

Contents lists available at ScienceDirect

eNeurologicalSci

journal homepage: www.elsevier.com/locate/ensci

Review article

A meta-analysis of post-exercise outcomes in people with amyotrophic lateral sclerosis

Cara Donohue^{a,b,*}, Giselle Carnaby^c, Mary Catherine Reilly^d, Ryan J. Colquhoun^e, David Lacomis^f, Kendrea L. (Focht) Garand^{a,d}

^a Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA

^b Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA

^c Department of Health Sciences, School of Health Professions, University of Texas Health Science Center, San Antonio, TX 77030, USA

^d Department of Speech Pathology and Audiology, College of Allied Health Professions, University of South Alabama, Mobile, AL 36688, USA

² Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, AL 36688, USA

^f Departments of Neurology and Pathology and the Live Like Lou Center for ALS Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA

ARTICLE INFO	A B S T R A C T
Keywords: Exercise Amyotrophic lateral sclerosis Motor neuron disease Rehabilitation Outcome measures	Objective: To systematically evaluate post-exercise outcomes related to function and quality of life in people with ALS. Methods: PRISMA guidelines were used for identifying and extracting articles. Levels of evidence and quality of articles were judged based on <i>The Oxford Centre for Evidence-based Medicine Levels of Evidence</i> and the <i>QualSyst</i> . Outcomes were analyzed with Comprehensive Meta-Analysis V2 software, random effects models, and Hedge's G. Effects were examined at 0–4 months, up to 6 months, and > 6 months. Pre-specified sensitivity analyses were performed for 1) controlled trials vs. all studies and 2) ALSFRS-R bulbar, respiratory, and motor subscales. Heterogeneity of pooled outcomes was computed with the I ² statistic. Results: 16 studies and seven functional outcomes met inclusion for the meta-analysis. Of the outcomes explored, the ALSFRS-R demonstrated a favorable summary effect size and had acceptable heterogeneity and dispersion. While FIM scores demonstrated a favorable summary effect size and/or could not be reported due to few studies reporting outcomes. Conclusions: This study provides inconclusive guidance regarding exercise regimens to maintain function and quality of life in people with ALS due to study limitations (e.g., small sample size, high attrition rate, hetero-geneity in methods and participants, etc.). Future research is warranted to determine optimal treatment regimens and dosage parameters in this patient population.

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a neuromuscular disease resulting in degeneration of upper and lower motor neurons leading to spastic and flaccid paralysis of the limb, trunk, respiratory, and bulbar musculature. Motor declines drastically impede patients' abilities to complete activities of daily living and impacts quality of life [1,2]. Disease progression in people with ALS is rapid, with an average life

E-mail address: cara.donohue@vumc.org (C. Donohue).

https://doi.org/10.1016/j.ensci.2023.100452

Received 15 November 2022; Received in revised form 6 February 2023; Accepted 14 February 2023 Available online 21 February 2023

2405-6502/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).

Abbreviations: 6MWT, (6 Minute Walk Test); 25FWT, (25 Feet Walk Test); ALS, (amyotrophic lateral sclerosis); ALSFRS-R, (ALS Functional Rating Scale-Revised); DIGEST, (Dynamic Imaging Grade of Swallowing Toxicity); EAT-10, (Eating Assessment Tool); EMST, (Expiratory muscle strength training); FAC, (Functional Ambulation Categories); FIM, (Functional Independence Measurement); FOIS, (Functional Oral Intake Scale); FVC, (forced vital capacity); FSS, (Fatigue Severity Scale); IMST, (Inspiratory muscle strength training); ITT, (intention-to-treat); KEMS, (knee extension muscle strength); MEP, (maximum expiratory pressure); MIP, (maximum inspiratory pressure); MND, (motor neuron disease); MVIC, (maximum voluntary isometric contraction); PAS, (Penetration Aspiration Scale); PEF, (peak expiratory flow); PRISMA-2009, (Preferred Reporting Items for Systematic Reviews and Meta-Analyses); RCTs, (randomized controlled trials); RPE, (rating of perceived exertion); SNIP, (sniff nasal inspiratory pressure).

^t Corresponding author at: Hearing and Speech Sciences, Vanderbilt University Medical Center, 1215 21st Ave S. Medical Center East South Tower, Room 9221, Nashville, TN 37232, USA.

expectancy of 2–5 years following diagnosis [3]. Life expectancy is frequently shorter for patients with bulbar onset (typically manifested by dysphagia [swallowing problem] and dysarthria [slurred speech]), comprising approximately one-third of cases [4–7]. The remaining two-thirds of cases will have initial symptom onset in the limbs. Although ALS is the most common motor neuron disease (MND), it is rare, with a prevalence of 5 cases per 100,000 people each year in the United States [8].

While there is no cure for ALS to date, recent studies have shown treatment may slow loss of function and improve quality of life, particularly when provided as part of an interdisciplinary approach to patient management [9]. There are currently four prescription drugs approved by the Food and Drug Administration for use with people with ALS, with two drugs (riluzole and edaravone) purposed to increase survival – albeit minimally [4]. Effective therapies for ALS are postulated to inhibit excessive motor neuron activity, decrease oxidative stress, and delay respiratory decline – the latter being the major cause of mortality [5,10–12]. Until a cure is found, clinical care continues to involve early interventions promoting improved symptom management [5].

In addition to pharmaceutical treatments, emerging studies have examined the impact of exercise in people with ALS. Exercise can result in a variety of neuromuscular benefits including cross-education (transference), increased motor unit activation and synchronization, as well as increased skeletal muscle fiber hypertrophy, protein synthesis, and capillary density, which may lead to more optimal functioning of the neuromuscular system [13,14]. While strenuous exercise has been avoided in people with ALS due to baseline fatigue, muscle atrophy and weakness from disuse and denervation, and concern for faster muscle degeneration [13,15–17], preliminary evidence demonstrates that moderate therapeutic exercise may be beneficial in symptom management and survival in people with ALS. While conducting exercise in people with ALS remains controversial in some settings, researchers have proposed a paradigm shift to a proactive management approach rather than a reactive one [18–20]. Therefore, we conducted a systematic review and meta-analysis that expanded upon previous reviews of the literature [20–24] to investigate the effects of all types of exercise (e.g., physical therapy, occupational therapy, speech therapy) on outcomes related to function and quality of life in people with ALS to determine whether exercise may be beneficial or detrimental.

2. Materials and methods

2.1. Protocol

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA-2020) [25] guidelines were followed for reporting. Systematic review methods were established prior to conducting the review by determining the search strategy, article inclusion criteria, quality assessment methods, and data extraction methods. No protocol deviations were made.

2.2. Search strategy

Studies were identified and extracted according to PRISMA guidelines [25]. A single author conducted a search in four electronic databases (CINAHL, Scopus, PubMed, and Cochrane Library) from time of database inception until December 2021. Search terminology included: *ALS* OR amyotrophic lateral sclerosis OR motor neuron disease OR Lou Gehrig's disease AND exercise OR remedial exercise OR exercise therapy OR strength OR resistance training OR range of motion. Additionally, a manual search was conducted that included full-text original research articles.

2.3. Eligibility criteria

Articles were included based on the following inclusionary criteria: 1) original full-text article; 2) exercise-based intervention study; 3) published in English; and 4) intervention subjects were patients with a diagnosis of ALS/MND. Duplicate results were removed prior to screening.

Fig. 1. Amyotrophic lateral sclerosis rating scale revised (PRISMA) flow diagram.

Summary of the level of evidence and the appraisal of quality of studies for each outcome organized by how many studies report the outcome.

Outcomes	Study	Sample size	Level of evidence	Adjusted KMET score	Quality
ALSFRS-R	Plowman et al. (2019) [49]	48	1b	28/28 (100%)	Strong
	Zucchi et al. (2019) [35]	65	1b	26/28 (92.9%)	Strong
	van Groenestijn (2019) [45]	57	1b	26/28 (92.9%)	Strong
	Lunetta et al. (2016) [29]	60	1b	25/28 (89.3%)	Strong
	Clawson et al. (2018) [30]	59	1b	24/28 (85.7%)	Strong
	Bello-Haas et al. (2007) [37]	27	1b	24/28 (85.7%)	Strong
	Pinto et al. (2012) [51]	26	1b	24/28 (85.7%)	Strong
	Drory et al. (2001) [28]	25	1b	22/28 (78.6%)	Good
	Braga et al. (2018a) [34]	48	2b	25/28 (89.3%)	Strong
	Sanjak et al. (2010) [42]	9	2b	20/28 (71.4%)	Good
	Pinto & de Carvalho (2013) [52]	34	2b	19/28 (67.9%)	Good
	Sivaramakrishnan & Madhavan (2019) [43]	9	2b	19/28 (67.9%)	Good
FVC	Plowman et al. (2019) [49]	48	1b	28/28 (100%)	Strong
	Zucchi et al. (2019) [35]	65	1b	26/28 (92.9%)	Strong
	van Groenestijn (2019) [45]	57	1b	26/28 (92.9%)	Strong
	Lunetta et al. (2016) [29]	60	1b	25/28 (89.3%)	Strong
	Bello-Haas et al. (2007) [37]	27	1b	24/28 (85.7%)	Strong
	Pinto et al. (2012) [51]	26	1b	24/28 (85.7%)	Strong
	Pinto et al. (1999) [41]	20	2b	20/28 (71.4%)	Good
FSS	Merico et al. (2018) [33]	38	1b	25/28 (89.3%)	Strong
	Bello-Haas et al. (2007) [37]	27	1b	24/28 (85.7%)	Strong
	Pinto et al. (2012) [51]	26	1b	24/28 (85.7%)	Strong
	Clawson et al. (2018) [30]	59	1b	24/28 (85.7%)	Strong
	Drory et al. (2001) [28]	25	1b	22/28 (78.6%)	Good
	Sanjak et al. (2010) [42]	9	2b	20/28 (71.4%)	Good
	Sivaramakrishnan & Madhavan (2019) [43]	9	2b	19/28 (67.9%)	Good
MEP	Plowman et al. (2019) [49]	48	1b	28/28 (100%)	Strong
	Pinto et al. (2012) [51]	26	1b	24/28 (85.7%)	Strong
	Plowman et al. (2016) [48]	25	2b	20/28 (71.4%)	Good
FIM	Merico et al. (2018) [33]	38	1b	25/28 (89.3%)	Strong
	Pinto et al. (2012) [51]	26	1b	24/28 (85.7%)	Strong
	Pinto et al. (1999) [41]	20	2b	20/28 (71.4%)	Good
6MWT	Merico et al. (2018) [33]	38	1b	25/28 (89.3%)	Strong
	Sanjak et al. (2010) [42]	9	2b	20/28 (71.4%)	Good
	Sivaramakrishnan & Madhavan (2019) [43]	9	2b	19/28 (67.9%)	Good
SF-36	van Groenestijn (2019) [45]	57	1b	26/28 (92.9%)	Strong
	Bello-Haas et al. (2007) [37]	27	1b	24/28 (85.7%)	Strong
	Drory et al. (2001) [28]	25	1b	22/28 (78.6%)	Good
Survival time; time to death	Zucchi et al. (2019) [35]	65	1b	26/28 (92.9%)	Strong
	van Groenestijn (2019) [45]	57	1b	26/28 (92.9%)	Strong
	Lunetta et al. (2016) [29]	60	1b	25/28 (89.3%)	Strong
	Pinto & de Carvalho (2013) [52]	34	2b	19/28 (67.9%)	Good
Voluntary Cough Spirometry	Plowman et al. (2019) [49]	48	1b	28/28 (100%)	Strong
	Plowman et al. (2016) [48]	25	2b	20/28 (71.4%)	Good
McGill Quality of Life Questionnaire	Zucchi et al. (2019) [35]	65	1b	26/28 (92.9%)	Strong
	Lunetta et al. (2016) [29]	60	1b	25/28 (89.3%)	Strong
Visual analog scale for musculoskeletal pain	van Groenestijn (2019) [45]	57	1b	26/28 (92.9%)	Strong
	Clawson et al. (2018) [30]	59	1b	24/28 (85.7%)	Strong
	Drory et al. (2001) [28]	25	1b	22/28 (78.6%)	Good
ALS Quality of Life Score	Zucchi et al. (2019) [35]	65	1b	26/28 (92.9%)	Strong
	Clawson et al. (2018) [30]	59	1b	24/28 (85.7%)	Strong
Manual muscle strength test	Drory et al. (2001) [28]	25	1b	22/28 (78.6%)	Good
	Sanjak et al. (2010) [42]	9	2b	20/28 (71.4%)	Strong
Cardiopulmonary measures	van Groenestijn (2019) [45]	57	1b	26/28 (92.9%)	Strong
	Merico et al. (2018) [33]	38	1b	25/28 (89.3%)	Strong
	Braga et al. (2018a) [34]	48	2b	25/28 (89.3%)	Strong
Beck's Depression Inventory	Zucchi et al. (2019) [35]	65	1b	26/28 (92.9%)	Strong
	Sivaramakrishnan & Madhavan (2019) [43]	9	2b	19/28 (67.9%)	Good
MVIC	Bello-Haas et al. (2007) [37]	27	1b	24/28 (85.7%)	Strong
	Sanjak et al. (2010) [42]	9	2b	20/28 (71.4%)	Good
Physiologic measures of swallowing and PAS	Plowman et al. (2019) [49]	48	1b	28/28 (100%)	Strong
	Plowman et al. (2016) [48]	25	2b	20/28 (71.4%)	Good

2.4. Study selection

Articles were independently screened by a single author based on title, abstract, and full text. As needed, a second author was consulted for consensus on article eligibility.

2.5. Quality assessment and data extraction

Two authors independently judged level of evidence, study quality, and extracted relevant data for each eligible article. Level of evidence was assigned based on *The Oxford Centre for Evidence-based Medicine Levels of Evidence* [26]. Study quality was evaluated using the *QualSyst* [27], which consists of 14 items. For each *QualSyst* item, a score of 2 was assigned if the criteria were completely met, 1 if the criteria were partially met, and 0 if the criteria were not met. The *QualSyst* includes several items that may be scored as N/A, however, to make the scoring consistent across studies, we elected to score these items as 0 instead of N/A. Scores were totaled and a cumulative score was calculated in the form of a percentage. Overall study quality was determined based on the following criteria which were established by the authors' judgment:

Summary of participant demographics.

				_		
Study	Sample	Sex (M/ F)	Mean age \pm SD (years)	Onset location (spinal/ bulbar)	Mean disease duration \pm SD (months)	Baseline ALSFRS-R
Bohannon (1983) [38]	ALS $(N = 1)$	0/1	56	1/0	22	Not reported
Pinto et al. (1999) [41]	ALS/MND (N = 20)	14/6	Treatment: 62 ± 14 Control: 64 ± 16	Not reported	0	Not reported
Drory et al. (2001) [28]	ALS $(N = 25)$	14/11	60	22/3	Treatment group: 20.7	27.5
Bello-Haas et al. (2007)	ALS $(N = 27)$	Not	Not reported	Not reported	Not reported	Not reported
Cheah et al. (2009) [50]	ALS/MND	12/7	Treatment: 54.2 ± 9.8	16/3	Treatment group: 29.8 ± 15.7	Treatment group: 38.2 ± 6.5
Sanjak et al. (2010) [42]	ALS (N = 9)	4/5	$62 \pm 14.1 (39-77)$	Not reported	Not reported	34 ± 5
Pinto et al. (2012) [51]	ALS $(N = 26)$	18/8	Group 1: 57.14 ± 9.3 Group 2: 56.8 ± 8.7	22/4	Group 1: 11.5 ± 5.3 Group 2: 12.6 ± 6.6	Group 1: 34.39 ± 3.64 Group 2: 33.5 + 3.8
Pinto & de Carvalho (2013) [52]	ALS (N $=$ 34)	20/14	Not reported	27/7	Treatment group: 36.99 ± 13.1 Control group: 24.06 ± 11	Treatment group: 34.3 ± 2.4 Control group: 33.8 ± 3.3
Tabor et al. (2016) [46]	ALS $(N = 1)$	1/0	71	1/0	21	32
Lunetta et al. (2016) [29]	ALS $(N = 60)$	38/22	Treatment: 61.1 ± 10.1 Control: 60.3 ± 9.9	42/18	Treatment group: 15.2 ± 7.2 Control group: 13.7 ± 6.1	Treatment group: 39.1 ± 4.7 Control group: 38.3 ± 5.1
Plowman et al. (2016) [48]	ALS (N = 25)	14/11	62.2 ± 10.5	15/10	14.5 ± 11.7	32 ± 8.5
Jensen et al. (2017) [40]	ALS (N $=$ 6)	5/1	62.2 ± 8.2	4/2	5 patients: <12 1 patient: 180	39.7 ± 2.4
Clawson et al. (2018) [30]	ALS (N = 59)	39/20	Stretching group: 57.68 ± 9.72 Resistance group: 63.65 ± 10.55 Endurance group: 57.82 ± 11.88	45/14	Stretching group: 11.08 ± 13.21 Resistance group: 7.25 ± 7.21 Endurance group: 7.30 ± 6.80	Stretching group: 39.67 ± 3.71 Resistance group: 39.17 ± 4.91 Endurance group: 39.55 ± 4.97
Kato et al. (2018a) [31]	ALS (N = 2)	2/0	Case 1: 60 Case 2: 52	1/1	Case 1: 10, 20 Case 2: 15, 20	Case 1: 42, 33 Case 2: 44, 34
Kato et al. (2018b) [39]	ALS (N = 10)	9/1	61.9 ± 11.7	5/5	30.6 ± 31.3	41 ± 4.6
Robison et al. (2018) [47]	ALS (N = 1)	1/0	58	0/1	2	46
Kitano et al. (2018) [32]	ALS (N = 105)	72/33	Treatment: 62.8 ± 10.2 Control: 62.7 ± 12.1	70/35	Treatment group: 26.4 ± 18.8 Control group: 18 ± 20.4	Treatment group: 41.1 ± 4.5 Control group: 40.3 ± 4.4
Merico et al. (2018) [33]	ALS (N = 38)	23/14	Treatment: 61.6 ± 10.6 Control: 59.8 ± 14.7	37/1	Treatment group: 30.2 ± 11.8 Control group: 30.3 ± 6.7	Treatment group: 36.1 ± 4.71 Control group: 34.5 ± 3.6
Braga et al. (2018a) [34]	ALS (N = 48)	32/16	Not reported	38/10	Treatment group: 10.8 ± 6.5 Control group: 10.79 ± 7.7	Treatment group: 42.92 ± 3.51 Control group: 41.13 ± 4.83
Braga et al. (2018b) [44]	ALS (N = 10)	7/3	57 ± 9.1	9/1	7.6 ± 4.12	43 ± 2.1
Zucchi et al. (2019) [35]	ALS (N = 65)	49/16	Not reported	54/11	Treatment group: 15.67 ± 9.74 Control group: 16.64 ± 8.98	Treatment group: 39.84 ± 5.70 Control group: 40.15 ± 5.17
van Groenestijn (2019) [45]	ALS (N = 57)	40/17	Treatment group: 60.9 ± 10.0 Control group: 59.9 ± 10.7	45/12	Treatment group: 15.5 ± 10.9 Control group: 18.0 ± 14.0	Treatment group: 42.3 ± 3.5 Control group: 42.3 ± 4.2
Plowman et al. (2019) [49]	ALS (N = 48)	29/19	Treatment group: 63.1 ± 10.0 Control group: 60.1 ± 10.3	35/11 2 mixed	Treatment group: 20.9 ± 14.5 Control group: 16.9 ± 6.8	Treatment group: 36.6 ± 6.3 Control group: 37.5 ± 6.1
Pegoraro et al. (2019) [36]	ALS (N = 18)	11/7	61.1 ± 12.8	Not reported	51.6 ± 12	34.6 ± 4.9
Sivaramakrishnan & Madhavan (2019) [43]	ALS (N = 9)	5/4	59.22 ± 12.3	6/3	28.44	33

 $\geq\!80\%$ indicated strong quality, 60% to 79% indicated good quality, 50% to 59% indicated average quality, and < 50% indicated poor quality.

Findings were imported into Microsoft Excel for independent review. Following data extraction, studies were initially categorized into four exercise regimens (combined treatment [28–37], resistance exercise [38–40], aerobic endurance [41–45], and respiratory muscle strength training approaches) [46–52]. However, due to the limited data for studies that explored respiratory muscle strength training (expiratory muscle strength training [EMST], inspiratory muscle strength training [IMST]) [46–52] and aerobic endurance exercise regimens [41–45], as well as the heterogeneity observed in outcomes and treatment protocols for studies that explored combined exercise regimens [28–37], a metaanalysis based on exercise regimen was not feasible.

Therefore, studies were recategorized based on similar post-exercise outcomes to determine treatment response. Combining studies based on

outcomes is a meta-analytic technique that has been used in similar research studies [53]. Studies were included in the meta-analysis if they were a level 1b or 2b study, were rated as having good to strong quality (\geq 60%) and reported effect data for extraction. Outcomes were analyzed with Comprehensive Meta-Analysis (CMA) V2 software and random effects models and were reported as Hedge's G. Based on the studies that were included, effects were examined at 0-4 months, up to 6 months, and > 6 months. Outcomes evaluated included the ALS functional rating scale revised (ALSFRS-R) [54,55], forced vital capacity (FVC), the fatigue severity scale (FSS) [56], the McGill quality of life questionnaire (McGill QOL) [57], functional independent measure (FIM) scores [58], maximum expiratory pressure (MEP), and penetration-aspiration scale (PAS) scores [59,60]. Pre-specified sensitivity analyses were performed for 1) controlled trials vs. all studies and 2) ALSFRS-R bulbar, respiratory, and motor subscales. Heterogeneity of the pooled outcome measures was computed with the I² statistic and was

(continued on next page)

Table 3				Table 3 (continued)			
Summary of study re reported.	esults following exerci	se regimens for t	functional outcomes	Study	Exercise arms	Dosage	Results
Study	Exercise arms	Dosage	Results		and lower extremity resistance exercise +	regimen: 6 months	at 3 and 6 months $(p = 0.05, p =$
ALSFRS-R Plowman et al. (2019) [49]	Active EMST ($N =$ 24): devices set to 50% of MEP Sham EMST($N =$ 24): devices set to	Sets: 5 Reps: 5 Days per week: 5 Length of	No significant difference in ALSFRS-R scores between groups.		usual care stretching exercises; Control exercise (N = 14): upper and lower extremity stretching 1×/day		0.02, p = 0.01).
	0% resistance	exercise regimen: 8 weeks		Pinto et al. (2012) [51]	Active IMST ($N =$ 13): Device set to 30–40% resistance	Length of exercise: 10 min	No significant difference in ALSFRS-R scores
Cheah et al. (2009) [50]	IMST (<i>N</i> = 9): first week: device 15% of SNIP, second week: device 30% of SNIP, third week: 45% of SNIP, fourth week: 60% of SNIP and	Length of exercise: 10 min Times per day: 3 Days per week: 7	No significant difference in ALSFRS-R scores between groups.		Delayed intervention (N = 13): First 4 months device set to lowest resistance, last 4 months followed IMST protocol	Times per day: 2 Length of regimen; 4–8 months	between groups.
	then maintained at 60% ; Sham ($N = 10$)	Length of regimen: 12 weeks		Drory et al. (2001) [28]	Individualized daily exercise program designed by physical	Length of exercise: 15 min	Slower decline in ALSFRS-R scores in exercise group
Zucchi et al. (2019) [35]	Intensive exercise regimen ($N = 32$): aerobic and endurance resistance exercise	Length of exercise: 45 min Days per week: 2–5	No significant difference in ALSFRS-R scores between groups.		therapist ($N = 14$); Control ($N = 11$)	Times per day: 2 Length of regimen: 3–12 months	at 3 months (p < 0.001).
	training Control exercise regimen ($N = 33$): aerobic and endurance resistance exercise training	Length of exercise regimen: 10 weeks		Braga et al. (2018a) [34]	Cardiopulmonary exercise training (N = 24): standard of care exercises+ aerobic exercise protocol on a treadmill	Days per week: 2 Length of exercise regimen: 6 months	 Higher ALSFRS-R scores at time point two for CPET group (<i>p</i> = 0.035). Spinal ALSFRS-
van Groenestijn (2019) [45]	Aerobic endurance training ($N = 27$): aerobic exercises (cyclergometer, treadmill, stepboard, and muscle strengthening exercises) Usual care ($N = 30$):	Length of exercise: 20–60 min Days per week: 3 Length of exercise regimen: 16 weeks	No significant difference in ALSFRS-R scores between groups.		range of motion exercises, limbs relaxation, trunk balance, gait training.		R scores ($p < 0.001$) and the CPET group ($p = 0.021$) were significant pre- dictors of over- all ALSFRS-R scores at time point two ($R^2 = 0.51$).
	neuropalliative care by multidisciplinary care team			Sanjak et al. (2010) [42]	Supported treadmill ambulation $(N = 9)$	Length of exercise: 30 min (5 min	Improvement in ALSFRS-R scores, RPE, and 6MWT
Lunetta et al. (2016) [29]	Active exercise ($N =$ 30): three subgroups: active exercises associated with cycloergometer activity ($n = 10$), active evercises ($n =$	Length of exercise: 20 min Days per week: 2 Length of exercise	ALSFRS-R total scores and motor sub scores were higher for the exercise group (p = 0.0298, p = 0.0293)			exercise/5 min rest) Days per week: 3 Length of regimen: 8 weeks	at 4 and 8 weeks $(p \le 0.05)$.
	10), passive exercises (n = 10) Control exercise programs (N = 30): passive and stretching exercises	regimen: 6 months		Pinto & de Carvalho (2013) [52]	Early intervention exercise group (<i>N</i> = 11); Late intervention exercise group (<i>N</i> = 7): IMST with device	Length of exercise: 10 min Times per day: 2 Length of	No significant difference in ALSFRS-R scores between groups.
Clawson et al. (2018) [30]	Resistance ($N = 18$): cuff weights for the upper limbs and hip flexion Endurance ($N = 20$):	Length of exercise regimen: 6 months	No significant changes in ALSFRS-R scores or differences between groups.		set to $30-40\%$ of maximum inspiratory pressure; Historical control group ($N = 16$)	exercise regimen: 8–32 months	
	upper and lower limb cycling Stretching/range of motion ($N = 21$): passive upper and lower limb stretching with a partner			Sivaramakrishnan & Madhavan (2019) [43]	Recumbent stepping (<i>N</i> = 9):	Length of exercise: 40 min Days per week: 3 Length of exercise regimen: 4	No significant differences in ALSFRS-R scores 1-month post- treatment.
Bello-Haas et al. (2007) [37]	Home exercise program ($N = 13$): individualized upper	Times per day: 1 Length of	Differences in ALSFRS-R scores between groups	Pegoraro et al. (2019) [36]	Progressive muscular strength training, aerobic	weeks Length of exercise: 60 min	Improvement in ALSFRS-R scores $(p < 0.05)$.

5

С.	Donohue	et	al.	

Table 3 (continued)				Table 3 (continued)			
Study	Exercise arms	Dosage	Results	Study	Exercise arms	Dosage	Results
	endurance exercises $(N = 18)$: cycle ergometer, arm-leg ergometry or treadmill, standard rehab (stretching, active mobilization, general reinforcement)	Days per week: 7 Length of exercise regimen: 6 weeks					during exercise ($r = 0.25$, $p < 0.01$), resting heart rate ($r = -0.20$, $p = 0.01$), R biceps strength ($r = 0.24$, $p < 0.01$), and the GMWT
Kitano et al. (2018) [32]	reinforcement) Home based exercise (N = 21): muscle stretching and strength training for upper and lower limbs Historical cohort (N = 84): exercise under the direction of a physical theranist	Frequency/ reps: determined by a physical therapist Length of exercise regimen: 6 months	Total ALSFRS score and respiratory sub score was higher for the exercise group ($p = 0.44$, p < 0.001).	Pinto et al. (2012) [51]	Active IMST ($N =$ 13): Device set to 30–40% resistance Delayed intervention ($N =$ 13): First 4 months device set to lowest resistance, last 4 months followed	Length of exercise: 10 min Times per day: 2 Length of regimen; 4–8 months	(r = 0.23, p < 0.01). No significant differences in FIM scores between groups.
Jensen et al. (2017) [40]	Resistance training $(N = 6)$: upper and lower body resistance exercises	Days per week: 2–3 Sets: 2–3 Reps: 5–12 Length of exercise regimen: 24 weeks (12 weeks lead-in, 12 weeks	Decline in ALSFRS-R scores at the same rate or more after training.	Pinto et al. (1999) [41]	IMST protocol Treatment ($N = 8$): Endurance-based exercise: Bruce or Naughton ramp treadmill protocol with Bipap STD until anaerobic threshold was reached; Control ($N = 12$)	Length of regimen: 1 year	Higher FIM scores for exercise group (<i>p</i> < 0.03).
Braga et al. (2018b) [44]	Home-based aerobic exercise program ($N = 10$): treadmill protocol, training zone above ventilator threshold 1, below 75% of predicted maximum heart rate, SpO2 \geq 0206	resistance training) Length of exercise: 25 min Days per week: 1 Length of exercise regimen: 6 months	Decline in ALSFRS-R scores (p = 0.008).	Pegoraro et al. (2019) [36]	Progressive muscular strength training, aerobic endurance exercises (<i>N</i> = 18): cycle ergometer, arm-leg ergometry or treadmill, standard rehab (stretching, active mobilization, general reinforcement)	Length of exercise: 60 min Days per week: 7 Length of exercise regimen: 6 weeks	Improvement in FIM scores ($p \le 0.05$).
Robison et al.	93% IMST and EMST (N	Reps: 25 each	Two-point		remorcement)		
(2018) [47]	= 1): device set to 30% of MIP/MEP	Days per week: 5 Length of exercise regimen: 24	decrease in ALSFRS-R score.	Survival time; time to deaths Zucchi et al. (2019) [35]	ntensive exercise regimen (N = 32):	ve ventilation/inva Length of exercise: 45	No significant differences
Tabor et al. (2016) [46]	Sham/EMST (N = 1): for sham, spring- loaded valve removed from device; for EMST, device set to 50% of MEP	months Number of reps: 25 Days per week: 5 Length of exercise regimen: 16 weeks (8	ALSFRS-R scores remained relatively stable from baseline (32), post-sham (29), and post EMST (30).		aerobic and endurance resistance exercise training Control exercise regimen $(N = 33)$: aerobic and endurance resistance exercise training	min Days per week: 2–5 Length of exercise regimen: 10 weeks	between groups in survival, time to gastrostomy, noninvasive ventilation/ invasive ventilation.
EIM		weeks sham, 8 weeks active EMST)		van Groenestijn (2019) [45]	Aerobic endurance training ($N = 27$): aerobic exercises (cyclergometer, tracdmill	Length of exercise: 20–60 min Days per	Patients who completed the exercise training protocol ($n = 10$) had longer
им Merico et al. (2018) [33]	Specific exercise program (N = 23): aerobic workout and isometric contractions Control exercise (N = 15): stretching, active mobilization,	Length of exercise regimen: 5 weeks	 Difference in FIM scores after 5 weeks for both groups (p < 0.05); no difference between groups (p > 		teaunin, stepboard, and muscle strengthening exercises) Usual care ($N = 30$): neuropalliative care by multidisciplinary care team	week: 3 Length of exercise regimen: 16 weeks	survival times than those who did not $(n = 17)$.
	general muscle reinforcement		0.05). • FIM scores were associated with ventilation	Lunetta et al. (2016) [29]	Active exercise (<i>N</i> = 30): three subgroups: active exercises associated with cycloergometer	Length of exercise: 20 min Days per week: 2	No significant differences between groups in survival.

(continued on next page)

С	Donohue	еt	al	
с.	Dontontac	υı	uu.	

Table 3 (continued)

Table 4

Summary of study results following exercise regimens for muscular outcomes

Study	Exercise arms	Dosage	Results	reported.		cibe regiments	
	activity ($n = 10$), active exercises ($n =$	Length of exercise		Study	Exercise arms	Dosage	Results
Pinto & de Carvalho (2013) [52]	10), passive exercises (n = 10) Control exercise programs (N = 30): passive and stretching exercises Early intervention exercise group (N = 11); Late intervention exercise group (N = 7): IMST with device set to 30–40% of	Length of exercise: 10 min Times per day: 2 Length of exercise	 Patients in the early and late intervention groups survived longer (<i>p</i> < 0.001). FVC was a 	ASH Clawson et al. (2018) [30]	Resistance ($N =$ 18): cuff weights for the upper limbs and hip flexion Endurance ($N =$ 20): upper and lower limb cycling Stretching/range of motion ($N =$ 21): passive upper and lower limb stretching with a	Length of exercise regimen: 6 months	No significant changes in ASH scores or differences between groups.
	maximum inspiratory pressure; Historical control group (<i>N</i> = 16)	regimen: 8–32 months	prognostic factor for the exercise group (p < 0.05) and diagnostic delay was a prognostic factor for the control (p < 0.05).	Drory et al. (2001) [28]	partner Individualized daily exercise program designed by physical therapist (N = 14); Control ($N = 11$)	Length of exercise: 15 min Times per day: 2 Length of regimen: 3–12 months	Decreased spasticity as measured by ASH scores in exercise group at 3 months (<i>p</i> < 0.05).
			 IMST, gender, and phrenic nerve response amplitude were predictive of mortality (p < 0.05). 	Kato et al. (2018b) [39]	Individualized physical therapy exercises ($N = 10$): lower limb muscle strengthening exercises and respiratory, gait, and stair-climbing	Length of exercise regimen: 2–3 weeks	No significant changes in ASH scores.
Barthel Index Pinto et al. (1999) [41]	Treatment (N = 8): Endurance-based exercise: Bruce or Naughton ramp treadmill protocol with Bipap STD until anaerobic threshold was reached;	Length of regimen: 1 year	No significant differences in Barthel Index scores between groups.	Grip Strength Cheah et al. (2009) [50]	IMST ($N = 9$): first week: device 15% of SNIP, second week: device 30% of SNIP, third week: 45% of SNIP,	Length of exercise: 10 min Times per day: 3 Days per	After training withdrawal, both groups had declines in grip strength ($p < 0.01$).
Pegoraro et al. (2019) [36]	Control (N = 12) Progressive muscular strength training, aerobic endurance exercises (N = 18): cycle ergometer, arm-leg ergometry or treadmill, standard rehab (stretching, active mobilization, general reinforcement)	Length of exercise: 60 min Days per week: 7 Length of exercise regimen: 6 weeks	Improvement in Barthel Index scores ($p \le 0.05$).	Clawson et al. (2018) [30]	fourth week: 60% of SNIP, and then maintained at 60% ; Sham (N = 10) Resistance (N = 18): cuff weights for the upper limbs and hip flexion Endurance (N = 20): upper and lower limb cycling Stretching/range of motion (N = 21): passive upper and lower limb	week: 7 Length of regimen: 12 weeks Length of exercise regimen: 6 months	No significant changes in grip strength or differences between groups.
said to be presentTo evaluate publicities, and visual in3. Results	when $Q > df$ or $Q >$ cation bias, Begg-Ma spection of the funn	30, which corre azumdar's Kend el plot were en	sponds to $p < 0.5$. dall's tau, Egger's aployed.	van Groenestijn (2019) [45]	lower limb stretching with a partner Aerobic endurance training ($N = 27$): aerobic exercises (cyclergometer, treadmill, stenbnard and	Length of exercise: 20–60 min Days per week: 3 Length of	No significant changes in grip strength or differences between groups.

The search yielded 959 total results, with 25 research articles initially meeting inclusionary criteria for the systematic review (Fig. 1).

3.1. Study design and methodological quality

Of the 25 eligible studies, the majority (40%; n = 10) were randomized controlled trials (RCTs) (Level 1b) [28-30,33,35,37,49-51], followed by cohort (Level 2b) (28%; n = 7) [34,36,41–43,48,52] and case series (Level 4) (28%; n = 7) [31,38–40,44,46,47], and case control (Level 3b) (4%; n = 1) [32] investigations. Most studies (80%) were muscle

30): neuropalliative

care by

care team

strengthening

Usual care (N =

multidisciplinary

exercises)

exercise

weeks

regimen: 16

Neurophysiological Index

IMST (N = 9): first

week: device 15%

week: device 30%

week: 45% of SNIP,

fourth week: 60%

of SNIP, and then

Sham (N = 10)

Active IMST (N =

13): Device set to

30-40% resistance

intervention (N =

13): First 4 months

device set to lowest

Resistance exercise

(N = 2): lower limb

strengthening

muscle

exercises

resistance, last 4 months followed

IMST protocol

Delayed

maintained at 60%;

of SNIP, second

of SNIP, third

Cheah et al. (2009)

Pinto et al. (2012)

[51]

KEMS

[31]

Kato et al. (2018a)

[50]

Tabl

able 4 (continued)				Table 4 (continued)			
Study	Exercise arms	Dosage	Results	Study	Exercise arms	Dosage	Results
Manual muscle streng	gth test	Length of	No singificant			exercise regimen: 2	maintained for 10 months for case 1.
[28]	daily exercise program designed by physical therapist $(N = 14)$; Control $(N = 11)$	Length of exercise: 15 min Times per day: 2 Length of regimen: 3–12 months	No significant differences in manual muscle strength between groups.	Kato et al. (2018b) [39]	Individualized physical therapy exercises ($N = 10$): lower limb muscle strengthening exercises and respiratory, gait, and stair-climbing	Weeks Length of exercise regimen: 2–3 weeks	KEMS improved for stronger and weaker limbs ($p < 0.01$).
Sanjak et al. (2010) [42]	Supported treadmill ambulation (N = 9)	Length of exercise: 30 min (5 min	No significant differences in manual muscle strength	MVIC	exercises		
		exercise/5 min rest) Days per week: 3 Length of regimen: 8 weeks	between groups.	Bello-Haas et al. (2007) [37]	Home exercise program ($N = 13$): individualized upper and lower extremity resistance exercise + usual care stretching	Times per day: 1 Length of regimen: 6 months	Slower decline in lower extremity MVIC in the exercise group at 6 months ($p = 0.03$).
30 s chair rise, timed Sivaramakrishnan & Madhavan (2019) [43]	up and go Recumbent stepping (N = 9):	Length of exercise: 40 min	No significant differences in the timed up and go test		exercises; Control exercise ($N = 14$): upper and lower extremity		
		week: 3 Length of exercise regimen: 4 weeks	pose de aunent.	Sanjak et al. (2010) [42]	Supported treadmill ambulation ($N = 9$)	Length of exercise: 30 min (5 min exercise/5 min rest)	No significant differences in MVIC post-treatment.
Jensen et al. (2017) [40]	Resistance training $(N = 6)$: upper and lower body resistance exercises	Days per week: 2–3 Sets: 2–3 Reps: 5–12 Length of	Improvement in 30 s chair rise/timed up and go test.			Days per week: 3 Length of regimen: 8 weeks	
		exercise regimen: 24 weeks (12 weeks lead- in, 12 weeks resistance		rated as having "s score of 73.3% (± <i>QualSyst</i> were rega	strong" or "good" of 18.03). The most arding the items ins	quality, with common bia sufficient deso	an average <i>QualSyst</i> uses observed on the cription of method of

training)

Length of

Times per

day: 3

Days per

week: 7

weeks

min

Length of

Length of

Times per

Length of

regimen; 4-8 months

Length of

Days per

week: 5

Length of

min

exercise: 30

dav: 2

exercise: 10

regimen: 12

min

exercise: 10

No significant

index between

No significant

differences in

index between

groups.

neurophysiological

• KEMS improved by

20% or more

during the first

both patients;

KEMS was

hospitalization for

groups.

neurophysiological

difference in

QualSyst were regarding the items insufficient description of method of subject selection or source of input variable, inadequate sample size, and inadequate control of confounding variables. Table 1 shows a summary of the level of evidence and the appraisal of the study quality for each outcome.

3.2. Participant characteristics

A total of 723 participants (459 males) diagnosed with definite or probable ALS/MND were included across all studies. When symptom onset location was reported, most patients (76.3%; N = 495) presented with spinal onset. Baseline ALS Functional Rating Scale Revised (ALSFRS-R) scores were reported in 22 studies and ranged from 32 to 46, suggesting minimal-mild to mild-moderate disease severity [54,55]. Complete demographic information can be viewed in Table 2.

3.3. Exercise regimen and treatment outcomes

A summary of the interventions organized by outcomes are included in Tables 3-6.

A total of 10 studies utilized a combination of aerobic endurance, resistance, and stretching/range of motion [28-37]; 3 employed resistance exercise only [38-40]; 5 consisted of solely aerobic endurance [41-45]; and 7 studies employed RMST (IMST and/or EMST) [46-52]. Length of exercise regimens ranged from 2 weeks to 2 years in duration. No adverse outcomes attributed to participation in the exercise intervention were reported in any study. The most reported outcome was the ALSFRS-R total score (n = 20), following by forced vital capacity (FVC)

able 5				Table 5 (continued)			
summary of study a wallow outcomes re	results following exerce ported.	cise regimens	for respiratory and	Study	Exercise arms	Dosage	Results
Study	Exercise arms	Dosage	Results		Control exercise ($N =$ 14): upper and lower		
FVC Plowman et al. (2019) [49]	Active EMST ($N =$ 24): devices set to 50% of MEP Sham EMST($N =$ 24): devices set to 0% resistance	Sets: 5 Reps: 5 Days per week: 5 Length of exercise regimen: 8 weeke	No significant difference in FVC between groups.	Pinto et al. (2012) [51]	extremity stretching $1 \times /day$ Active IMST ($N = 13$): Device set to $30-40\%$ resistance Delayed intervention ($N = 13$): First 4 months device set to lowest resistance. last	Length of exercise: 10 min Times per day: 2 Length of regimen;	No significant difference in FVC between groups.
van Groenestijn (2019) [45]	Aerobic endurance training ($N = 27$): aerobic exercises (cyclergometer, treadmill, stepboard, and muscle strengthening exercises) Usual care ($N = 30$): neuropalliative care by multidisciplinary care team	weeks Length of exercise: 20–60 min Days per week: 3 Length of exercise regimen: 16 weeks	Slower FVC decline rate for treatment group $(p = 0.48)$.	Braga et al. (2018a) [34]	4 months followed IMST protocol Cardiopulmonary exercise training (N = 24): standard of care exercises+ aerobic exercise protocol on a treadmill Control exercise: range of motion exercises, limbs	4–8 months Days per week: 2 Length of exercise regimen: 6 months	Higher FVC predicted at time point one for CPET group ($p =$ 0.002).
Cheah et al. (2009) [50]	IMST ($N = 9$): first week: device 15% of SNIP, second week: device 30% of SNIP, third week: 45% of SNIP, fourth week: 60% of SNIP, and then maintained at 60%; Sham ($N = 10$)	Length of exercise: 10 min Times per day: 3 Days per week: 7 Length of regimen: 12 weeks	No significant difference in FVC between groups.	Pinto et al. (1999) [41]	relaxation, trunk balance, gait training. Treatment ($N = 8$): Endurance-based exercise: Bruce or Naughton ramp treadmill protocol with Bipap STD until anaerobic threshold was reached; Coatter ($N = 12$)	Length of regimen: 1 year	Attenuated FVC decline rate for exercise group (<i>p</i> < 0.02).
Zucchi et al. (2019) [35]	Intensive exercise regimen ($N = 32$): aerobic and endurance resistance exercise training Control exercise regimen ($N = 33$): aerobic and endurance resistance exercise training	Length of exercise: 45 min Days per week: 2–5 Length of exercise regimen: 10 weeks	No significant difference in FVC between groups.	Pinto & de Carvalho (2013) [52]	Early intervention exercise group (N = 11); Late intervention exercise group (N = 7): IMST with device set to $30-40\%$ of maximum inspiratory pressure; Historical control	Length of exercise: 10 min Times per day: 2 Length of exercise regimen: 8–32 months	FVC was a prognostic factor for the exercise group ($p < 0.05$) and diagnostic delay was a prognostic factor for the control (p < 0.05).
Lunetta et al. (2016) [29]	Active exercise ($N =$ 30): three subgroups: active exercises associated with cycloergometer activity ($n = 10$), active exercises ($n =$ 10), passive exercises ($n = 10$) Control exercise programs ($N =$ 30): passive and stretching	Length of exercise: 20 min Days per week: 2 Length of exercise regimen: 6 months	No significant difference in FVC between groups.	Braga et al. (2018b) [44] Robison et al. (2018) [47]	group $(N = 16)$ Home-based aerobic exercise program $(N = 10)$: treadmill protocol, training zone above ventilator threshold 1, below 75% of predicted maximum heart rate, SpO2 \geq 93% IMST and EMST $(N = 1)$: device set to 30%	Length of exercise: 25 min Days per week: 1 Length of exercise regimen: 6 months Reps: 25 each	No significant changes in FVC following exercise protocol. Stable FVC (104% predicted).
Clawson et al. (2018) [30]	exercises Resistance ($N = 18$): cuff weights for the upper limbs and hip flexion Endurance ($N = 20$): upper and lower limb cycling Stratching (range of	Length of exercise regimen: 6 months	No significant changes in FVC or differences between groups.	МЕР	OF MIP/MEP	week: 5 Length of exercise regimen: 24 months	
Bello-Haas et al. (2007) [37]	motion $(N = 21)$: passive upper and lower limb stretching with a partner Home exercise program $(N = 13)$: individualized upper and lower extremity resistance exercise + usual care stretching exercises;	Times per day: 1 Length of regimen: 6 months	No significant difference in FVC over time or between groups.	Plowman et al. (2019) [49] Cheah et al. (2009) [50]	Active EMST ($N =$ 24): devices set to 50% of MEP Sham EMST($N =$ 24): devices set to 0% resistance IMST ($N =$ 9): first week: device 15% of SNIP, second week: device 30% of SNIP	Sets: 5 Reps: 5 Days per week: 5 Length of exercise regimen: 8 weeks Length of exercise: 10 min Times per	Increase in MEP for active EMST group pre to post treatment ($p =$ 0.009). MEP declined for both groups following training

(continued on next page)

C. Donohue et al.

Table 5 (continued)

(continued on next page)

Table 5 (continued)				Table 5 (continued)			
Study	Exercise arms	Dosage	Results	Study	Exercise arms	Dosage	Results
	third week: 45% of SNIP, fourth week: 60% of SNIP, and then maintained at 60%; Sham (N = 10)	day: 3 Days per week: 7 Length of regimen: 12 weeks	withdrawal ($p < 0.05$).	Sivaramakrishnan & Madhavan (2019) [43]	Recumbent stepping (N = 9):	Length of exercise: 40 min Days per week: 3 Length of	No significant differences in 6MWT 1-month post-treatment.
Pinto et al. (2012) [51]	Active IMST ($N = 13$): Device set to 30–40% resistance Delayed intervention ($N = 13$): First 4	Length of exercise: 10 min Times per day: 2	No significant difference in MEP between groups.	Voluntary Cough Spi	rometry	exercise regimen: 4 weeks	
	lowest resistance, last 4 months followed IMST protocol	regimen; 4–8 months		Plowman et al. (2019) [49]	Active EMST ($N =$ 24): devices set to 50% of MEP	Sets: 5 Reps: 5 Days per	No significant differences in voluntary cough
Plowman et al. (2016) [48]	EMST ($N = 25$): devices set to 50% of MEP	Sets: 5 Reps: 5 Days per week: 5 Length of	Increase in MEP over time ($p < 0.03$).		devices set to 0% resistance	Length of exercise regimen: 8 weeks	measures between groups.
		exercise regimen: 5 weeks		Plowman et al. (2016) [48]	EMST ($N = 25$): devices set to 50% of MEP	Sets: 5 Reps: 5 Days per week: 5	No significant differences in voluntary cough spirometry
Robison et al. (2018) [47]	IMST and EMST (<i>N</i> = 1): device set to 30% of MIP/MEP	Reps: 25 each Days per week: 5 Length of	MEP: 89 cm H ₂ 0 increase.			Length of exercise regimen: 5 weeks	measures following EMST.
Tabor et al. (2016)	Sham/EMST ($N = 1$):	exercise regimen: 24 months Number of	MEP: 5 cm H ₂ 0	Tabor et al. (2016) [46]	Sham/EMST (N = 1): for sham, spring- loaded valve removed from device; for	Number of reps: 25 Days per week: 5	Cough inspired volume and median cough total within an
[46]	for sham, spring- loaded valve removed from device; for EMST, device set to 50% of MEP	reps: 25 Days per week: 5 Length of exercise regimen: 16 weeks (8 weeks sham, 8 weeks	decline after sham training; 52 cm H_20 increase after active EMST.		EMST, device set to 50% of MEP	Length of exercise regimen: 16 weeks (8 weeks sham, 8 weeks active EMST)	epoch increased following sham and active EMST training.
6MWT		active EMST)		MIP Cheah et al. (2009) [50]	IMST (N = 9): first week: device 15% of SNIP, second week:	Length of exercise: 10 min	MIP declined for both groups following training
Cheah et al. (2009) [50]	IMST ($N = 9$): first week: device 15% of SNIP, second week: device 30% of SNIP, third week: 45% of SNIP, fourth week: 60% of SNIP and	Length of exercise: 10 min Times per day: 3 Days per week: 7	After training withdrawal, both groups had declines in 6MWT (p = 0.01).		device 30% of SNIP, third week: 45% of SNIP, fourth week: 60% of SNIP, and then maintained at 60%; Sham ($N = 10$)	Times per day: 3 Days per week: 7 Length of regimen: 12 weeks	withdrawal (<i>p</i> = 0.05).
Merico et al. (2018)	then maintained at 60% ; Sham ($N = 10$) Specific exercise	Length of regimen: 12 weeks Length of	No significant	Pinto et al. (2012) [51]	Active IMST ($N = 13$): Device set to 30–40% resistance Delayed intervention ($N = 12$): First 4	Length of exercise: 10 min Times per	No significant difference in MIP between groups.
[33]	program ($N = 23$): aerobic workout and isometric contractions	exercise regimen: 5 weeks	differences in 6MWT over time or between groups.		months device set to lowest resistance, last 4 months followed IMST protocol	Length of regimen; 4–8 months	
Somials at al. (2010)	15): stretching, active mobilization, general muscle reinforcement	Longth of	Improvement in	Robison et al. (2018) [47]	IMST and EMST (N = 1): device set to 30% of MIP/MEP	Reps: 25 each Days per week: 5	MIP: 63 cm H_20 increase.
зацјак ет аг. (2010) [42]	ambulation ($N = 9$)	exercise: 30 min (5 min exercise/5 min rest) Days per	6MWT at 4 and 8 weeks ($p \le 0.05$).			Length of exercise regimen: 24 months	
		week: 3 Length of		Cardiopulmonary me Merico et al. (2018)	asures Specific exercise	Length of	Difference in
		regimen: 8 weeks		[33]	program $(N = 23)$: aerobic workout and isometric	exercise regimen: 5 weeks	oxygen consumption after 5 weeks for

Table 5 (continued)				Table 5 (continued)						
Study	Exercise arms	Dosage	Results	Study	Exercise arms	Dosage	Results			
	contractions Control exercise (<i>N</i> = 15): stretching, active mobilization, general muscle reinforcement		specific exercise group ($p < 0.05$).		50% of MEP Sham EMST(N = 24): devices set to 0% resistance	Days per week: 5 Length of exercise regimen: 8	swallowing efficiency decreased for the sham group ($p =$ 0.02).			
van Groenestijn (2019) [45]	Aerobic endurance training (N = 27): aerobic exercises (cyclergometer, treadmill, stepboard, and muscle strengthening exercises) Usual care (N = 30): neuropalliative care by multidisciplinary	Length of exercise: 20–60 min Days per week: 3 Length of exercise regimen: 16 weeks	No significant differences in aerobic capacity/ oxygen uptake.	Plowman et al. (2016) [48]	EMST (N = 25): devices set to 50% of MEP	weeks Sets: 5 Reps: 5 Days per week: 5 Length of exercise regimen: 5 weeks	Increase in hyoid displacement (<i>p</i> < 0.02).			
	care team			SNIP Cheep et al. (2000)	IMCT $(N - 0)$; first	Longth of	SNID doaligod for			
Braga et al. (2018a) [34]	Cardiopulmonary exercise training (N = 24): standard of care exercises+ aerobic exercise protocol on a treadmill Control exercise: range of motion	Days per week: 2 Length of exercise regimen: 6 months	Difference in oxygen uptake between groups at time point two (p < 0.05).	[50]	week: device 15% of SNIP, second week: device 30% of SNIP, third week: 45% of SNIP, fourth week: 60% of SNIP, and then maintained at 60%; Sham $(N = 10)$	exercise: 10 min Times per day: 3 Days per week: 7 Length of regimen: 12 weeks	both groups following training withdrawal ($p < 0.05$).			
VC	exercises, limbs relaxation, trunk balance, gait training.			Pinto et al. (2012) [51]	Active IMST (N = 13): Device set to $30-40\%$ resistance Delayed intervention (N = 13): First 4	Length of exercise: 10 min Times per day: 2	No significant differences in SNIP between groups.			
Cheah et al. (2009) [50]	IMST ($N = 9$): first week: device 15% of SNIP, second week: device 30% of SNIP, third week: 45% of	Length of exercise: 10 min Times per day: 3	VC declined for both groups following training withdrawal (p < 0.05).		months device set to lowest resistance, last 4 months followed IMST protocol	Length of regimen; 4–8 months				
	SNIP, fourth week: 60% of SNIP, and then maintained at 60%; Sham (N = 10)	Days per week: 7 Length of regimen: 12 weeks		(n = 13), measures maximum expirate (MIP) $(n = 7)$. Alth	of fatigue ($n = 10$), of pry pressure (MEP)/ nough five studies (20	uality of life : maximum in: 0%) did not d	scales $(n = 9)$, and spiratory pressure emonstrate signif-			
Sanjak et al. (2010) [42]	Supported treadmill ambulation ($N = 9$)	Length of exercise: 30 min (5 min exercise/5 min rest) Days per	No significant changes in VC over treatment period.	icant improvemen [30,35,43–45], mo changes in [28,29,31–34,36–4	tts after completion st studies ($N = 20, 80$ their primary [2,46–52].	of the exer 9%) reported s outcome	rcise intervention ignificant positive of interest			
		week: 3 Length of regimen: 8 weeks		3.4. Combination of motion	of aerobic endurance, i	resistance, and	l stretching/range			
		Weeks		For the 10 stu	udies which employ	ed a combin	ation of aerobic,			
PEF Pinto et al. (2012) [51]	Active IMST ($N = 13$): Device set to 30–40% resistance Delayed intervention ($N = 13$): First 4 months device set to lowest resistance, last 4 months followed IMST protocol	Length of exercise: 10 min Times per day: 2 Length of regimen; 4–8 months	No significant differences in PEF between groups.	endurance and str jority of studies (N sizes ranging from reported tolerabilit from 0% to 80% examined across of found statistically in measures of ALS	etching/range of mo N = 6; 60%) employed 10 to 105 participal ty of the exercise regin [28–37]. A total of 3 combination exercise significant improvem functioning, overall	tion exercise ed an RCT de nts [28–37]. mens, attrition 1 post-exerci regimen stud ients and/or a disease progra	regimen, the ma- sign, with sample While each study n over time ranged se outcomes were dies. Eight studies attenuated decline ession, and patient			
Robison et al. (2018) [47]	IMST and EMST (N = 1): device set to 30% of MIP/MEP	Reps: 25 each Days per week: 5 Length of exercise regimen: 24 months	PEF: 324 L/min increase.	find any significan [30,35]. Furtherm regimen (defined a suggesting an incr- tients' function [33	tt differences in outc tore, one study four as 5 sessions/week) le ease in overall fatigu	omes after ex nd that an i ed to an incre e severity that	ercise completion intensive exercise ease in FSS scores, at may impact pa-			

Physiologic measures of swallowing and PAS Global swallow

Active EMST (N =Sets: 5 Plowman et al. (2019) [49] 24): devices set to function and Reps: 5

3.5. Resistance exercise

Three studies examined resistance exercise employing a case study or case series design, with participants ranging from one to six participants. No study reported adverse outcomes and one patient withdrew for

Study

Summary of study results following exercise regimens for patient reported outcomes reported.

Dosage

Results

Exercise arms

Table 6 (continued)			
Study	Exercise arms	Dosage	Results
		Length of regimen: 8 weeks	
Sivaramakrishnan & Madhavan	Recumbent stepping $(N = 9)$:	Length of exercise:	No signi differen

FSS						weeks	
Merico et al. (2018) [33]	Specific exercise program ($N = 23$): aerobic workout and isometric contractions Control exercise ($N = 15$): stretching, active mobilization, general muscle	Length of exercise regimen: 5 weeks	 Difference in FSS after 5 weeks for specific exercise group (<i>p</i> < 0.05). FSS scores were associated with oxygen consumption (<i>r</i> = 0.26, <i>p</i> < 0.01), 	Sivaramakrishnan & Madhavan (2019) [43]	Recumbent stepping (<i>N</i> = 9):	Length of exercise: 40 min Days per week: 3 Length of exercise regimen: 4 weeks	No significant differences in FSS 1- month post- treatment.
	reinforcement		resting heart rate (r = 0.29, p < 0.01), R biceps strength $(r = -0.21, p = 0.01)$, R tibial strength (r = -0.19, p = 0.02), the MRC sum score $(r = -0.28, p < 0.01)$, and the 6MWT $(r = -0.27, p < 0.01)$.	Pegoraro et al. (2019) [36]	Progressive muscular strength training, aerobic endurance exercises ($N = 18$): cycle ergometer, arm-leg ergometry or treadmill, standard rehab (stretching, active mobilization, general reinforcement)	Length of exercise: 60 min Days per week: 7 Length of exercise regimen: 6 weeks	Improvement in FSS scores ($p \le 0.05$).
Bello-Haas et al. (2007) [37]	Home exercise program ($N = 13$): individualized upper and lower extremity resistance exercise + usual care stretching exercises; Control exercise (N = 14): upper and lower extremity	Times per day: 1 Length of regimen: 6 months	No significant difference in FSS scores between groups at 3 or 6 months.	Cheah et al. (2009) [50]	IMST (N = 9): first week: device 15% of SNIP, second week: device 30% of SNIP, third week: 45% of SNIP, fourth week: 60% of SNIP, and then maintained at 60%; Sham (N = 10)	Length of exercise: 10 min Times per day: 3 Days per week: 7 Length of regimen: 12 weeks	No significant differences in SF-36 scores between groups.
Pinto et al. (2012) [51]	stretching $1 \times /day$ Active IMST (N = 13): Device set to 30–40% resistance Delayed intervention (N = 13): First 4 months device set to lowest resistance, last 4 months followed IMST protocol	Length of exercise: 10 min Times per day: 2 Length of regimen; 4–8 months	No significant difference in FSS between groups.	van Groenestijn (2019) [45]	Aerobic endurance training ($N = 27$): aerobic exercises (cyclergometer, treadmill, stepboard, and muscle strengthening exercises) Usual care ($N = 30$): neuropalliative care by multidisciplinary	Length of exercise: 20–60 min Days per week: 3 Length of exercise regimen: 16 weeks	No significant differences in SF-36 scores between groups.
Clawson et al. (2018) [30]	Resistance $(N = 18)$: cuff weights for the upper limbs and hip flexion Endurance $(N = 20)$: upper and lower limb cycling Stretching/range of motion $(N = 21)$: passive upper and lower limb stretching with a partner	Length of exercise regimen: 6 months	No significant changes in FSS or differences between groups.	Bello-Haas et al. (2007) [37]	Care team Home exercise program ($N = 13$): individualized upper and lower extremity resistance exercise + usual care stretching exercises; Control exercise ($N = 14$): upper and lower extremity	Times per day: 1 Length of regimen: 6 months	Difference in physical functioning sub score of SF-36 at 6 months ($p = 0.02$).
Drory et al. (2001) [28]	Individualized daily exercise program designed by physical therapist ($N = 14$); Control ($N = 11$)	Length of exercise: 15 min Times per day: 2 Length of regimen: 3–12 months	No significant difference in FSS between groups.	Drory et al. (2001) [28]	stretching $1 \times /day$ Individualized daily exercise program designed by physical therapist ($N = 14$); Control ($N = 11$)	Length of exercise: 15 min Times per day: 2 Length of regimen: 3–12 monthe	No significant changes in SF-36 over time or differences between groups.
Sanjak et al. (2010) [42]	Supported treadmill ambulation (<i>N</i> = 9)	Length of exercise: 30 min (5 min exercise/5 min rest) Days per week: 3	Non-significant decrease in FSS score over treatment period.	McGill Quality of Life Zucchi et al. (2019) [35]	Questionnaire Intensive exercise regimen ($N = 32$): aerobic and endurance resistance exercise training	Length of exercise: 45 min Days per week: 2–5	No differences in McGill Quality of Life scores between groups. continued on next page)

Т

Study	Exercise arms	Dosage	Results
Lunetta et al. (2016) [29]	Control exercise regimen ($N = 33$): aerobic and endurance resistance exercise training Active exercise ($N = 30$): three subgroups: active exercises associated with cycloergometer activity ($n = 10$), active exercises ($n = 10$), passive exercises ($n = 10$) Control exercise programs ($N = 30$): passive and stretching exercises	Length of exercise regimen: 10 weeks Length of exercise: 20 min Days per week: 2 Length of exercise regimen: 6 months	McGill Quality of Life scores improved from baseline to 180 days for the exercise group ($p = 0.0031$).
Visual analog scale fo Drory et al. (2001) [28]	r musculoskeletal pain Individualized daily exercise program designed by physical therapist ($N = 14$); Control ($N = 11$)	Length of exercise: 15 min Times per day: 2 Length of regimen: 3–12	Increase in subjective pain over time in both groups.
van Groenestijn (2019) [45]	Aerobic endurance training ($N = 27$): aerobic exercises (cyclergometer, treadmill, stepboard, and muscle strengthening exercises) Usual care ($N = 30$): neuropalliative care by multidisciplinary	months Length of exercise: 20–60 min Days per week: 3 Length of exercise regimen: 16 weeks	No significant changes in visual analog scale ratings of musculoskeletal pain or differences between groups.
Clawson et al. (2018) [30]	care team Resistance $(N = 18)$: cuff weights for the upper limbs and hip flexion Endurance $(N = 20)$: upper and lower limb cycling Stretching/range of motion $(N = 21)$: passive upper and lower limb stretching with a partner	Length of exercise regimen: 6 months	No significant changes in visual analog scale ratings of musculoskeletal pain or differences between groups.
ALS Quality of Life So Zucchi et al. (2019) [35]	The series of t	Length of exercise: 45 min Days per week: 2–5 Length of exercise regimen: 10 weeks	No significant difference in ALS Quality of Life scores between groups.
Clawson et al. (2018) [30]	exercise training Resistance (N = 18): cuff weights for the upper limbs and hip flexion Endurance (N = 20):	Length of exercise regimen: 6 months	No significant changes in ALS Quality of Life scores or differences between groups.
	upper and lower limb cycling		Servicen groups.

Stretching/range of

motion (N = 21):

Study	Exercise arms	Dosage	Results
	passive upper and lower limb stretching with a partner		
Beck's Depression Inv	entory		
Zucchi et al. (2019) [35]	Intensive exercise regimen ($N = 32$): aerobic and endurance resistance exercise training Control exercise regimen ($N = 33$): aerobic and endurance resistance maximum training	Length of exercise: 45 min Days per week: 2–5 Length of exercise regimen: 10 weeks	No significant differences in Beck's Depression Inventory scores between groups.
Sivaramakrishnan & Madhavan (2019) [43]	exercise training Recumbent stepping $(N = 9)$:	Length of exercise: 40 min Days per week: 3 Length of exercise regimen: 4	No significant differences in Beck's Depression Inventory scores 1- month post- treatment.

asons unrelated to the exercise program [40]. A total of 9 post-exercise tcomes were examined across resistance exercise regimen studies. esistance exercise led to variable outcomes with one study reporting no insistent trends [38], one study reporting improvements in muscle ength, and one study reporting mixed results in measures of function d muscle strength [40].

6. Aerobic endurance

One aerobic endurance exercise study was a randomized controlled al (N = 57), three were cohort studies (N = 20, N = 9, N = 9) and one as a case series (N = 10) [41–45]. Aerobic exercise regimens were welllerated and the attrition rate ranged from 0% to 44% across studies 1-44]. A total of 32 post-exercise outcomes were examined across robic endurance exercise regimen studies. Two studies found statisally significant improvements in several measures of ALS functioning d patient perception [41,42], while two studies found no statistically mificant differences in any outcome [43,45], and another found a tistically significant decline in several functional measures following e exercise regimen [44]. No adverse events were reported.

7. Respiratory muscle strength training

EMST: Four studies employed EMST, including two case studies, one dy with a delayed intervention clinical trial (N = 25), and one study as a double-blind, randomized, controlled trial (N = 48). No study ported adverse events related to the intervention [46–49]. The attrin rate in the delayed intervention clinical trial was 40% and in the uble-blind, randomized, controlled trial was 4.2% [48,49]. EMST led improvements in MEP in all four studies [46-49]. A total of 9 postercise outcomes were examined across EMST exercise regimen idies. The impact of EMST on voluntary cough measurements, FVC, d ALSFRS-R scores was mixed across studies. In addition to this, one idy that examined the impact of EMST and IMST found an increase in IP [47]. Two studies found that EMST led to positive improvements in allow function as well [48,49].

IMST: Of the four studies examining IMST, one was a case study, one as a cohort study (N = 34), and two were randomized, controlled trials (N = 19, N = 26) [47,50–52]. Across studies, IMST was well-tolerated and attrition rates ranged from 0 to 23.1% [50,51]. A total of 21 postexercise outcomes were examined across IMST exercise regimen studies. All four studies found that IMST led to improvements or

Summary of statistical analyses reported related to study outcomes

Summary of Statistical analy	bes reported rela	ted to study outcomes:			
Study	Power analysis performed	Attrition	ITT analysis	Effect sizes	Adherence to treatment
Bohannon (1983) [38]	N/A (case study)	0%	N/A (case study)	Not reported	Not reported
Pinto et al. (1999) [41]	No	0%	N/A (cohort	Not reported	Not reported
Drory et al. (2001) [28]	No	3 months: 28% 6 months: 44% 9 months: 68% 12 months: 80% (unable to perform statistical analyses at 9 and 12 months)	Not reported	Not reported	Not reported
Bello-Haas et al. (2007) [37]	Yes	33%	Yes	Yes (d = 0.53)	"Moderate-High"
Cheah et al. (2009) [50]	No	5%	Yes	Not reported	Experimental: $81.7 \pm 28.0\%$ Control: $85.2 \pm 24.9\%$
Sanjak et al. (2010) [42]	No	33%	N/A (cohort study)	Not reported	"Excellent"
Pinto et al. (2012) [51]	No	Study entry: 7.7% 4 months: 15.4% 8 months: 23.1%	Yes	Not reported	"Excellent"
Pinto & de Carvalho (2013) [52]	Not reported	Not reported	N/A (cohort study)	Not reported	Not reported
Tabor et al. (2016) [46]	N/A (case study)	0%	N/A (case study)	Not reported	100%
Lunetta et al. (2016) [29]	Yes	End of treatment period: 6.7% End of follow-up period: 21.7% (dropout rates and reasons for dropouts did not differ significantly between groups, $p = 0.141$)	Not reported	Not reported	"Good, most patients completed the prescribed exercise sessions"
Plowman et al. (2016) [48]	No	40%	N/A (cohort study)	Not reported	79%
Jensen et al. (2017) [40]	No	16.7%	N/A (case series)	Not reported	3 participants: 85–95% 2 participants: 50–60%
Clawson et al. (2018) [30]	Yes	Before 3 months: 18.6% Between 3 and 6 months: 25.4%	Not reported	Not reported	Stretching/range of motion group: 85% had ≥50% adherence Resistance group: 78% had ≥50% adherence Endurance group: 50% had >50% adherence
Kato et al. (2018a) [31]	No	0%	N/A (case study)	Not reported	Not reported
Kato et al. (2018b) [39]	No	0%	N/A (case series)	Not reported	Not reported
Robison et al. (2018) [47]	No	0%	N/A (case study)	Not reported	100%
Kitano et al. (2018) [32]	Yes	28.6%	N/A (case control studies)	Yes (d = 0.35–0.71)	Exercise completion: 5.9 \pm 1.6 times per week
Merico et al. (2018) [33] Braga et al. (2018a) [34]	No No	17.4% 0%	Not reported N/A (cohort	Not reported Yes $(d = -0.26)$	Not reported
Braga et al. (2018b) [44]	No	0%	study) N/A (case	1.99, $f^2 = 1.04$)	"Excellent " average number of
van Groenestiin (2019)	Yes	43.9%	series) Yes	Not reported	sessions: 29
[45]					\geq 75% of sessions
Zucchi et al. (2019) [35]	Yes	End of treatment: 10.8% One year: 43.1% End of follow-up: 69.2%	Not reported	Not reported	Not reported
Plowman et al. (2019) [49]	No	4.2%	Not reported	Not reported	95–100%
Pegoraro et al. (2019) [36]	No	0%	N/A (cohort study)	Not reported	Not reported
Sivaramakrishnan & Madhayan (2019) [43]	No	22.2%	N/A (cohort	Not reported	100%

attenuated declines in various measures of pulmonary function, although not all study results reached significance [47,50–52]. In addition to this, one study found that patients that completed IMST lived significantly longer [52]. No adverse events were reported.

3.7.1. Statistical analyses metrics of study outcomes

Table 7 summarizes statistical analyses measures that were reported from each of the studies.

Across studies, the attrition rate ranged from 0% to 80%. While most studies reported whether exercise regimens resulted in statistically significant differences in outcomes, few studies reported effect sizes (N = 5, 20%). Similarly, intention-to-treat (ITT) analyses was reported for four out of ten studies that likely could have reported it (40%).

3.7.2. Meta-analysis of study outcomes

While 25 research articles initially met inclusion criteria, only 16 studies (64%) were judged to be level 1b or 2b, were graded as having good-strong quality, and were included in the meta-analysis. Results from the meta-analysis revealed that only the ALSFRS-R total score demonstrated a favorable summary effect size (Hedge's G = 0.325, p <

Meta Analysis-ALSFRS-R

I²=2.393, Q=6.147, P=0.407, Tau²= 0.002

Fig. 2. Effect of exercise on amyotrophic lateral sclerosis rating scale revised (ALSFRS-R) scores across 7 studies (treatment n = 139, control n = 208).

Funnel Plot of Standard Error by Hedges's g

Fig. 3. Funnel plot demonstrating potential publication bias (fail safe N = 11 studies).

Meta Analysis-FIM

l²=76.554, Q=4.265, P=0.039

Meta Analysis-ALSFRS-R [Bulbar subscale]

I²=0.0001, Q=0.810, P=0.368, Tau²= 0.0001

Meta Analysis-ALSFRS-R [Respiratory subscale]

I2=62.326, Q=5.309, P=0.070, Tau2= 0.133

Meta Analysis-ALSFRS-R [Motor subscale]

I2=9.433, Q=1.104, P=0.293, Tau2= 0.008

Fig. 5. Effect of exercise on amyotrophic lateral sclerosis rating scale revised ALSFRS-R subscale scores.

0.05), and had acceptable heterogeneity ($I^2 = 2.393$) and dispersion (Cochran's Q = 6.147, P = 0.407, Tau²=0.002) (Fig. 2).

A funnel plot for ALSFRS-R scores can be viewed in Fig. 3, which shows plot asymmetry suggestive of publication bias (Begg-Mazumdar's Kendall's tau = 0.476, p < 0.067; Egger's bias = 2.64, (95% CI = -1.62–6.9), t = 1.59, df = 5, p < 0.086).

While FIM scores also demonstrated a favorable summary effect size, the heterogeneity limited interpretations ($I^2 = 76.554$, sensitivity analysis failed) (Fig. 4).

There were no other significant findings due to the limited number of studies that reported outcomes. Forest plots for the other outcomes examined can be viewed in Figs. 5–9.

4. Discussion

This systematic review and meta-analysis evaluated the effects of exercise on outcomes related to function and quality of life in people

with ALS to determine the potential risks and benefits of people with ALS engaging in various exercise regimens. A broad range of exercise regimens were implemented (aerobic endurance, resistance, stretching/ range of motion, and respiratory muscle strength training [EMST and/or IMST]), with various dosage parameters employed (frequency, repetitions, intensity, and duration). The studies included also examined a wide range of outcomes to determine the impact of exercise on function and quality of life. Despite heterogeneity across methodologies, most studies demonstrated that exercise-based interventions were safe, welltolerated, and may lead to maintenance and/or improvements in function and quality of life for people with ALS with mild-moderate functional impairment. However, importantly, only a limited number of outcomes could be included in the meta-analysis, and furthermore, only one outcome (the ALSFRS-R) exhibited a favorable summary effect size due to the heterogeneity of outcomes and methodologies deployed across studies.

Several other systematic reviews and meta-analyses have recently

Meta Analysis-FSS (0-2mths)

I2=97.159, Q=70.4, P=0.0001

Meta Analysis-FSS (0-6mths)

I2=94.542, Q=73.3, P=0.0001

Fig. 6. Effect of exercise on fatigue severity scale (FSS) scores.

Meta Analysis-McGill (6mths)

I2=0.703, Q=1.007, P=0.316

Meta Analysis-McGill (0-24 mths)

I²=0.0001, Q=0.15, P=0.690

Meta Analysis-MEP

I2=58.709, Q=4.844, P=0.089

Outcome		_	Statistics f	or each a	tudy				Hed	gea's g and 95	% CI			
	Hedgea's G	Standard error	Variance	Lower	Upper	Z-Value	p-Value						Relative	Relative
Plowman 2018AS	-0.150	0.405	0.164	-0.944	0.643	-0.371	0.711			-		- 1	30.65	
Plowman 2018AS	-0.090	0.269	0.072	-0.618	0.437	-0.338	0.737			•			69.35	
	-0.109	0.224	0.050	-0.548	0.331	-0.485	0.627			-				
								-8.00	-4.00	0.00	4.00	8.00		
									Favours A		Favoura B			
Meta Analysis-	PAS													

Fig. 9. Effect of exercise on swallowing safety (penetration-aspiration scale scores).

examined the effects of exercise regimens on function and quality of life in people with ALS [20-24]. In contrast to the present study, a recent systematic review examined the impact of specific exercise modalities including resistance, aerobic endurance exercise, and concurrent training in both animal and human models [20]. Unlike the present study, Tsitkanou et al. did not focus solely on clinical trials in humans and also did not include stretching/range of motion exercise regimens or respiratory muscle strength training [20]. However, similar to the present study, the authors of this previous systematic review concluded that the results of their review should be interpreted cautiously given some of the limitations of the studies included in the review such as small sample sizes, the heterogeneity of people with ALS, and poor study designs that resulted in potential confounding variables [20]. Another recent systematic review and meta-analysis evaluated the safety and efficacy of exercise regimens vs. standard of care exercise or no exercise in people with ALS [21]. Unlike the present study, Lijiao et al. included only randomized controlled trials in their meta-analysis, which may have limited their study findings given that high-quality observational studies may demonstrate more favorable effects than poorly designed randomized controlled trials [61]. Furthermore, excluding non-RCTs from systematic reviews/meta-analysis, particularly in rare patient populations such as individuals with ALS, may inadvertently exclude research studies that provide clinically relevant data [61]. Similar to the present study and the study by Tsitkanou et al., [20] Lijiao et al. [21] acknowledged study limitations (small sample size, high attrition rates, heterogeneity of exercise regimens and outcomes examined, etc.). However, unlike the present study, the results of this prior meta-analysis should be interpreted with caution because the authors did not appropriately account for and report on statistical measures of heterogeneity [62]. Additionally, Lijiao et al. [21] drew over-reaching conclusions about the efficacy of exercise regimens in people with ALS given the current level of research evidence. For example, the authors stated that aerobic endurance exercise is the most effective exercise in people with

ALS despite including data from only two studies with 55 individuals with ALS and results revealing small-moderate effect sizes.

4.1. Study limitations

A primary limitation of the current study was including only full-text articles available in English. As such, this may have led to the exclusion of other relevant research studies that have been reported in the grey literature. Additionally, only a single author performed study selection for this review, however, it's important to note that another author was consulted for consensus as needed. People with ALS are challenging to study due to the rapidly progressing nature of the disease. This is exemplified by the high attrition rates and small sample sizes in many research studies examining exercise in people with ALS. Thus, many research studies included in this review were likely under-powered (majority did not calculate a power analysis), limiting the validity of study findings. In addition to this, exercise may impact people with ALS differently due to individual patient factors such as age, body mass index, FVC, spinal vs. bulbar onset, idiopathic vs. genetic ALS, time since diagnosis, psychosocial factors, cognitive function, premorbid health, socioeconomic status, and whether or not they are on medications [10-12,63,64]. While most studies had clear inclusion/exclusion criteria for patients enrolled and reported common patient demographic/clinical information (age, onset type, etc.), few studies reported whether patients had idiopathic vs. genetic ALS and what medications (if any) patients were on. According to the baseline characteristics of people with ALS included in these research studies, exercise regimens have only been explored in patients with minimal-mild disease severity (>40 ALSFRS-R scores) and mild-moderate disease severity (39–30 ALSFRS-R scores) [54,55]. Therefore, the findings from these studies support the implementation of exercise-based interventions in the early stages of ALS disease progression. While most studies reported disease duration and functional measures of ALS, they

did not stratify patients to treatment arms based on disease duration or rate of progression, which could lead to bias and profoundly influence findings due to imbalanced groups. The types of exercise as well as the frequency, repetitions, intensity, and duration of exercise regimens varied greatly across studies. Exercise frequency ranged from $2\times$ /week to $3\times$ /day, up to 7 days/week, with repetitions of sets ranging from 20 to 25, intensity ranging from 30 to 60% of a patient's maximum value, and treatment duration ranging from 2 weeks to 2 years. Importantly, the small sample sizes, limited data due to lack of study replication, and heterogeneity of treatments and outcomes explored across studies resulted in few statistically significant findings from the meta-analysis and limits the strength of findings to date. Replication of research findings along with further research to determine the optimal types of exercise and the appropriate dosage for exercise training and maintenance for people with ALS is vital.

5. Conclusions

The current systematic review and meta-analysis provides support that deliberate, well-designed exercise regimens are safe, well-tolerated. and may prolong function, life, and quality of life in people with ALS with mild-moderate functional impairment. Unfortunately, methodological heterogeneity (study design and conduct), participant heterogeneity (time since disease onset, baseline disease severity), and clinical heterogeneity (variable interventions and outcomes) limited the aggregation of study findings to determine a more precise treatment effect for each outcome. Therefore, while results are promising, variability prohibits firm conclusions. Future studies should expand upon these promising preliminary results by conducting large, multi-site, randomized controlled trials that examine the impact of various exercise regimens over a longer period to assist in elucidating superior exercise regimens and optimal dosage parameters for exercise training in this vulnerable patient population. Replication studies are strongly encouraged which would allow for aggregation of study data in this rare population.

CRediT authorship contribution statement

Cara Donohue: Data curation, Formal analysis, Investigation, Writing – original draft. **Giselle Carnaby:** Formal analysis. **Mary Catherine Reilly:** Data curation, Investigation. **Ryan J. Colquhoun:** Methodology. **Kendrea L. (Focht) Garand:** Conceptualization, Methodology, Supervision.

Declaration of Competing Interest

The authors report no conflict of interest.

Acknowledgements

Research reported in this publication was partially supported by funding received from the SHRS Research Development Fund, the Audrey Holland Endowed Research Award, and the SHRS Ph.D. Student Award from the School of Health and Rehabilitation Sciences at the University of Pittsburgh and from the Council of Academic Programs in Communication Sciences and Disorders Ph.D. Scholarship. The content is solely the responsibility of the authors and does not necessarily represent the official views of the University of Pittsburgh or the Council of Academic Programs in Communication Sciences and Disorders.

References

- [1] O. Hardiman, Amyotrophic lateral sclerosis, in: John Wiley & Sons, Ltd (Ed.), Encyclopedia of Life Sciences, John Wiley & Sons, Ltd, Chichester, UK, 2001, https://doi.org/10.1002/9780470015902.a0000014.pub2.
- [2] L.C. Wijesekera, P.N. Leigh, Amyotrophic lateral sclerosis, Orphanet J. Rare Dis. 4 (2009) 3, https://doi.org/10.1186/1750-1172-4-3.

- [3] L.J. Ball, A. Willis, D.R. Beukelman, G.L. Pattee, A protocol for identification of early bulbar signs in amyotrophic lateral sclerosis, J. Neurol. Sci. 191 (1–2) (2001) 43–53, https://doi.org/10.1016/s0022-510x(01)00623-2.
- [4] R.H. Brown, A. Al-Chalabi, Amyotrophic lateral sclerosis, N. Engl. J. Med. 377 (2) (2017) 162–172, https://doi.org/10.1056/NEJMra1603471.
- [5] P. Kühnlein, H.-J. Gdynia, A.-D. Sperfeld, et al., Diagnosis and treatment of bulbar symptoms in amyotrophic lateral sclerosis, Nat. Clin. Pract. Neurol. 4 (7) (2008) 366–374, https://doi.org/10.1038/ncpneuro0853.
- [6] Franceschini A. da Costa, L.F. Mourão, Dysarthria and dysphagia in amyotrophic lateral sclerosis with spinal onset: a study of quality of life related to swallowing, NeuroRehabilitation. 36 (1) (2015) 127–134, https://doi.org/10.3233/NRE-141200.
- [7] G. Paris, O. Martinaud, A. Petit, et al., Oropharyngeal dysphagia in amyotrophic lateral sclerosis alters quality of life, J. Oral Rehabil. 40 (3) (2013) 199–204, https://doi.org/10.1111/joor.12019.
- [8] P. Mehta, W. Kaye, J. Raymond, et al., Prevalence of amyotrophic lateral sclerosis -United States, 2015, MMWR Morb. Mortal. Wkly Rep. 67 (46) (2018) 1285–1289, https://doi.org/10.15585/mmwr.mm6746a1.
- M.C. Kiernan, S. Vucic, B.C. Cheah, et al., Amyotrophic lateral sclerosis, Lancet. 377 (9769) (2011) 942–955, https://doi.org/10.1016/S0140-6736(10)61156-7.
- [10] J.A. Andrews, L. Meng, S.F. Kulke, et al., Association between decline in slow vital capacity and respiratory insufficiency, use of assisted ventilation, tracheostomy, or death in patients with amyotrophic lateral sclerosis, JAMA Neurol. 75 (1) (2018) 58–64, https://doi.org/10.1001/jamaneurol.2017.3339.
- [11] E. Onesti, I. Schettino, M.C. Gori, et al., Dysphagia in amyotrophic lateral sclerosis: impact on patient behavior, diet adaptation, and riluzole management, Front. Neurol. 8 (2017) 94, https://doi.org/10.3389/fneur.2017.00094.
- [12] A. Czaplinski, A.A. Yen, E.P. Simpson, S.H. Appel, Predictability of disease progression in amyotrophic lateral sclerosis, Muscle Nerve 34 (6) (2006) 702–708, https://doi.org/10.1002/mus.20658.
- [13] J.P.L. de Almeida, R. Silvestre, A.C. Pinto, M. de Carvalho, Exercise and amyotrophic lateral sclerosis, Neurol. Sci. 33 (1) (2012) 9–15, https://doi.org/ 10.1007/s10072-011-0921-9.
- [14] R. Harkawik, J.L. Coyle, Exercise for Better ALS Management? The ASHA Leader, 2012.
- [15] K. Francis, J.R. Bach, J.A. DeLisa, Evaluation and rehabilitation of patients with adult motor neuron disease, Arch. Phys. Med. Rehabil. 80 (8) (1999) 951–963, https://doi.org/10.1016/s0003-9993(99)90089-8.
- [16] I.G. Kirkinezos, D. Hernandez, W.G. Bradley, C.T. Moraes, Regular exercise is beneficial to a mouse model of amyotrophic lateral sclerosis, Ann. Neurol. 53 (6) (2003) 804–807, https://doi.org/10.1002/ana.10597.
- [17] D.J. Mahoney, C. Rodriguez, M. Devries, N. Yasuda, M.A. Tarnopolsky, Effects of high-intensity endurance exercise training in the G93A mouse model of amyotrophic lateral sclerosis, Muscle Nerve 29 (5) (2004) 656–662, https://doi. org/10.1002/mus.20004.
- [18] N.M. Rogus-Pulia, E.K. Plowman, Shifting tides toward a proactive patientcentered approach in dysphagia management of neurodegenerative disease, Am. J. Speech Lang. Pathol. 29 (28) (2020) 1094–1109, https://doi.org/10.1044/2020_ AJSLP-19-00136.
- [19] W. Robberecht, T. Philips, The changing scene of amyotrophic lateral sclerosis, Nat. Rev. Neurosci. 14 (4) (2013) 248–264, https://doi.org/10.1038/nrn3430.
- [20] S. Tsitkanou, P. Della Gatta, V. Foletta, A. Russell, The role of exercise as a nonpharmacological therapeutic approach for amyotrophic lateral sclerosis: beneficial or detrimental? Front. Neurol. 10 (2019) 783, https://doi.org/10.3389/ fneur.2019.00783.
- [21] L. Meng, X. Li, C. Li, et al., Effects of exercise in patients with amyotrophic lateral sclerosis: a systematic review and meta-analysis, Am. J. Phys. Med. Rehabil. 99 (9) (2020) 801–810, https://doi.org/10.1097/PHM.000000000001419.
- [22] V. Dalbello-Haas, J.M. Florence, L.S. Krivickas, Therapeutic exercise for people with amyotrophic lateral sclerosis or motor neuron disease, Cochrane Database Syst. Rev. 2 (2008), https://doi.org/10.1002/14651858.CD005229.pub2. CD005229.
- [23] L. Ng, F. Khan, C.A. Young, M. Galea, Symptomatic treatments for amyotrophic lateral sclerosis/motor neuron disease, Cochrane Database Syst. Rev. 1 (2017) CD011776, https://doi.org/10.1002/14651858.CD011776.pub2.
- [24] L. Ortega-Hombrados, G. Molina-Torres, A. Galán-Mercant, E. Sánchez-Guerrero, M. González-Sánchez, M. Ruiz-Muñoz, Systematic review of therapeutic physical exercise in patients with amyotrophic lateral sclerosis over time, Int. J. Environ. Res. Public Health 18 (3) (2021), https://doi.org/10.3390/jjerph18031074.
- [25] M.J. Page, J.E. McKenzie, P.M. Bossuyt, et al., The PRISMA 2020 statement: an updated guideline for reporting systematic reviews, Int. J. Surg. 88 (2021), 105906, https://doi.org/10.1016/j.ijsu.2021.105906.
- [26] B. Phillips, C. Ball, D. Sackett, D. Badenoch, S. Straus, Oxford Centre for Evidencebased Medicine Levels of Evidence Oxford: Oxford Centre for Evidence-Based Medicine, 2009 [updated 2009; cited 2016 21 ...].
- [27] L.M. Kmet, R.C. Lee, L.S. Cook, Standard quality assessment criteria for evaluating primary research papers from a variety of fields: Alberta Heritage Foundation for Medical Research, Retreived from, http://www.ihe.ca/documents/HTA.
- [28] V.E. Drory, E. Goltsman, J.G. Reznik, A. Mosek, A.D. Korczyn, The value of muscle exercise in patients with amyotrophic lateral sclerosis, J. Neurol. Sci. 191 (1–2) (2001) 133–137, https://doi.org/10.1016/s0022-510x(01)00610-4.
- [29] C. Lunetta, A. Lizio, V.A. Sansone, et al., Strictly monitored exercise programs reduce motor deterioration in ALS: preliminary results of a randomized controlled trial, J. Neurol. 263 (1) (2016) 52–60, https://doi.org/10.1007/s00415-015-7924-Z.

- [30] L.L. Clawson, M. Cudkowicz, L. Krivickas, et al., A randomized controlled trial of resistance and endurance exercise in amyotrophic lateral sclerosis, Amyotroph Later. Scler. Frontotemporal Degener. 19 (3–4) (2018) 250–258, https://doi.org/ 10.1080/21678421.2017.1404108.
- [31] N. Kato, G. Hashida, M. Kobayashi, K. Konaka, Physical therapy improves lower limb muscle strength but not function in individuals with amyotrophic lateral sclerosis: a case series study, Ann. Phys. Rehabil. Med. 61 (2) (2018) 108–110, https://doi.org/10.1016/j.rehab.2017.09.007.
- [32] K. Kitano, T. Asakawa, N. Kamide, et al., Effectiveness of home-based exercises without supervision by physical therapists for patients with early-stage amyotrophic lateral sclerosis: a pilot study, Arch. Phys. Med. Rehabil. 99 (10) (2018) 2114–2117, https://doi.org/10.1016/j.apmr.2018.02.015.
- [33] A. Merico, M. Cavinato, C. Gregorio, et al., Effects of combined endurance and resistance training in amyotrophic lateral sclerosis: a pilot, randomized, controlled study, Eur. J. Transl. Myol. 28 (1) (2018) 7278, https://doi.org/10.4081/ eitm.2018.7278.
- [34] A.C.M. Braga, A. Pinto, S. Pinto, M. de Carvalho, The role of moderate aerobic exercise as determined by cardiopulmonary exercise testing in ALS, Neurol. Res. Int. 2018 (2018) 8218697, https://doi.org/10.1155/2018/8218697.
- [35] E. Zucchi, M. Vinceti, C. Malagoli, et al., High-frequency motor rehabilitation in amyotrophic lateral sclerosis: a randomized clinical trial, Ann. Clin. Transl. Neurol. 6 (5) (2019) 893–901, https://doi.org/10.1002/acn3.765.
- [36] V. Pegoraro, A. Merico, C. Angelini, Myomirnas dysregulation in ALS rehabilitation, Brain Sci. 9 (1) (2019), https://doi.org/10.3390/brainsci9010008.
- [37] V.D. Bello-Haas, J.M. Florence, A.D. Kloos, et al., A randomized controlled trial of resistance exercise in individuals with ALS, Neurology. 68 (23) (2007) 2003–2007, https://doi.org/10.1212/01.wnl.0000264418.92308.a4.
- [38] R.W. Bohannon, Results of resistance exercise on a patient with amyotrophic lateral sclerosis. A case report, Phys. Ther. 63 (6) (1983) 965–968, https://doi.org/ 10.1093/ptj/63.6.965.
- [39] N. Kato, G. Hashida, K. Konaka, Effect of muscle strengthening exercise and time since onset in patients with amyotrophic lateral sclerosis: a 2-patient case series study, Medicine. 97 (25) (2018), e11145, https://doi.org/10.1097/ MD.000000000011145.
- [40] L. Jensen, J.B. Djurtoft, R.D. Bech, et al., Influence of resistance training on neuromuscular function and physical capacity in ALS patients, J. Neurodegener Dis, 2017 (2017) 1436519, https://doi.org/10.1155/2017/1436519.
- [41] A.C. Pinto, M. Alves, A. Nogueira, et al., Can amyotrophic lateral sclerosis patients with respiratory insufficiency exercise? J. Neurol. Sci. 169 (1–2) (1999) 69–75, https://doi.org/10.1016/s0022-510x(99)00218-x.
- [42] M. Sanjak, E. Bravver, W.L. Bockenek, H.J. Norton, B.R. Brooks, Supported treadmill ambulation for amyotrophic lateral sclerosis: a pilot study, Arch. Phys. Med. Rehabil. 91 (12) (2010) 1920–1929, https://doi.org/10.1016/j. apmr.2010.08.009.
- [43] A. Sivaramakrishnan, S. Madhavan, Recumbent stepping aerobic exercise in amyotrophic lateral sclerosis: a pilot study, Neurol. Sci. 40 (5) (2019) 971–978, https://doi.org/10.1007/s10072-019-03736-3.
- [44] A.C. Braga, A. Pinto, S. Pinto, M. de Carvalho, Tele-monitoring of a home-based exercise program in amyotrophic lateral sclerosis: a feasibility study, Eur. J. Phys. Rehabil. Med. 54 (3) (2018) 501–503, https://doi.org/10.23736/S1973-9087.18.05129-8.
- [45] A.C. van Groenestijn, C.D. Schröder, R.P.A. van Eijk, et al., Aerobic exercise therapy in ambulatory patients with ALS: a randomized controlled trial, Neurorehabil. Neural Repair 33 (2) (2019) 153–164, https://doi.org/10.1177/ 1545968319826051.
- [46] L.C. Tabor, K.M. Rosado, R. Robison, K. Hegland, I.A. Humbert, E.K. Plowman, Respiratory training in an individual with amyotrophic lateral sclerosis, Ann. Clin. Transl. Neurol. 3 (10) (2016) 819–823, https://doi.org/10.1002/acn3.342.

- [47] R. Robison, L.C. Tabor-Gray, J.P. Wymer, E.K. Plowman, Combined respiratory training in an individual with C9orf72 amyotrophic lateral sclerosis, Ann. Clin. Transl. Neurol. 5 (9) (2018) 1134–1138, https://doi.org/10.1002/acn3.623.
- [48] E.K. Plowman, S.A. Watts, L. Tabor, et al., Impact of expiratory strength training in amyotrophic lateral sclerosis, Muscle Nerve 54 (1) (2016) 48–53, https://doi.org/ 10.1002/mus.24990.
- [49] E.K. Plowman, L. Tabor-Gray, K.M. Rosado, et al., Impact of expiratory strength training in amyotrophic lateral sclerosis: results of a randomized, sham-controlled trial, Muscle Nerve 59 (1) (2019) 40–46, https://doi.org/10.1002/mus.26292.
- [50] B.C. Cheah, R.A. Boland, N.E. Brodaty, et al., INSPIRATIONAL–INSPIRAtory muscle training in amyotrophic lateral sclerosis, Amyotroph. Lateral Scler. 10 (5–6) (2009) 384–392, https://doi.org/10.3109/17482960903082218.
- [51] S. Pinto, M. Śwash, M. de Carvalho, Respiratory exercise in amyotrophic lateral sclerosis, Amyotroph. Lateral Scler. 13 (1) (2012) 33–43, https://doi.org/10.3109/ 17482968.2011.626052.
- [52] S. Pinto, M. de Carvalho, Can inspiratory muscle training increase survival in earlyaffected amyotrophic lateral sclerosis patients? Amyotroph. Lateral Scler. Frontotemporal. Degen. 14 (2) (2013) 124–126, https://doi.org/10.3109/ 17482968.2012.726227.
- [53] R. Tahmosybayat, K. Baker, A. Godfrey, N. Caplan, G. Barry, A systematic review and meta-analysis of outcome measures to assess postural control in older adults who undertake exergaming, Maturitas. 98 (2017) 35–45, https://doi.org/10.1016/ j.maturitas.2017.02.003.
- [54] P.H. Gordon, R.G. Miller, D.H. Moore, ALSFRS-R, Amyotroph Later. Scler Other Motor Neuron. Disord 5 (Suppl. 1) (2004) 90–93, https://doi.org/10.1080/ 17434470410019906.
- [55] P.H. Gordon, Y.K. Cheung, Progression rate of ALSFRS-R at time of diagnosis predicts survival time in ALS, Neurology. 67 (7) (2006) 1314–1315, author reply 1314, https://doi.org/10.1212/01.wnl.0000243812.25517.87.
- [56] L.B. Krupp, N.G. LaRocca, J. Muir-Nash, A.D. Steinberg, The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus, Arch. Neurol. 46 (10) (1989) 1121–1123, https://doi.org/10.1001/ archneur.1989.00520460115022.
- [57] S.R. Cohen, B.M. Mount, M.G. Strobel, F. Bui, The McGill quality of life questionnaire: a measure of quality of life appropriate for people with advanced disease. A preliminary study of validity and acceptability, Palliat. Med. 9 (3) (1995) 207–219, https://doi.org/10.1177/026921639500900306.
- [58] D. Kidd, G. Stewart, J. Baldry, et al., The functional Independence measure: a comparative validity and reliability study, Disabil. Rehabil. 17 (1) (1995) 10–14, https://doi.org/10.3109/09638289509166622.
- [59] J. Robbins, J. Coyle, J. Rosenbek, E. Roecker, J. Wood, Differentiation of normal and abnormal airway protection during swallowing using the penetrationaspiration scale, Dysphagia. 14 (4) (1999) 228–232, https://doi.org/10.1007/ PL00009610.
- [60] J.C. Rosenbek, J.A. Robbins, E.B. Roecker, J.L. Coyle, J.L. Wood, A penetrationaspiration scale, Dysphagia. 11 (2) (1996) 93–98.
- [61] I. Shrier, J.-F. Boivin, R.J. Steele, et al., Should meta-analyses of interventions include observational studies in addition to randomized controlled trials? A critical examination of underlying principles, Am. J. Epidemiol. 166 (10) (2007) 1203–1209, https://doi.org/10.1093/aje/kwm189.
- [62] C. Donohue, G. Carnaby, R.J. Colquhoun, D. Lacomis, K.L. Garand, Letter to the editor regarding: "effects of exercise in patients with amyotrophic lateral sclerosis: a systematic review and meta-analysis", Am. J. Phys. Med. Rehabil. (November 2020) https://doi.org/10.1097/PHM.00000000001656.
- [63] V. Gallo, N. Vanacore, H.B. Bueno-de-Mesquita, et al., Physical activity and risk of amyotrophic lateral sclerosis in a prospective cohort study, Eur. J. Epidemiol. 31 (3) (2016) 255–266, https://doi.org/10.1007/s10654-016-0119-9.
- [64] A. Chiò, G. Logroscino, O. Hardiman, et al., Prognostic factors in ALS: a critical review, Amyotroph. Lateral Scler. 10 (5–6) (2009) 310–323, https://doi.org/ 10.3109/17482960802566824.