sizes. These were
repeated 10 times and the average and standard error for the
percentage of discoveries made was calculated as a function of the
percent of the experimental space sampled. The compound subsets were
of the following sizes: 20,000 (black), 10,000 (dark gray) and 5,000 (light
gray). Note that the rate of learning per fraction of experimental space is
higher for larger compound libraries.

Additional file 8: List of PubChem Assays Utilized. The PubChem
assay ID (AssaylD), data structure (DataStructure), target gene (GenelD),
effect type (EffectType) and experiment type are listed for all assays used
in this work. The structure of the data is shown to indicate how data
were scaled. Some assays had activity scores which ranged from 0 - 100
and others needed to be rescaled. Some assay results were stored in a
tiered format. For these assays, results from the lowest tier were used
and rescaled to match a range from 0 - 100.

Additional file 9: List of PubChem Compounds Utilized. This file
contains a list of PubChem chemical IDs for all compounds used in this

experimental results available. The result was that a regression model was

experiment.
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