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Artificial intelligence (AI) has been the subject of considerable
interest for many years for its potential to improve clinical care
—yet its actual impact on patient outcomes when deployed in
clinical settings remains largely unknown. In a recent systema-
tic review by Zhou et al.1, the authors surprisingly show that its
impact so far has been quite limited. They reviewed 65
randomized controlled trials (RCTs) evaluating AI-based clinical
interventions and found that there was no clinical benefit of
using AI prediction tools compared to the standard of care in
nearly 40% of studies. Among a subset of trials that the authors
identified as having a low risk of bias, the clinical benefit of
using deep learning (DL) predictive models over traditional
statistical (TS) risk calculators was only minimal, and there was
no benefit in using machine learning (ML) models over TS tools.
Somewhat counterintuitively, most of the AI tools in these trials
exhibited an excellent area under the receiver operating
characteristic (AUROC; a common performance metric for
predictive models) during development (median AUROC 0.81,
IQR 0.75–0.90) and validation (median AUROC 0.83, IQR
0.79–0.97): a humbling reminder that robust predictive utility
does not guarantee clinical impact at the bedside. As the
science of building accurate predictive models progresses, our
ability to translate these advancements into real-world clinical
utility remains comparatively limited. How can we bridge this
gap between AUROCs and clinical benefit?

BUILDING OUT THE IMPLEMENTATION SCIENCE OF AI
Limited user adoption—due to lack of clinician trust and model
interpretability among many other reasons—has long been
cited as a key barrier to clinical impact2,3. Encouraging
providers to thoughtfully incorporate a model’s prediction
into their decision and ultimate behavior regarding patient
care—particularly in scenarios where predictions by the model
and the human diverge—is a challenge with no clear solution
yet. However, significant hurdles remain even after clinician
buy-in. A successful AI tool is one that triggers a tailored
workflow: the tool’s prediction must be translated into the
most appropriate human intervention to generate clinical
value4. Recent examples of clinically-impactful predictive
models are ones that have been coupled with the optimal
real-world intervention for each possible model output5.
Unfortunately, little work exists on this issue: interventions
are often selected somewhat arbitrarily or left up to clinician
judgement4. We must develop methods for systematically
identifying the best possible intervention to pair with an
accurate prediction.

USING REAL-WORLD EVIDENCE TO EVALUATE AI
To better understand the impact of AI at the bedside, we must
embrace new ways of evaluating it. To date, there have been
few randomized trials on this topic, as highlighted by Zhou
et al. However, traditional time-consuming and costly RCTs are
not the only way to measure the impact of these tools. To
hasten the pace and lower the costs of answering this
question, we must also leverage rich sources of observational
data (e.g. administrative claims databases and electronic health
records [EHRs]) and causal inference methods to passively
monitor the impact of AI in clinical practice, as an adjunct to
clinical trials. The US Food and Drug Administration (FDA) has
begun using real-world data to inform regulatory decisions for
drugs and devices6; researchers studying AI should similarly
adopt this approach.

EXPLORING NEW APPLICATIONS OF AI
Zhou et al. reveal that the scope of applications of AI at the
bedside has been almost entirely limited to making individual
diagnostic and prognostic predictions; the primary outcomes
for trials evaluating AI have been limited to performance on
specific clinical tasks (e.g., adenoma detection rate on
endoscopy); and superiority in these trials has typically been
defined as exceeding human performance. To uncover addi-
tional opportunities for AI to create value for health systems,
researchers must be more flexible in identifying potential use
cases, selecting outcomes of interest, and defining clinical
benefit. Providing targeted outreach to vulnerable patients7,
enabling rapid comparative effectiveness studies at the bed-
side8, and automating burdensome administrative tasks9

should be further explored as applications for AI. Improving
population health metrics7, reducing administrative costs10,
and alleviating constraints on providers’ resources and time
should be examined as outcomes in future trials. Furthermore,
the narrow definition of a beneficial AI tool as one that
outcompetes the human should be expanded to include one
that effectively complements the human—either by matching
human performance on repetitive tasks, or by forming a
synergistic human-computer intervention that accomplishes
beyond what either could do alone11,12.
The findings by Zhou et al. highlight several important

opportunities to advance the field of clinical AI. Expanded
applications, broader definitions of clinical benefit, new evaluation
methods, and tailored interventions are just a few of many
possible considerations that may help bridge the gap between in
silico predictive performance and real-world utility.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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