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Abstract

Lewis Carroll’s English word game Doublets is represented as a system of

networks with each node being an English word and each connectivity edge

confirming that its two ending words are equal in letter length, but different by

exactly one letter. We show that this system, which we call the Doublets net,

constitutes a complex body of linguistic knowledge concerning English word

structure that has computable multiscale features. Distributed morphological,

phonological and orthographic constraints and the language’s local redundancy are

seen at the node level. Phonological communities are seen at the network level.

And a balancing act between the language’s global efficiency and redundancy is

seen at the system level. We develop a new measure of intrinsic node-to-node

distance and a computational algorithm, called community geometry, which reveal

the implicit multiscale structure within binary networks. Because the Doublets net is

a modular complex cognitive system, the community geometry and computable

multi-scale structural information may provide a foundation for understanding

computational learning in many systems whose network structure has yet to be fully

analyzed.

Introduction

From an evolutionary perspective, language may be the most interesting

evolutionary trait of the human species and of human cultures [1]. Aided by

advances in informational technology, recent research efforts have greatly

expanded the reach of the scientific study of language, as well as our overall

understanding of languages, cultures, and the human psyche as complex,
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structured systems. Just as in such ‘‘hard’’ sciences as mathematics, statistics, and

physics, access to big data with sophisticated computational tools has allowed

social scientists in disciplines such as linguistics, anthropology, and psychology to

both answer old questions and open new doors of inquiry that were not even

imaginable two decades ago.

One of the things about language that makes it amenable to computational

analysis is that its components are hierarchically organized, with smaller units

being combined into more complex units whose organization reflects the

application of rules at several different levels [1]. The most basic levels in the

grammar of a language are phonology, which is concerned with how words and

their component pieces may be composed from units of sound (or phonemes),

morphology, which has to do with how words are built out of the more

elementary units known as morphemes (or the roots, prefixes, and suffixes

contained within words), and syntax, which has to do with how sentences are

built out of words. The rules and constraints governing these levels of grammar

have embedded in them multiple layers of informational content embodying vast

amounts of semantic, communicative, cultural, logical, and computational

knowledge.

For the quantificational analysis of language and culture, the recent book

digitization project at Google Inc. constitutes a monumental step forward. This

project provides an enormous collection of written language texts that is publicly

accessible via the Google Books Ngram Viewer (https://books.google.com/

ngrams/info), which provides analyses of word and phrase frequency over time. A

1-gram is a string of characters uninterrupted by a space (roughly, a word) taken

from over 15 million books. An n-gram (roughly, a phrase or sentence) is a

sequence of 1-grams of size n, with n being unbounded. As such, Google Books is

‘‘big data’’ par excellence that provides a solid foundation for the new field of

culturomics, or the study of human behavioral and cultural trends based on

digitized texts, and gives us numerous ways of examining human evolution as it is

encoded in the stories and legends of numerous languages and their

corresponding cultures. Linguists, anthropologists, and psychologists are looking

increasingly to statistics and computational linguistics for answers to vexing

questions of longstanding. And, with the assistance of sophisticated mathematical

models, high-throughput data collections such as Google Books are certain to

enable them to approach satisfying answers to many such questions. Indeed, the

Ngram Viewer has already made it possible for researchers to enhance their

analyses of different cultures and languages with a variety of quantificational

techniques. A recent analysis of the Google Books database [2] yielded revealing

case studies of individual words that provide new avenues for pursuing issues in

cultural anthropology, as fluctuations in the meanings and frequencies of words

are essentially waypoints in the map of a culture. This influential work was quickly

followed by several very interesting works that used the same database with

different focuses, including an analysis of the aggregate properties of word-birth

and word-death dynamics based on a yearly word-count time series on a

logarithmic scale [3], a macroscopic analysis of the decreasing need for new words
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based on the same word-count data format [4], and an analysis of how the

popularity of the most common English words and phrases evolves [5].

These quantitative analyses are all primarily concerned with the evolution of

word frequency along the temporal axis. This paper adds a new dimension, as it

focuses on one global structural pattern of English morphology and phonology

seen through the lens of a relative microcosm of data taken from the fourth

edition of the American Heritage Dictionary of the English Language, and

focusing only on the spellings of words, as listed in this database, as they relate to a

word game. Although this corpus of English word spellings is but a slice of the

language, it is also clearly a complex dynamic system that reflects selection forces

that have been operative in the evolution of the language dating to circa 500 CE,

and even before that, given that they are partially conditioned by systematic

features of the Germanic and Indo-European ancestors of English and universal

constraints on the structure of human languages. Thus, even though the corpus is

a cross-sectional snapshot of English words, the structural rules extracted via the

data-driven computations proposed here arguably reflect and reveal inherent

patterns in the selection forces that have brought one part of the language to

where it currently is as a system, as well as where it will go in the future.

The computational technique employed here is network-based. Since the key

ingredient in a recipe for understanding networks is the inter-relational

connectivity among all its nodes, a computational analysis of the structural

relationships between the spellings of English words in the corpus examined

allows key aspects of the morphological and phonological systems that condition

them to become visible. Naturally, using a different corpus and a different

measure of relational connectivity to construct a network for the language is

bound to yield a somewhat different global view. For instance, Perc [6] studies the

evolution of meaning relationships between common English word and phases

using the Ngram Viewer and shows that the Matthew effect yields a global view

that is very different from what is discussed here. Moreover, culturomics rooted in

network-based computational linguistics will surely offer perspectives on the

evolution of human cultures that are likely to be quite different from those based

primarily on word frequency (see [7]). Nevertheless, it is to be hoped that the

collective coupling of global views from cultural, semantic, syntactic, morpho-

logical, and phonological perspectives will help us to more fully understand the

structure of the entire network of English language and culture from the

computational standpoint.

Results and Discussion

Charles Lutwidge Dodgson, better known by the pseudonym Lewis Carroll and his

1865 book Alice’s Adventures in Wonderland, created an English word game on

Christmas Day in 1877 [8]. This game, which can currently be found on several

websites under different names, including Doublets, Word Ladder and Word-

Links, is played by first choosing two words, and then going in steps from one to
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the other by changing only one letter and creating a legitimate English word at

each step. For instance, for the word pair ‘‘LOVE’’ and ‘‘HATE’’, one simple

successful path has two intermediate steps: ‘‘HOVE’’ and ‘‘HAVE’’. Some pairs of

words take many more steps, such as ‘‘ROGUE’’ and ‘‘BEAST’’, for which Lewis

Carroll provides the following solution, with ten intermediate steps: ‘‘ROGUE’’

[VOGUE, VAGUE, VALUE, VALVE, HALVE, HELVE, HEAVE, LEAVE, LEASE,

LEAST] ‘‘BEAST’’. There also exist extremely difficult pairs, such as ‘‘INCA’’ and

‘‘ADIT’’ (a kind of entrance to an underground mine), which needs at least 19

steps, as well as word pairs for which there are no solutions.

The way to systematically solve Doublets word puzzles is to use network

analysis. To illustrate, we took all the 4-letter English words from a word list and

constructed a network that can be represented by a symmetric binary adjacency

matrix. Each entry is equal to ‘‘1’’ if the pair of words is connected, otherwise to

‘‘0’’. By wandering through edges from node to node in such a network, via a

series of basic matrix operations, we can provide solutions for all potential word

pairs in the game and can determine the degree of difficulty for each solution.

Specifically, for any pair of nodes it is possible to specify the length of the shortest

path or paths and this path length indicates the difficulty of this pair. Roy-Floyd-

Warshall’s algorithm [9], [10] can then be used to generate a matrix of such path

lengths for all possible node pairs, such that the degree of difficulty can be easily

identified prior to playing the game.

This network is of interest not so much because it provides solutions to the

puzzles in this game, but because it displays certain distinctive features that have

not yet been well studied in network-related research on social, mathematical,

biological and physical systems. Three features of particular interest are:

1. No two nodes are identical.

2. Each edge is deterministic and functionally distinct.

3. Each node’s degree is far below its capacity.

The last two of these appear to be characteristic of linguistic knowledge more

generally, as they appear in semantic networks for modeling relationships between

word meanings [10]–[12] as well as word-form networks for modeling the

phonological and orthographic patterns in lexicons ([13]–[15]).

To better see these features and their implications, we can zoom in on the

network of all 4-letter words and look at the connectivity of one node, say

‘‘MARE’’, as shown in Fig. 1(a). There are 25 edges, in all, connecting to the node

‘‘MARE’’, for which reason we say that the degree of this node is 25. The 25

immediate connections from ‘‘MARE’’ are divided exactly into four small groups

that are each defined by one of the four letter slots in the word. That is, there are 8

out of 25 (526{1) possible choices of English letters that can substitute for ‘‘M’’

in the first slot of ‘‘?-A-R-E’’. Likewise, there are 3 for ‘‘M-?-R-E’’, 7 for ‘‘M-A-?-

E’’ and 7 for ‘‘M-A-R-?’’. This kind of limitation on letter combinations illustrates

the third distinctive feature of the system, which is especially important. The word

‘‘MARE’’ in fact has the largest degree among all 4-letter words. Yet, it only

reaches one fifth of its capacity of 100 (525:4). Hence, this network is unlikely to

be equipped with the so-called scale-free degree distribution, which would
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prescribe a power law of k{c for its heavy tail indexed by degree k and a positive

constant c (see [16], [17]). On the other hand, 75 out of the 100 possible single

letter changes are impermissible due to linguistic constraints that increase

redundancy or efficiency [18], [15]. For instance, ‘‘M-L-R-E’’ violates a letter-

combinatoric (orthographic) constraint specific to English that reflects a set of

sound-combinatoric (phonological) constraints that is only partially specific to

English. The bilabial nasal consonant phoneme, for which the International

Fig. 1. Local to global views of the 4-letter word network. Typical patterns of network connectivity from the
view of a node to its immediate neighbors (a), and the view to its two step neighbors (b), and the overall view
of the whole network (c).

doi:10.1371/journal.pone.0114177.g001
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Phonetic Alphabet symbol is/m/and which is usually indicated by the letter ‘‘M’’

in the English spelling system, can only be followed, when word-initial, by a vowel

phoneme. There is, in effect, a systematic phonological and orthographic

conspiracy against not only ‘‘M-L-R-E’’, but also ‘‘M-T-R-E’’, ‘‘M-S-R-E’’, ‘‘M-N-

R-E’’, and so forth. The main components of this conspiracy are: an English-

specific constraint with the effect of forcing the nasal phoneme/m/to be a

consonantal part of the onset of a syllable when it is word-initial; universal

constraints on consonant-vowel (C-V) structure that disallow most syllable onsets

of the form C-C-C-, including/m-C-r-/[19], [20]; and an English-specific

orthographic constraint limiting the set of single-character representations of

vowel phonemes to the letters ‘‘A’’, ‘‘E’’, ‘‘I’’, ‘‘O’’, ‘‘U’’ and ‘‘Y’’, even though the

language actually has upwards of thirteen vowel phonemes in all, with the precise

number depending on the dialect and exactly how the count is made.

Another kind of systematic constraining force on the degree of nodes in the

network can be seen mostly in larger words with more than one syllable and more

than one morpheme. Consider, for example, the 6-letter word ‘‘ACTION’’, which

consists of two syllables and two morphemes: the root ‘‘ACT’’ and the suffix ‘‘-

ION’’. In this case, the spelling is not a very good representation of the sound

structure, since there is no/t/sound in the word and the letter ‘‘I’’ does not

represent a vowel sound. For historical reasons, having to do with its Latinate

origin, ‘‘ION’’ just happens to be the spelling of a noun-forming suffix that

attaches to the verb ‘‘ACT’’ and many other verbs, and typically changes the

pronunciation of the root-ending consonant. Most importantly, because of the

particular morphological structure of this word, all three of the letters following

‘‘T’’, if ‘‘ACT’’ itself is not changed, must represent a legitimate morpheme (or

sequence of morphemes) that can occur as suffixes on the verb ‘‘ACT’’. Thus,

given ‘‘A-C-T-?-?-?’’, the only possible words with the last three slots filled are

‘‘ACTION’’, ‘‘ACTING’’, ‘‘ACTORS’’, ‘‘ACTANT’’, ‘‘ACTIVE’’ and ‘‘ACTUAL’’.

Since none of these words has an ‘‘N’’ in the last slot, there is no possible

substitution for the ‘‘O’’ in ‘‘A-C-T-I-O-N’’, even though there is no phonological

or orthographic constraint against ‘‘ACTIAN’’ or ‘‘ACTIEN’’, for example. Limits

on the number and kind of prefixes and suffixes in the language, on how they are

conventionally spelled [21] and on their combinatorial power play a major role,

alongside phonological constraints, in structuring the writing system and are

responsible for a lot of the degree weakness of nodes in the Doublets net.

While ‘‘M-T-R-E’’ and ‘‘M-N-R-E’’ violate phonological constraints, given

English spelling conventions, and ‘‘A-C-T-I-L-Y’’, for example, violates a

morphological constraint preventing the suffix combination spelled ‘‘ILY’’, as in

‘‘HANDILY’’, from attaching to verbs, there are also many apparently accidental

gaps in the English word inventory. ‘‘MURE’’, for example could be a word,

pronounced/mjur/, with the diphthong/ju/in the vowel slot, by analogy with

‘‘MUSE’’ and ‘‘PURE’’. However, it simply has not been conventionalized as the

spelling of a word, although the word ‘‘MUIR’’, with the same pronunciation, has.

Similarly, ‘‘MYRE’’, pronounced/majr/, with another diphthong in the vowel slot,

could be a word, by analogy with ‘‘LYRE’’/lajr/, but it is not, although ‘‘MIRE’’,
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with the same pronunciation is. Since the abundance of available word spellings

greatly exceeds both the number of distinct pronunciations of actual words in the

language and the need for more words, many potential spellings of words

naturally go unused.

It appears that linguistic constraints of the kind noted above, which have the

effect of balancing efficiency and redundancy, are parts of a generic selection force

that has been shaping the English language for centuries. This selection force helps

us to comprehend the distinctions among the 25 edges linking to the node

‘‘MARE’’ and the reduction of 75 in its degree capacity. It also fundamentally

differentiates the network analysis considered here from most studies of complex

systems in the recent network literature.

When focusing on any word connecting to ‘‘MARE’’, the selection force

mounts to work out its local connectivity in a heterogeneous and complex

fashion. The two-step connectivity of the node ‘‘MARE’’ offers a glimpse into

such heterogeneity and complexity, as shown in Fig. 1(b). One area is much more

densely connected than the others. This area is formed by merging the two

subnetworks developed based on the 8 nodes resulting from changes to the first

consonant letter and the 7 nodes resulting from changes to the second consonant

letter. This contrasts with the much less dense subnetwork based on the 3 vowel

changes. Taking into account all 4-letter words, we have the network shown in

Fig. 1(c). This network has a rather uncommon characteristic. There is a giant

connected clique with many attached dendrites and a small portion of nodes that

are either isolated or have few connections. Such a giant clique is also found in

phonological networks for English words [22]. Here a connected clique means

that any two of its nodes have at least one path leading from one to the other via

existing edges. It is noted that, by simply choosing two ending nodes from two

separate dendrites attaching to this giant clique, as with ‘‘ADIT’’ and ‘‘INCA’’,

mentioned above, it is possible for a pair of 4-letter words to yield only rather long

paths. This kind of pair would surely lead to much head scratching and frustration

for Doublets players. In any case, the interesting question that arises is how a

dendrite comes to exist. We propose a selection-force answer to this question

below.

The density of links within communities in contrast to the sparseness of

between-community links, coupled with the the complicating presence of

dendrites, yields a kind of heterogeneity that seems to obscure the heuristic

validity of the notion of community that has been in use for decades in social

network research. In sharp contrast to all community detection techniques in the

literature up to now, here we take a general computational approach to

developing an intrinsic network-driven node-to-node ‘‘distance’’ measure that

might be used for any binary network under study. Based on such a distance

concept, we further develop a computational algorithm, called community

geometry, to bring out the multiscale structure that is otherwise implicitly

embedded within the binary network. This community geometry allows us to

answer the question of whether community A is closer to community B than it is

to community C. It also resolves the problem of overlapping community

Lewis Carroll’s Doublets Net
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membership to a great degree. While we focus here on questions of word structure

and their relationships to computed communities, we anticipate that this intrinsic

node-to-node distance concept and the community geometry developments could

facilitate a better understanding of other complex systems, for which more than a

game puzzle is at issue.

Going further, this community geometry implies that the question of how

many communities are contained in a binary network is actually ill-posed, because

a multiscale community structure is one that has a different community

configuration when seen from different focal scales in the network, in much the

same way that the structure seen in an organism varies with the resolving power of

a microscope. Different focal scales show different structural information.

However this simple fact seems not to have been considered properly in the

network literature. Even in the recent discussion of the importance of multiscale

structure [23], only multiple known and explicit physical scales are recognized.

Detailed comparisons of our community geometry with results derived from

modularity, a popular community detection methodology [24]-[26], would take

us too far afield here and is the focus of a separate report in preparation. Briefly,

however, although modularity is capable of distinguishing densely connected

subnetworks from less densely connected areas by iteratively optimizing an ad hoc

target function, in our opinion, it does not and cannot bring out so-called

authentic community structure [27], [28] with geometric perspective. We also

note that a community construct found via a context-free similarity measure

defined between links (see [29], [30]) is not suitable for a setting like the Doublets

net, in which nodes and functions of links are all diverse and distinct.

When focusing on the whole system, the Doublets net exhibits a spectacular

evolving structure overall. Constructed from a database of nearly 60,000 English

words, it is a series of networks derived from words with letter length ranging

from 3 to 22. How the selection force works in this system can be seen by

contrasting word pairs that differ greatly by number of syllables but only

minimally by number of letters. For example, the one-syllable word pair ‘‘DIVE’’

and ‘‘WIPE’’ is linked via a 2-step path: ‘‘DIRE’’, ‘‘WIRE’’. The two-syllable pair

‘‘DIVER’’ and ‘‘WIPER’’, on the other hand, is connected by the following 6-step

path: [RIVER, RAVER, CAVER, CAPER, PAPER, PIPER]. This example illustrates

an overall pattern whereby path length tends to correlate with the number of

linguistic units contained in the word pairs, including the number of syllables.

From an information-theory perspective, this pattern is the result of two mutually

counteracting forces in the evolution of vocabulary: efficiency and redundancy.

Attaching additional syllables to existing words is clearly a way to increase the

vocabulary capacity of a language. At the same time, however, it introduces

heavier selection forces, especially due to redundancy. We employ this

evolutionary perspective to argue that the Doublets net is a system in which a

nearly single giant clique evolves into several less dense cliques, then transforms

into a complete scattering of disconnected single words, and ends abruptly with

the complete absence of words that are too long.

Lewis Carroll’s Doublets Net
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In the Conclusion section, we consider some implications of recognizing the

Doublets net as a modular complex system. Since linguistic knowledge of English

word structure is contained in the Doublets net in a distributed fashion and this

knowledge can only be retrieved by computing from various resolutions, our

multiscale computing is a model of computational learning in a complex system.

We anticipate that this kind of computational learning model will provide a

foundation for exploring many real complex systems whose precise content and

structure are not fully known and the computational techniques developed here

may therefore be useful for exploring many other aspects of knowledge.

Analysis

In this section we use classic network analysis to explain the three distinctive

features of the Doublets net and illustrate their significance with the giant clique

of the 4-letter word network shown in Fig. 1(c). Classic network components,

such as path length, clustering coefficient, betweenness and degree distribution,

are all valid and useful in the Doublets net. But their usefulness is especially salient

with respect to its three distinctive features. We also comment, in passing, on why

this network is characteristically different from a small-world network and a

network with scale-free degree distribution.

Classic and adapted network analysis

The average path length of the 4-letter word giant clique is calculated as around 5.

So, in general, this game is not particularly difficult with a 4-letter word setting.

But, as shown in Fig. 2(a), Doublets can be extremely difficult for some 4-letter

words. The most difficult ones are those pairs involving ending nodes of

dendrites, such as the aforementioned ‘‘ADIT’’ and ‘‘INCA’’ pair. Here we

attempt to answer the question of how a dendrite is formed, in order to shed light

on some special characteristics of the Doublets net.

A dendrite consists of a series of low degree nodes. The ending node has degree

one, while intermediate nodes have degree two. As shown in the 2 o 26

contingency table in Table 1, 4-letter words starting with a vowel, which we call

V-words, are more likely to have a small degree (between 0 and 3) than a word

starting with a consonant, which we call a C-word. And, a 4-letter V-word is more

likely to have two syllables than a C-word. Thus, the selection force seems to exert

heavier pressure on V-words than on C-words. Under this pressure, a V-word is

more likely to link to low degree C- or V-words with similar sound combinations,

and then the same pattern seems to repeat. Therefore, we postulate that the chain

effect of having a heavier selection force on V-words and low degree C-words is

the primary driving mechanism for dendrite formation.

The presence of many dendrites then makes the Doublets net unlike a small-

world network. Also, as shown in Fig. 1(a), all the nearest neighbors of any node

would be separated into four distinct and unconnected ‘‘clusters’’, which is not a
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small-world characteristic, since it makes the clustering coefficient rather

heterogeneous. Further we see that the degree distribution in Fig. 2(b) has a rather

short tail. This phenomenon is primarily due to the third distinctive feature.

Consider next the possibility of betweenness being centered around an edge.

Betweenness of one edge is defined as the proportion of shortest paths among the

whole collection containing this particular edge. The giant clique of 4-letter words

has much more than 2 million (22002=2) shortest paths, while only having around

9000 edges. A high betweenness edge acts like a bottleneck tunneling from one

densely connected subnetwork on one side to another densely connected

subnetwork on the other side. What kind of edge is more likely to have high

betweenness? Important clues to this question are revealed in the 3 o 3

contingency table, shown in Table 2.

Fig. 2. Path length and degree distributions. Histogram of path length of the 4-letter giant clique given in Fig. 1 (c) (a) and its histogram of degree (b).

doi:10.1371/journal.pone.0114177.g002

Table 1. Degree vs. word type for 4-letter words.

Degree

0 1 2 3 4 5 6 7 8 9 10 11 12

C-word 41 70 112 111 151 131 147 129 153 119 126 141 147

V-word 52 49 63 26 33 13 7 13 6 3 1 4 0

13 14 15 16 17 18 19 20 21 22 23 24 25

C-word 104 93 71 62 36 32 20 10 6 4 5 0 1

V-word 1 0 1 0 0 0 0 0 0 0 0 0 0

doi:10.1371/journal.pone.0114177.t001
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Let’s call one edge with two C-words on both ends a CC-edge, and use the same

convention to define VV- and VC-edges. In contrast, the edge being formed by

changing a consonant letter into another consonant letter is called a cc-edge,

yielding a similar definition for vv- and vc-edges. We distinguish the

subpopulation of edges within the top 5% (n~452) of high betweenness by using

9 functionally different edge categories in the contingency table. Accordingly, for

the baseline comparison shown in the parentheses, we randomly select an equal

number of edges and make the same classification. Table 2 clearly shows that the

vc-edges are most closely related to high betweenness, with the vv-edges ranked

second, followed by VC- and VV-edges.

The implication of these results, taken together, is that vowel letters have been

subject to a more significant and rather distinct selection force than consonant

letters have. Since each high betweenness edge renders a less dense connectivity

region, when a collection of such regions forms continuous belts, they naturally

divide the whole network into communities. It is also interesting to note that, due

to the heterogeneity in connectivity density, some communities mount to be

closer than others. This is the geometric foundation of community with multiscale

structure within a single network. A computation algorithm that actually

computes this community geometry is developed in the next subsection.

Community geometry

Even in recent network literature, a community residing in a network is still

intuitively perceived as a group of nodes that are more densely connected in

contrast to their ‘‘surrounding regions’’ where connectivity is relatively sparse.

Due to the lack of a quantitative measurement to ascertain the degree of density or

sparseness in connectivity, there exists no rigorous definition of community.

Nonetheless, a network has its given and deterministic structure. If a community

structure indeed exists and is embedded within a network under study, wouldn’t

this structure also be given and determined by the network as a whole? In this

section, we attempt to answer this question affirmatively.

We first develop a natural and explicit measure of ‘‘distance’’ among all nodes,

given a binary network. This distance measure not only facilitates the discovery of

communities, but also induces another, implicit ‘‘distance’’ concept that allows us

to determine whether community A is closer to community B than to community

Table 2. High betweenness and edge type.

vc-edge vv-edge cc-edge total

VC edge 19(9.170) 0(0) 0(0) 19(9.170)

VV edge 19(2.854) 8(2.247) 27(7.634) 54(12.735)

CC edge 186(47.116) 82(48.239) 111(342.374) 379(430.095)

TOTAL 224(59.140) 90(50.486) 138(342.374) 452(452)

Prevalence of functionally different edges in the top 5% in terms of high betweenness, compared to random baseline numbers (in parentheses).

doi:10.1371/journal.pone.0114177.t002
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C. Thus a final computational result for a binary network is a community

geometry. It then becomes clear that this community geometry reflects and

mirrors many ad hoc and artificial facets of results from popular community

detection methodologies, such as modularity. Furthermore, the community

geometry also brings out the multiscale structural information in a network. To

our knowledge, this is the first such attempt of its kind in network research. Our

methodological development is illustrated here with a simple network, as shown

in Fig. 3(a), which is the second largest clique of 8-letter words in our Doublets

net. All of its word nodes are numbered and given in Table 3.

Betweenness-based node-to-node distance

A node-to-node distance concept is developed in three steps. First, consider the

highest betweenness edge on the network in Fig. 3(a), which is found at the edge

linking node 17 as ‘‘gangling (17)’’, and node 19 as ‘‘gargling (19)’’. It is obvious

that there is a community on both sides of this edge, since no connectivity could

be found within the surrounding region separating the two groups of nodes,

except this ‘‘bridge’’ edge. We also empirically see other high betweenness edges,

such as ‘‘jingling (31)’’ to ‘‘jiggling (30)’’ and ‘‘tingling (45)’’ to ‘‘tinkling (46)’’.

Connected to these two edges we also observe three smaller communities that

make up one of the two communities separated by the highest betweenness edge.

Intuitively these three communities should be closer to each other than they are to

the community on the other side with the node ‘‘gargling’’. A high betweenness

edge reveals community formation information and, at the same time, different

values of betweenness also give information about degree of closeness as well. The

idea of using betweenness for community detection was first employed by

Newman [27]. Later this idea was abandoned, presumably due to an unsettled

issue concerning number, in favor of the idea of modularity and an eigenvector of

0-1 adjacency matrix approach [25]. The question of closeness between

communities has never been pursued.

Second, from the illustrating network we see that the two connected nodes

‘‘gangling’’ and ‘‘gargling’’ must have a large distance in order to be separated and

belong to two different communities. This distance should be larger than that of

the pair ‘‘jingling’’ and ‘‘jiggling’’ and the pair ‘‘tingling’’ and ‘‘tinkling’’, because

the betweenness of the latter two is smaller. This leads us to conclude that distance

must be an increasing function of betweenness. Third, any non-directly connected

pair of nodes would render at least one shortest path going from one to the other.

Consider the pair ‘‘dabbling (11)’’ and ‘‘mingling (35)’’. Apparently, their shortest

path indeed includes the ‘‘bridge’’ edge of ‘‘gangling’’ and ‘‘gargling’’. Hence the

distance between these two nodes must be larger than the distance between the

nodes of ‘‘gangling’’ and ‘‘gargling’’, since they are further apart. On the other

hand, consider the different pair ‘‘dabbling’’ and ‘‘wobbling (52)’’. These two

nodes are likely in the same community and their shortest path does not involve

the bridge edge. Hence, their distance should in turn be much smaller that that of

‘‘gangling’’ and ‘‘gargling’’.

Lewis Carroll’s Doublets Net
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Fig. 3. A network and its betweenness and node-to-node distance. The community geometry of the second largest clique in the 8-letter network (a) is
computed from its histograms of edge betweenness (b) and node-to-node distances (c).

doi:10.1371/journal.pone.0114177.g003
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By synthesizing the three aspects discussed above, we formally propose a

measure of node-to-node distance as follows. Let Bij denote the betweenness of a

directly connected pair of nodes Ni and Nj. Consider two target nodes, NA and NB,

with path length n and one of their shortest paths identified as N0,N1,N2,:,Nn with

N0~NA and Nn~NB. We define the distance between NA and NB in Algorthm 1

in Table 4, where SP(NA,NB) denotes the collection of shortest paths between NA

and NB, and the kernel function H(:) would be empirically constructed in the

following way.

Conceptually this kernel function H(:) has to make sure that small, but positive

Bi,j is mapped into a nearly zero value, while a relatively large betweenness will be

mapped to a large value. In order to express this intuition that there is

compressing of betweenness values on one side, but stretching on the other side,

we collect all available betweenness values of all directly connected pairs and

construct a histogram, as shown in Fig. 3(b). We fit an exponentially decreasing

function to capture the tail behavior on the right and a nearly vertical asymptote

on the left, as shown by the solid line in Fig. 3(b). The reciprocal of this fitted

exponential tail function is used as the kernel function H(:). For this illustrative

example, the computed kernel function is H(b)~0:0097e0:018b. The distance

d(NA,NB) defined through this simple data driven kernel function turns out to

work very well for the purpose of constructing community geometry.

Table 3. Words in the second largest component in the 8-letter network.

1 2 3 4 5 6 7 8

babbling boggling bubbling bumbling bundling bungling burbling burgling

10 11 12 13 14 15 16

cackling cobbling dabbling dangling dumpling fumbling gabbling gambling

18 19 20 21 22 23 24

gangling garbling Gargling giggling gobbling goggling gurgling hackling

26 27 28 29 30 31 32

haggling heckling hobbling humbling jangling jiggling jingling juggling

34 35 36 37 38 39 40

mangling mantling mingling mumbling niggling pickling rambling rumbling

42 43 44 45 46 47 48

rumpling tackling tangling tickling tingling tinkling toggling tumbling

50 51 52

waggling warbling wiggling wobbling

doi:10.1371/journal.pone.0114177.t003

Table 4. Algorithm 1.

d(NA,NB)~ minSP(NA,NB)

Pn

i~1
H(Bi{1,i),

doi:10.1371/journal.pone.0114177.t004
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Algorithm for constructing community geometry

With d(NA,NB) defined for a binary network, its community geometry can be

constructed with a computational algorithm called data cloud geometry,

developed by Fushing and McAssey [31] for clustering purposes. In a data cloud

geometry, a set of temperature scale values (T’s) are identified when the geometry

undergoes phase transitions. Here the phase transition of concern is community

merging. Hence, a realized ‘‘distance’’ between two communities can be inferred

to be equal to the particular scale value T when the two communities indeed

merge together. Therefore, the ordering according to size of communities merging

as T is the essence of the multiscale structure pertaining to the community

geometry under study. A brief synopsis of the process for computing community

geometry, and its motivations, are given below.

Given a temperature T, a measurement of similarity between nodes Ni and Nj is

defined by Algorithm 2 in Table 5. From this definition, we see that nodes Ni and

Nj would have a larger similarity value, i.e., sij(T) comes closer to 1, to the extent

that d(Ni,Nj) is smaller than T. The higher the similarity value, the more likely the

two nodes are to be in the same community, under the scale value T. By contrast,

to the extent that d(Ni,Nj) is larger than T, sij(T) is smaller and the two nodes are

more likely to be in different communities. From this perspective, by varying the

scale T, we are able to explore the multiscale structural of the original binary

network. So, the next question is how to empirically find a set of potential and

relevant scale values for T.

An answer to this question is found in the information residing on the tail of

the histogram of pairwise node-to-node distances. As shown in Fig. 3(c), there is a

series of bumps located along the tail. And the bump locations are good

candidates for T scales. The underlying reason is that when two nodes are in the

same community, the distance between them is short. This aggregation gives rise

to a large bump near 0. Beyond this baseline bump, each bump residing on the tail

is an aggregation of node-to-node distances potentially belonging to two

communities. Thus, the formation of bumps is largely due to several communities

being heterogeneously located. This heterogeneity, in turn, suggests that

multiscale structure among communities should be considered. We confirm this

in the next subsection, where multiscale community structures for two

subnetworks of the Doublets net are examined.

The community structure pertaining to a scale T can be computed as follows.

With the computed similarity n|n matrix S(T)~½sij(T)�, the original binary

network G~fN ,Eg is transformed into a weighted complete graph

Gw(T)~fN ,Ew(T)g with N standing for all involving nodes, E for all observed

Table 5. Algorithm 2.

sij(T)~e{
d(Ni ,Nj )

T , 1ƒi,jƒn:

doi:10.1371/journal.pone.0114177.t005
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binary edges and in contrast Ew(T) for all n(n{1)=2 edges weighted by fsij(T)g’s.

Upon Gw(T) a Markovian transition probability matrix is derived as

L(T)~D{1(T)S(T) with diagonal degree matrix

D(T)~diagf. . . ,
Pn

j~1 sij(T), . . .g. L(T) is also called a normalized Lapacian in

the literature on clustering. The algorithmic computations for the data cloud

geometry (DCG) can be summarized briefly as follows.

DCG-1: First, a regulated random walk is built based on the Markovian

transition matrix L(T) to explore the community membership information

among all involved nodes. The key idea is that a L(T)-based random walk at any

given time point is more likely to stay within a community than to jump to

another community. While traveling within a community, the regulated random

walk is designed to remove nodes one-by-one, whenever a node has accumulated

visits beyond a fixed threshold. This removal eventually exhausts one community,

and then forces the random walk to jump to another community. This regulated

random walk continues removing nodes until nearly all have been removed. The

recording of such a stochastic removal process creates a profile of the recurrence

time of node removals. A high spike in this profile indicates that the regulated

random walk has just entered a new community. Hence, nodes that are removed

between two spikes are likely to be in the same community. This is a piece of

essential membership information for community detection under a fixed scale T.

DCG-2: By repeating the regulated random walk exploration numerous times,

we can collectively estimate the probability of two nodes being in the same

community. This matrix of empirical probability estimates is called an ensemble

connectivity matrix under scale T. We then compute the eigenvalue plot of this

ensemble connectivity matrix to extract information concerning the number of

communities involved. Also, we create a hierarchical clustering tree (with

complete modularity) based on this ensemble connectivity matrix, in order to

accurately characterize the community membership.

DCG-3: By increasing the scale values of T on the series of empirically selected

bump locations, we get a process of core-to-conglomerate merging. At the lowest

T value, there might be many core communities. As T is increased, we see that

core communities begin to merge into conglomerate communities. A core or

conglomerate community that is closest to another community at a scale T merges

first as T goes up to the next larger value. The recording of such merging processes

yields a community structure hierarchy. This hierarchy of multiscale community

structures is called a community geometry.

The next subsection turns to an illustration of how a community geometry is

constructed, with real data analysis, for two networks.

Computed community geometry

We first compute the community geometry of the illustrative example network,

shown in Fig. 1(a). To do this, we compute the betweenness for all nodes and the

shortest path and node-to-node distance for all pairs. Also we choose a set of
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potential scale values for T as 0:2,1,3,10 based on the tail behavior shown in

Fig. 3(c). Then we apply the data cloud geometry algorithm.

At T~0:2, we find five core communities as shown in Fig. 4(a). As expected

the five communities result from cutting the high betweenness edges, including

Fig. 4. The community geometry of the second largest clique in the 8-letter network. Four T scale values are used to bring out the community
geometry of the second largest clique in the 8-letter network. The merging process starts from 5 core communities, and then 4, 3 and 2 on the four panels.

doi:10.1371/journal.pone.0114177.g004
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the three mentioned earlier. At T~1, two core communities are merged into a

conglomerate one. The resulting four communities are shown in Fig. 4(b). This

merging indicates that these two core communities are the closest among the five

core communities at scale T~0:2. Hence the distance between the two core

communities could be loosely said to be equal to T~1. As we raise the scale value

of T, the communities continue merging and finally, at T~10, the edge of the

node pair ‘‘jingling’’ and ‘‘jiggling’’ is recovered to form a conglomerate

community consisting of three core communities.

The structure of the final two conglomerate communities is a consequence of

the cut on the edge of the node pair ‘‘gangling’’ and ‘‘gargling’’, shown in

Fig. 4(d). It is important to note that these two communities reveal a

phonological pattern: all but one of the members of the community that includes

the node ‘‘gangling’’ have a consonant letter immediately following the vowel that

represents a velar phoneme, i.e., a sound that is produced by raising the tongue

body to the back part of the roof of the mouth (the velum), as in the case of

‘‘giggling’’/giglı /, where the double ‘‘gg’’ represents a single velar sound, or as in

the case of ‘‘gangling’’/gæ glı /, where the letter ‘‘n’’ represents the velar nasal

consonant sound/ /, which is forced to be velar by the following velar/g/sound,

due to a quasi-universal phonological process known as nasal assimilation. By

contrast, all but one of the members of the other community have a consonant

letter representing something other than a velar sound immediately following the

first vowel. With the one exception aside, they either have the letter ‘‘r’’,

representing an approximant sound produced with the tongue raised forward of

the velum; the letter ‘‘m’’ followed by ‘‘b’’ or ‘‘p’’, representing a cluster of bilabial

sounds, i.e., sounds with the two lips touching; or a pair of ‘‘b’’ letters

representing a single bilabial consonant sound, as with ‘‘bubbling’’.

These patterns confirm that the community geometry indeed brings out

relatedness in terms of phonological structure. Phonological constraints limit the

clustering of consonant sounds, following principles that maximize harmony

between neighbors, and this is reflected in spelling regularities, albeit in less than

completely transparent ways, given that ‘‘n’’ can represent either a velar or an

alveolar sound. But, it is precisely because of this idiosyncrasy of English spelling

that there are some exceptional nodes in the communities. On phonological

grounds, the node ‘‘mantling’’/mæntlı /‘‘belongs’’ in the non-velar community,

but isn’t there, and ‘‘bungling’’/bL glı /‘‘belongs’’ in the velar community, but

isn’t there. This is due to the ambivalent nature of the letter ‘‘n’’, which

undermines a purely phonological definition for these particular communities

and shows why knowledge of spelling conventions and their complex relationship

to pronunciations is embodied alongside phonological knowledge in the Doublets

net.

Another network example is the largest component in the eight-letter word

subnetwork of the Doublets net. Here we only show its community geometry at

two scales as T[f1,50g in Fig. 5. The T~1 serves as the lowest temperature which

yields 8 identified communities, in Fig. 5(a). But only 3 or 4 communities seem

solid in connectivity structure, while the remaining ones are mingling with each
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others. This phenomenon is largely due to the community membership being

extracted hierarchical clustering tree with ‘‘complete’’ modular for distance. As

T~50, several core communities merge together and yield 3 communities in

Fig. 5(b). The mingling effect, seen in Fig. 5(a), is much reduced in this

community structure. We believe that the difficulty in computing the community

geometry encountered here is primarily caused by the presence of many long

dendrites.

Selection force in the Doublets net

Finally, we zoom out from individual subnetworks to look at the Doublets net as

one whole complex system. Total word counts from 3-letter to 22-letter words are

given in Fig. 6(a), while the proportion of the size of the largest clique to the total

word count is shown in Fig. 6(b). Among the 20 different letter lengths, we only

present six subnetworks to give an overview of the network dynamics of the

Doublets net in Fig. 7 (including all singletons). Based on these two figures in

Fig. 6, we see that the word count increases with letter length in the 3-letter to 10-

letter range. But the word count takes a sharp dive downward after 11-letter

words. This up-and-down pattern clearly shows that the language’s efficiency goes

up as more syllables are used in word structure. But this increasing trend does not

last long, as the effect of redundancy appears to overtake the word constructing

force after 10-letter words. This is one of the global effects of the selection force on

the Doublets net from the perspective of word count.

Another global effect of the selection force is revealed by the ratio of the size of

the largest clique to its total word count, as shown in Fig. 6(b) and Fig. 7. The

effect drives down the proportion right from 3-letter words onward. It is

Fig. 5. The community geometry of the largest clique in the 8-letter network. The community geometry of
the largest clique in the 8-letter network is shown for only two T scale values. The merging process starts from
8 core communities on the left panel and then 3 communities on the right panel.

doi:10.1371/journal.pone.0114177.g005

Lewis Carroll’s Doublets Net

PLOS ONE | DOI:10.1371/journal.pone.0114177 December 17, 2014 19 / 25



interesting to note that the decreasing rate peaks with 6-and 7-letter words, which

is much earlier than the peak for word count. This pattern shows that, while the

efficiency of the English language is optimized through word lengthening, the

word-formation schema involving lengthening requires combining existing

syllables and morphemes. In sharp contrast, the schema of word formation with

3-and 4-letter words is concerned almost exclusively with the legitimate

concatenation of sounds within a single monosyllabic morpheme. Constraints on

morpheme and syllable sequencing make long words harder to form than short

words. That is why word connectivity is completely lost on very long words, each

of which tends to be a singleton in the Doublets net, as shown in Fig. 7. The vivid

network heterogeneity that is seen in the structural differences among the strata

that are indexed by the different letter lengths of words is reminiscent of the

markedly different networking structures that result from the structural sensitivity

of hypertext to different web page categories [32].

It should be noted that the maximum size of giant cliques is chosen as the focal

index here because the overall network corresponding to each stratum for a given

letter-length typically consists of numerous separated and disconnected sub-

graphs of widely varying sizes. A small index value means that the English words

in the corresponding stratum tend to be isolated, whereas a large index value

means that the majority of the words in the corresponding stratum are highly

connected. In the latter case, small spelling perturbations of numerous kinds are

sufficient to yield potential new words. In the former, much more complex

patterns of perturbation are typically required. Because of this, the maximum size

Fig. 6. Global information of the Doublets net. The trajectories of word count (a) and percentages of largest clique (b) with respect to letter length exhibit
the effects of selection forces on English words as reflected in the Doublets net.

doi:10.1371/journal.pone.0114177.g006
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of the giant cliques of each stratum-specific network is an informative measure of

the systemic network heterogeneity and the underlying selection forces.

It should also be pointed out that this kind of systemic network heterogeneity is

distinct from entropy-based network heterogeneity, which has primarily been

identified with a single, typically uni-directed, connected network, the definition

of which embodies the construct of Shannon’s entropy on a probability

Fig. 7. Overview of network dynamics of the Doublets net. Six out of the 20 evolving networks with respect
to letter length in the Doublets net are exhibited in six panels. From the nearly complete connectivity in the 3-
letter network to having a single large giant clique in 4- and 5-letter networks, to a relatively small clique in the
7-letter network, and then becoming complete scattering in 11- and 15-letter networks.

doi:10.1371/journal.pone.0114177.g007
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distribution derived from partitioning networks with respect to graph invariants

or vertex functionals (see [33]-[35] for a thorough review and [36] for a proposal

concerning a version of network heterogeneity for directed networks).

Conclusions

Throughout this study the term ‘‘selection force’’ is used as a cover term for

phonological, orthographic, and morphological sequencing constraints that

increase systemic redundancy for a body of linguistic knowledge about English

word structure that is partly manifested in the Doublets net constructed from

Lewis Carroll’s word game. For this reason the game itself constitutes a complex

system in its own right, with multiscale facets at local, intermediate, and global

levels that make the underlying selection force computable.

Moreover, the Doublets net is not unusual in terms of its structural and

compositional characteristics. In fact, it is similar to many real world complex

systems of scientific interest, because the node elements are all different and their

relations and edge connections are all distinct. But it distinguishes itself from

other complex systems in a crucial way. The knowledge embodied in the Doublets

net is a fully ‘‘known’’ system from the perspective of linguistics, whereas most

complex systems of interest, if not all, are nearly completely unknown. Thus, the

Doublets net is a modular complex system with a potentially invaluable feature,

because any computational learning methodology developed for exploring and

mining knowledge in an unknown system should first be tested to prove its value

and uses in a known modular system. Across a wide range of disciplines,

numerous networks have been created to model complex systems in approx-

imation and many claims have been made concerning the promise of network-

based solutions to real world problems in the near future. The scientific urgency

of such an enterprise is highlighted in a 2009 special section of the journal Science

(vol. 325, 405–432) that contains 9 articles devoted to connections between

complex systems and networks.

Though it is well understood that a complex system under study and its

proposed network model need to be shown to be authentically and realistically

connected in order to validate claims about the system arising from use of the

model, there still seems to exist a big gap between target complex systems and

their approximating network models. And, this gap appears not to deter some

scientists from expecting to extract useful information from their network models

for a wide spectrum of complex systems, ranging from economics to counter-

terrorism, the biological web of life, the techno-social system and gene

transcriptional regulatory circuits.

The problem is that most networks are constructed with mono-type nodes and

mono-function edges. This is emphasized in the literature because ‘‘agent based

models’’ built upon statistical mechanics of physics are one primary research

apparatus used in network analysis. However, the validity of approximating a

complex system with a binary network constructed with non-differentiable nodes
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and edges has not yet been confirmed in any real world case. Consequently,

network analysis, in general, is not yet well grounded. At best, any pattern gleaned

from such an analysis is typically at the global level and is indiscriminately applied

to all nodes. By leaving out the intermediate and local levels of information, the

extracted global information could be irrelevant for zoomed-in regions. At worst,

much computed information could be extremely misleading due to approxima-

tion errors that are not controlled for. The results of community detection

techniques based on modularity, as noted in section 1, unfortunately seem to

point in the direction of the worst-case scenario. For this reason, information

about network structure from a known modular system is of critical importance.

The Doublets net studied here is built upon differentiable nodes and multi-

functional edges, which yield both global and local complex system information.

Moreover, relevant information is distributed throughout the whole system.

Hence it is necessary to do computations by zooming in and out of the Doublets

net using various resolutions, in order to deduce the intrinsic multiscale structure

of the complex system. This computational learning via multiscale information, as

applied to the Doublets net, could be generally required in studies of other

complex systems.

When zooming in to a single node in the Doublets net, its local connectivity

reveals the relevant constraints on joining and sequencing sounds, syllables, and

morphemes in English words. When zooming to an individual subnetwork, its

computed geometry of word communities reveals multiscale phonological and

orthographic information. When zooming out to view the system as a whole, a

balancing act is seen in the constellation of networks indexed by letter length,

which evolves from a nearly single giant clique to several less dense cliques, and

then transforms into a complete scattering of disconnected single words, and

finally an abrupt absence of any words beyond a certain length.

In sum, a good network approximation to a complex system might be best

achieved by using differentiable nodes and multi-functional edges. A model of the

learning reflected in such systems might also be enriched by orienting

computations to multi-scale structural information. And, finally, it is of upmost

importance that any proposed computational learning methodology be tested on

a known modular system, like the Doublets net. The network and complex system

characteristics of the English word-puzzle game studied here may well have

seemed obvious and routine to its creator Lewis Carroll. But, the amazing

intricacy of its internal structure must be at most barely gleaned by the many

people that even today find themselves enchanted by this little wonderland.
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