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Abstract: Autophagy is a “housekeeping” lysosomal degradation process involved in numerous
physiological and pathological processes in all eukaryotic cells. The dysregulation of hepatic au-
tophagy has been described in several conditions, from obesity to diabetes and cholestatic disease. We
review the role of autophagy, focusing on age-related cholestatic diseases, and discuss its therapeutic
potential and the molecular targets identified to date. The accumulation of toxic BAs is the main
cause of cell damage in cholestasis patients. BAs and their receptor, FXR, have been implicated in the
regulation of hepatic autophagy. The mechanisms by which cholestasis induces liver damage include
mitochondrial dysfunction, oxidative stress and ER stress, which lead to cell death and ultimately to
liver fibrosis as a compensatory mechanism to reduce the damage. The stimulation of autophagy
seems to ameliorate the liver damage. Autophagic activity decreases with age in several species,
whereas its basic extends lifespan in animals, suggesting that it is one of the convergent mechanisms
of several longevity pathways. No strategies aimed at inducing autophagy have yet been tested in
cholestasis patients. However, its stimulation can be viewed as a novel therapeutic strategy that may
reduce ageing-dependent liver deterioration and also mitigate hepatic steatosis.
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1. Introduction

Autophagy is a “housekeeping” lysosomal degradation process involved in numerous
physiological and pathological processes in all eukaryotic cells. Ohsumi’s studies of
Saccharomyces cerevisiae have provided significant advances by allowing the identification
of several genes involved in autophagy in yeast [1,2]. Autophagy contributes to the
maintenance of cellular homeostasis. It can be selective or non-selective, depending
on the targets to which cytoplasmic substrates are delivered [3–5]. Selective autophagy
involves damaged or superfluous organelles, whose degradation process is named after its
target: mitophagy for mitochondria, pexophagy for peroxisomes, xenophagy for microbes,
etc. [6]; lipophagy involves the degradation of lipid droplets [7]. According to recent
findings, autophagy is involved in the remodeling of the endoplasmic reticulum (ER) [8,9],
a dynamic organelle that undergoes alterations in morphology, molecular composition
and functional specification in response to a variety of stimuli. ER remodeling occurs
via ER-phagy of ER fragments, specifically via macroautophagy (macroER-phagy) or
microautophagy (microER-phagy) [8]. Pathological or physiological challenges may induce
ER perturbations that upregulate autophagy to restore homeostasis, a process that has been
defined as recovER-phagy (ER-phagy-mediated recovery from ER stress) [9,10]. SEC62
(translocation protein SEC62)—an ER-resident transmembrane component—is involved in
the import of newly synthesized proteins. SEC62-mediated recovER-phagy is activated
upon the resolution of a transient ER stress [9]. Cytosolic accumulation and aggregation of
misfolded proteins upon defective clearance are involved in conditions such as spongiform
neurodegeneration and severe ataxia. Misfolded proteins in the ER are translocated to the
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cytosol for proteasomal degradation via ER-associated degradation (ERAD) [11]. Proteins
which do not engage ERAD factors are segregated in ER subdomains and delivered to
endolysosomes for ER-to-lysosome-associated degradation (ERLAD) under the control of
ER-phagy receptors [12,13].

Further stimuli that activate autophagy include nutrient starvation, stress, hormonal
stimulation and pharmacological agents [14,15]. The mode of cargo delivery into lyso-
somes distinguishes three types of autophagy: microautophagy, macroautophagy and
chaperone-mediated autophagy (CMA), the latter only found in mammalian cells [16]. In
microautophagy, cytosolic components are directly taken up by lysosomes through invagi-
nation of the lysosomal membrane and then degraded in the lysosomal lumen [17]. Macro-
and microautophagy can both engulf large structures by selective and non-selective mecha-
nisms. In CMA, chaperone-dependent selection of soluble cytosolic proteins involves the
direct shuffling of proteins across the lysosomal membrane [18]. CMA is highly selective,
resulting in the degradation of a population of cytosolic proteins that contain a KFERQ
peptide [19]. Our knowledge of macroautophagy (hereafter autophagy), the most common
and best-studied mechanism, has been advanced by genetic studies of the yeast S. cerevisiae.
More than 30 autophagy-related (ATG) genes and their mammalian counterparts have
been identified, including genes that had not been discovered in the relatively specific
yeast screens.

2. Molecular Aspects of the Autophagy Process

The autophagy pathway consists of autophagosome initiation, membrane elongation,
autophagosome maturation and autophagosome fusion with the lysosome.

Pre-autophagosomal structures, or phagophore assembly sites (PASs), begin to cre-
ate the membrane source, which expands to engulf the intracellular components to be
degraded. Although not all membrane sources have been identified, recent data seem
to indicate that the ER contributes to the formation of structures called omegasomes.
Omegasomes are rich in phosphatidylinositol-3-phosphate (PI3P), a key lipid messenger
for autophagy initiation [20]. Other potential membrane sources are the plasma membrane,
mitochondria and the Golgi complex [21–23]. Phagophore formation requires the activity
of a class III phosphatidylinositol 3-kinase (PI3K) complex [24]. VPS34 is a part of the PI3K
complex, which also involves Beclin-1 (BECN1), ATG14L and VPS15 [24]. The inhibition
of VPS34 activity by 3-methyladenine (3-MA) or wortmannin induces the inhibition of
autophagosome formation. The ULK1 complex is also involved in autophagy initiation;
its phosphorylation of BECN1 is important to activate ATG14-bound VPS34 [25]. The
ULK1 complex includes the focal adhesion kinase family interacting protein of 200 kDa
(FIP200), Unc-51-like autophagy-activating kinase (ULK1), ATG101 and ATG13. ULK1 is a
serine/threonine kinase that phosphorylates the components of the PI3K complex.

The second step, membrane elongation, allows for the capturing of the autophagic
substrates. In both yeast and mammals, it relies on two ubiquitin-like reactions. For the first,
ATG12 is conjugated to ATG5 in a reaction that requires ATG7 and ATG10 [26]. ATG7—acting
in a similar manner to an E1 ubiquitin-activating enzyme—activates ATG12 in an ATP-
dependent manner. ATG12 is then transferred to ATG10, an E2-like ubiquitin carrier protein
that potentiates the covalent linkage of ATG12 to ATG5. Conjugated ATG5–ATG12 com-
plexes pair with ATG16L dimers to form a multimeric ATG5–ATG12–ATG16L, resulting
in an 800 kDa complex that associates with the expanding phagophore [5,27]. The second
ubiquitin-like reaction involves microtubule-associated protein 1 light chain 3 (LC3), which is
encoded by the mammalian homologue of ATG8 [27]. LC3 is expressed in most cell types
as a full-length cytosolic protein that, upon autophagy induction, is proteolytically cleaved
by ATG4, a cysteine protease, to generate LC3-I [5]. The carboxyterminal glycine exposed
by ATG4-dependent cleavage is then activated in an ATP-dependent manner by the E1-like
ATG7, similarly to the action of ATG7 on ATG12. Activated LC3B-I is then transferred to
ATG3, a different E2-like carrier protein, before phosphatidylethanolamine (PE) is conjugated
to the carboxyl glycine to generate processed LC3B-II [5,16].
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The closed autophagosome is transported to the endolysosomal system, where its
maturation—through fusion with endocytic vesicles and lysosomes—gives rise to the
autophagolysosome, where the sequestered material is degraded. Microtubules and actin
filaments, the two main components of the cytoskeleton, have both been implicated in
autophagosome trafficking. To avoid non-specific fusion and ensure proper cargo degra-
dation, the process is tightly regulated, although the exact mechanisms involved in the
relevant signaling are not completely understood [28]. Notably, autophagosomes on the
way to fusion with lysosomes can fuse with endosomes to form amphisomes—Figure 1.
A detailed review of the autophagy apparatus has been provided elsewhere [29,30].

Cells 2021, 10, 2772 3 of 21 
 

 

on ATG12. Activated LC3B-I is then transferred to ATG3, a different E2-like carrier pro-
tein, before phosphatidylethanolamine (PE) is conjugated to the carboxyl glycine to gen-
erate processed LC3B-II [5,16]. 

The closed autophagosome is transported to the endolysosomal system, where its 
maturation—through fusion with endocytic vesicles and lysosomes—gives rise to the au-
tophagolysosome, where the sequestered material is degraded. Microtubules and actin 
filaments, the two main components of the cytoskeleton, have both been implicated in 
autophagosome trafficking. To avoid non-specific fusion and ensure proper cargo degra-
dation, the process is tightly regulated, although the exact mechanisms involved in the 
relevant signaling are not completely understood [28]. Notably, autophagosomes on the 
way to fusion with lysosomes can fuse with endosomes to form amphisomes—Figure 1. 
A detailed review of the autophagy apparatus has been provided elsewhere [29,30]. 

 
Figure 1. Molecular and signaling pathways that regulate autophagy. Autophagy is a degradation process involving four 
key steps: initiation of the membrane from PAS, through the action of ULK1, oppositely regulated by mTOR, AMPK and 
a class III PI3K complex; membrane elongation, which allows the capturing of the autophagic substrates and relies on two 
ubiquitin-like reactions—autophagosomes can fuse with endosomes to form amphisomes; autophagosome maturation; 
and autophagosome fusion with the lysosome to form the autophagolysosome, where the sequestered material is de-
graded. The autophagy process may be selective or non-selective depending on its target. 

2.1. Autophagy Evaluation in Experimental Settings 
Investigating the autophagic process is difficult, due to the lack of absolute criteria 

applicable to all biological or experimental contexts. Indeed, owing to its complex and 
dynamic nature, some assays are unsuitable, problematic or may not work at all [31]. 
Transmission electron microscopy (TEM) is the only tool that depicts structures in their 
natural environment as well as position, and therefore supports quantitative studies [31]. 
The disadvantages of TEM studies are related to the specialized expertise required to han-
dle samples in all stages of specimen preparation, from fixation to sectioning and staining. 
Moreover, accurate identification of autophagic structures is essential and requires con-
siderable experience. Such problems can be addressed by using approaches that allow for 
the monitoring of autophagy, such as fluorescence microscopy and biochemical methods. 

Figure 1. Molecular and signaling pathways that regulate autophagy. Autophagy is a degradation process involving four
key steps: initiation of the membrane from PAS, through the action of ULK1, oppositely regulated by mTOR, AMPK and a
class III PI3K complex; membrane elongation, which allows the capturing of the autophagic substrates and relies on two
ubiquitin-like reactions—autophagosomes can fuse with endosomes to form amphisomes; autophagosome maturation; and
autophagosome fusion with the lysosome to form the autophagolysosome, where the sequestered material is degraded. The
autophagy process may be selective or non-selective depending on its target.

2.1. Autophagy Evaluation in Experimental Settings

Investigating the autophagic process is difficult, due to the lack of absolute criteria
applicable to all biological or experimental contexts. Indeed, owing to its complex and
dynamic nature, some assays are unsuitable, problematic or may not work at all [31].
Transmission electron microscopy (TEM) is the only tool that depicts structures in their
natural environment as well as position, and therefore supports quantitative studies [31].
The disadvantages of TEM studies are related to the specialized expertise required to
handle samples in all stages of specimen preparation, from fixation to sectioning and
staining. Moreover, accurate identification of autophagic structures is essential and re-
quires considerable experience. Such problems can be addressed by using approaches that
allow for the monitoring of autophagy, such as fluorescence microscopy and biochemical
methods. A widely used marker is LC3, the mammalian homologue of yeast Atg8, which
is involved in autophagosome formation. Indirect immunofluorescence or direct fluores-
cence microscopy has been used to monitor autophagy by tagging LC3 with a fluorescent
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protein such as GFP (GFP-LC3). GFP-LC3 is then visualized as a diffuse cytoplasmic
pool or as punctate structures representing autophagosomes [31,32]. GFP-LC3 detection
is also useful for in vivo studies of transgenic organisms to investigate physiological or
pathological conditions. In numerous mouse models developed in the past decade, the
autophagy process can be directly monitored by creating cryosections for fluorescence
microscopy [33]. In autophagosome formation, the ubiquitin-like protein LC3 is conjugated
to PE. The conversion of LC3-I (cytosolic form) to LC3-II (PE-conjugated form) can be
evaluated by immunoblotting or by the LC3 turnover assay, where LC3-II degradation in
the lysosome is estimated by comparing samples exposed and not exposed to lysosomal
inhibitor treatment. Despite its greater molecular weight, LCE-II migrates faster than LC3-I
in SDS-PAGE due to its hydrophobicity. The unconjugated (approximately 16–18 kDa)
and PE-conjugated (approximately 14–16 kDa) forms should be indicated on Western blots
whenever both are detectable [33]. Another marker, sequestosome 1 (SQSTM1)/p62, is an
autophagy receptor that links ubiquitinated proteins to LC3 and accumulates in cells when
autophagy is inhibited. Since SQSTM1 changes can be cell-type- or context-specific, its use
requires the utmost caution. Other proteins that can be used as autophagy markers include
Atg9/ATG9A, ATG12-ATG5, ATG14 and BECN1/Vsp30/Atg6. A useful and detailed
guide to autophagy, especially for researchers new to the field, has been published by
Klionsky et al. [31]. A comprehensive schematization of autophagy is reported in Table 1.

Table 1. Schematic illustration of autophagy and of the methods that can be used to monitor the
process. See text for explanations of each pathway and a discussion of their functions.

Overview of the Autophagy Process References

Two types of autophagy

Selective [3,5]
Non-selective [5]

Investigation of autophagy

Physical methods
Transmission electron microscopy [31]

Biochemical methods
Fluorescence microscopy [32]

Immunoblotting, SDS-PAGE [31]

2.2. Autophagy in Liver Physiology

Autophagy is an important regulatory mechanism in the liver. In conditions of
food deprivation (starvation), hepatic autophagy activation provides nutrients via the
degradation of intracellular materials [34]. The degradation and recycling of essential
components thus contribute to the energy stores and, at least in the liver, closely depend
on the duration of nutrient deficiency. Hormones (insulin and glucagon) and amino
acids are important stimuli for adapting to starvation [35,36]. In mice, starvation-induced
autophagy is important in the conversion of amino acids into glucose via gluconeogenesis,
done to maintain blood glucose concentrations [37]. However, if a nutrient shortage
persists, glycophagy and lipophagy are also activated, providing glucose and free fatty
acids (FFAs) as preferential cargo [38]. The mammalian target of rapamycin (mTOR) is
the key cellular nutrient sensor that regulates cell growth and metabolism. This protein
kinase is composed of two complexes: mTORC1, which is involved in nutrient homeostasis,
and mTORC2 [39,40]. In the presence of nutrients, mTORC1 directly phosphorylates and
inhibits the autophagy-initiating kinase ULK1. Pacer—a recently discovered regulator
of hepatic autophagy and liver homeostasis, and a key player in connecting metabolic
signals to late steps of autophagy regulation [41]—is directly phosphorylated by mTORC1
in nutrient-rich conditions; its absence impairs autophagosome maturation and lipid
catabolism both in vitro and in vivo. Balanced mTOR activity is critical for physiological
liver function. Notably, hyper- and hypoactivation both result in the development of
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hepatic tumors [42]. In young Atg5 knockout (L-Atg5 KO) mice, mTOR ablation attenuated
hepatomegaly, liver injury and inflammation, but not fibrosis [43]. mTOR inhibitors such
as rapamycin and its derivatives have considerably improved autophagy regulation [44].
They include everolimus (RAD001), deforolimus (AP23573) and temsirolimus (CCI-779),
whereas second-generation mTOR inhibitors include MLN0128 (sapanisertib), CC-233 or
NVP-BEZ235 (dactolisib) and AZD-8055 [45]. CMA is also involved in regulating lipolysis
in the liver through lipid droplet degradation. Perilipins (PLINs) are proteins that coat
lipid droplets; PLIN removal is required for cytosolic lipases and autophagy to gain access
to the lipids in the droplet [38]. Upregulation of the ubiquitous PLIN2 has been reported
to suppress autophagy, whereas its downregulation stimulates triglyceride catabolism
via autophagy [46].

2.3. Autophagy in Liver Disease

Dysregulation of liver autophagy has been described in severe metabolic disorders
such as obesity, hepatic steatosis and diabetes [38]. Yet, it is still unclear whether au-
tophagy favors or prevents the progression of liver injury. Fibrosis is the result of the
wound healing response of the liver to repeated injury. The main causes of liver fibrosis
include chronic viral infection, such as by hepatitis B and C, alcohol abuse (alcoholic
steatohepatitis) and non-alcoholic fatty liver disease (NAFLD) [47–49]. NAFLD and non-
alcoholic steatohepatitis (NASH), a progressive form of NAFLD, can evolve to advanced
liver disease, cirrhosis and hepatocellular carcinoma [49,50]. Liver sinusoidal endothe-
lial cells (LSECs), which line the sinusoidal lumen, play a key role in liver injury due
to their unique position and provide the first line of defense. NASH is associated with
a defect in liver endothelial autophagy due to inhibition of adenosine-monophosphate-
activated protein kinase (AMPK)α activity, the master regulator of autophagy [51]. The
deficiency induces endothelial inflammation, endothelial-to-mesenchymal transition and
endothelial cell death. Moreover, upon exposure to a high-fat diet, LSECs deficient in au-
tophagy rapidly and strongly modulate some genes involved in inflammation [51]. In vivo,
autophagy has been investigated in a transgenic mouse line bearing a deletion of Atg7
expression in endothelial cells (Atg7endo mice). Following mild acute liver injury, LSECs
isolated from such mice displayed worse endothelial dysfunction compared to their control
littermates (Atg7control). LSEC autophagy also regulates the antioxidant response, as
demonstrated by elevated intracellular O−2 production in Atg7endo mice subjected to
mild acute liver injury. Since autophagy exerts a protective role in early liver injury, its
potentiation may prove an attractive approach to prevent disease progression [52]. Sirtuin
3 (Sirt3), a nicotinamide-adenine-dinucleotide-dependent deacetylase mainly expressed in
mitochondria, has recently been reported to play a role in NAFLD. Sirt3 overexpression
prevented diet-mediated hepatic steatosis, attenuated liver damage and protected mito-
chondria against stress through mitophagy activation. Mitophagy is primarily regulated
by Bcl-2/adenovirus E1B 19 kDa protein-interacting protein 3 (Bnip3), whose deletion
has been found to be related to chronic liver damage and metabolic disorders. Sirt3 has
been reported to regulate Bnip3-related mitophagy via the ERK–CREB axis, a pro-survival
signal for several diseases; notably, blockade of the ERK–CREB axis repressed mitophagy
activity and abrogated Sirt3-mediated mitochondrial protection [53]. Apoptosis-signal-
regulating kinase 1 (ASK1) is activated by a number of stressors including reactive oxygen
species (ROS), tumor necrosis factor alpha, ER stress and lipopolysaccharides. These stress
signals phosphorylate ASK1 to induce activation of the c-Jun N-terminal kinase and p38
MAPK signaling cascades. In a recent study [54], ASK1 inhibition in vivo and in vitro
increased hepatic lipid droplet accumulation and/or liver fibrosis, possibly by blocking
autophagy; this finding suggests a protective role for liver-expressed ASK1, since ASK1
knockout (KO) mice develop NASH and fibrosis and show altered autophagy. Accordingly,
cultured HepG2 hepatocytes with ASK1 depletion show increased lipid storage and im-
paired autophagy [54]. Following acute injury, the inflammatory milieu activates resident
macrophages (Kupffer cells) or injured hepatocytes to replace necrotic or apoptotic cells.



Cells 2021, 10, 2772 6 of 20

Persistence of hepatic injury and failed liver regeneration induce activation of hepatic
stellate cells (HSCs) through α-SMA and collagen-I expression and deposition of large
amounts of the extracellular matrix [47]. Dimethyl α-ketoglutarate has been demonstrated
to inhibit collagen deposition in a carbon tetrachloride (CCl4)-induced liver fibrosis model
in vivo. LC3B and α-SMA (a marker of HSC activation) signaling were both reduced in
fibrotic livers treated with DMKG, suggesting that DMKG may inhibit HSC activation by
inhibiting autophagy. These effects have been confirmed in vitro using the HSC-T6 cell
line [55]. In the liver, extracellular vesicles (EVs) from injured hepatocytes and LSECs have
been reported to induce HSC activation. The binding of platelet-derived growth factor
(PDGF)—a key molecule in liver fibrosis progression—to PDGF receptor (PDGFR) induces
tyrosine autophosphorylation, which recruits important downstream signaling molecules,
such as Src homology 2 domain protein phosphatase 2 (SHP2). PDGF and SHP2 induce
EV release from HSCs through activation of mTOR signaling, which inhibits autophagy,
and Rho-associated protein kinase 1 signaling. HSC autophagy has been found to mitigate
liver fibrosis by reducing fibrogenic HSC-derived EV release [56]. Spermidine (SPD), a
naturally occurring polyamine, has been demonstrated to exert beneficial effects against
liver fibrosis and hepatocarcinogenesis through autophagy activation. SPD confers liver
protection through non-canonical induction of NRF2, a transcription factor that activates
cytoprotective and pro-survival pathways in mammalian cells. NRF2 is activated both via
a canonical and a non-canonical mechanism that involves the selective autophagy substrate
SQSTM1/p62. When liver fibrosis was induced with carbon tetrachloride in wild-type,
Nrf2−/−, p62−/− and Nrf2−/−p62−/− double-KO mice, the protective effect of SPD
was significantly reduced in Nrf2 and p62 single-KO mice and was completely lost in
double-KO mice [57]. Mechanistically, SPD confers liver protection by the microtubule-
associated protein, which positively regulates the autophagy flux [57,58]. Isorhamnetin
(IH) has anti-inflammatory, antioxidant and antitumor activity and seems to exert hepato-
protective effects by inhibiting hepatocyte autophagy and apoptosis. Indeed, IH treatment
inhibited autophagy in two liver fibrosis mouse models in a dose-dependent manner, by
downregulating the TGF-β1/Smad3 signaling pathway [59]. Sustained liver inflammation
is characterized by the release of proinflammatory cytokines and chemokines and the
subsequent recruitment of blood monocytes, which infiltrate the liver and perpetuate the
inflammatory response. Recently, a non-canonical form of autophagy, LC3-associated
phagocytosis (LAP), has been seen to exert beneficial antifibrogenic effects. Autophagy and
LAP are distinct both functionally and mechanistically; notably, the latter is independent of
the autophagy-activating kinase ULK1 but requires components such as the P13K complex
and Atg5 and Atg7. LAP, which is enhanced in blood monocytes from the liver of cirrhosis
patients and in animal models, exerts an anti-inflammatory action. Sustaining LAP would
mitigate both systemic and hepatic inflammation and may open therapeutic prospects for
chronic liver disease [60]. Moreover, the antifibrotic effect of mesenchymal stem cell (MSC)-
based therapy has the potential to ameliorate several inflammatory diseases including
liver fibrosis. Investigation of the inflammatory microenvironment, recreated in vivo and
in vitro, has documented upregulation of the autophagy gene BECN1, which counters the
antifibrotic effects of MSCs. Autophagy suppression by BECN1 knockdown promoted the
antifibrotic effect of MSCs in vivo, due to their suppression of CD4+ and CD8+ lymphocyte
infiltration and HSC proliferation [61].

Several findings indicate that liver autophagy is involved in key hepatic functions,
including metabolic signaling and responses to nutrient deprivation, sensed by hormones,
amino acids and other signals, whereas pathways such as glycophagy and lipophagy
are activated through the selective turnover of specific cargos in response to specific
stimuli. Since autophagy deregulation contributes to inflammation and ROS generation,
the potentiation of autophagy may be an attractive approach with which to prevent disease
progression. Conversely, several recent studies have indicated that autophagy may be
implicated in the pathogenesis of liver diseases, such as hepatitis, steatosis, fibrosis and
cirrhosis. A greater understanding of the molecular events and signaling pathways that
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regulate hepatic autophagy can help identify promising targets for the treatment of liver
diseases. A comprehensive review of autophagy in liver physiology has been published by
Qian and co-workers [34].

3. Autophagy in Cholestatic Liver Diseases

Chronic cholestatic liver diseases are a group of heterogeneous conditions that se-
lectively target the bile ducts. Cholangiopathy progression is often accompanied by an
imbalance between cholangiocyte proliferation and death; this leads to the gradual disap-
pearance of bile ducts, which also characterizes conditions such as primary biliary cirrhosis
(PBC), primary sclerosing cholangitis (PSC) as well as drug-induced ductopenia and cystic-
fibrosis-related liver disease [62]. The accumulation of toxic bile acids (BAs) is the main
cause of cell damage in cholestasis patients [63]. The mechanisms by which cholestasis
induces liver damage require further investigation, but they include at least mitochondrial
dysfunction (hence oxidative stress) [64], unbalanced apoptosis and necrosis [65], which
can lead to liver fibrosis [66] and organelle (mainly ER) stress [67]. As noted above, such
cellular damage induces an adaptive response that includes autophagy activation.

There is mounting evidence that autophagy is altered in cholestatic conditions. BAs
cause the build-up of insoluble p62 and ubiquitinated proteins and increase the rate of
apoptosis [68]; such events are accompanied by autophagosome accumulation and sup-
pression of the autophagic flux, as also seen in hepatocytes treated with BAs, which show
BECN1 inhibition. Moreover, pharmacological or genetic inhibition of autophagy increases
BA-induced cell death in hepatocytes [68]. Notably, animal bile duct ligation (BDL) experi-
ments have documented the accumulation of p62 and ubiquitinated proteins, as seen in
the human liver. Autophagy stimulation seemed to ameliorate the liver damage [69]. In
BDL mice fed cholic acids, a BA that is typically increased in human cholestasis, Mallory
bodies and p62-positive aggregates increased [69]. Autophagy activation by rapamycin-
induced inhibition of mTOR signaling led to the disappearance of these hepatic inclusion
bodies [70]. In PIZZ mice, a model of induced liver injury, the A1AT mutant Z protein
accumulated in the ER and polymerized into a complex quaternary structure, the typi-
cal lesion of the condition [71]. Such polymers have been detected in autophagosomes,
suggesting that autophagy is a possible mechanism for their degradation [72]; indeed,
autophagy induction has proved a useful therapeutic strategy with which to reduce liver
injury in PIZZ mice [73,74]. In general, mice with defective autophagy—such as Atg7 and
Atg5 KO mice and mice treated with autophagy inhibitors—have more severe cholestatic
liver injury [75,76]. Although there are few human studies, due to the technical difficulties
attendant to testing the true autophagic flux, p62-positive hepatocellular inclusion bod-
ies are commonly found in patients with cholestatic liver diseases such as PBC or cystic
fibrosis [77–79]. Impaired autophagy, reflected by increased levels of LC3 and p62, has
also been described in other cholestatic liver diseases including PSC/systemic sclerosis
and genetic cholestasis [80]. Increased LC3 and p62 protein expression and decreased
expression of Rab7 (involved in vesicular traffic) have been seen in tissue from patients
with hepatolithiasis compared to normal tissue [81].

3.1. Autophagy as a Therapeutic Strategy in Cholestasis Treatment

Despite the evidence for a possible protective role of autophagy stimulation in cholesta-
sis, no strategies aimed at its induction have yet been tested in cholangiopathy patients.
Current therapeutic strategies directed at replenishing the bile ducts of ductopenic patients
are limited to protecting cholangiocytes from death induced by the immunological re-
sponse [82,83]. The first-line treatments to counteract cholangiocyte death are hydrophilic
ursodesoxycholic acid (UDCA) as well as immunosuppressive and anti-inflammatory
agents (Table 2). UDCA is the drug of first choice for cholestasis, particularly for PBC
but less so for PSC [83–85]. Although its actual mechanism of action is not well-known,
it appears to act in multiple ways. First, it can reduce BA pool hydrophobicity, which
is the main cause of the liver damage [86,87], and stimulate bile flow and bicarbonate
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secretion (via anion exchanger 2) by acting at the level of both cholangiocytes and hep-
atocytes [88]. Moreover, UDCA and its taurine-conjugated form (TUDCA) have well-
documented anti-apoptosis [89] and anti-necrosis [90] properties; they also mitigate ER
stress by acting as chemical chaperones [91] and by inhibiting caspase (casp)-12 activation,
thus modulating intracellular Ca2+ levels [92]. According to recent studies, the two BAs are
capable of stimulating Cl2 secretion through the activation of transmembrane member 16A
(TMEM16A), which regulates the anion efflux in biliary epithelia [93]. UDCA increases the
autophagic flux in human patients, while in vitro studies have lent further support to its
therapeutic potential in cholestasis [80]. UDCA is also believed to rebalance the autophagic
responses in cholestasis patients and to act as an FXR antagonist [94]. Furthermore, in a rat
model of NASH, UDCA exerted favorable effects by reducing apoptosis and stimulating
autophagy through AMPK phosphorylation [95]. These data suggest that its ability to
enhance autophagy could also be harnessed to treat other diseases that would benefit from
autophagy induction.

24-norursodeoxycholic acid (norUDCA) is a side-chain-shortened homologue of
UDCA that has shown high potential in preclinical mouse models of cholestatic and fibrotic
liver disease [96–100]; it has also been documented to exert specific anti-inflammatory,
antifibrotic and antiproliferative effects superior to those of UDCA in a mouse model of
sclerosing cholangitis (Abcb4 KO mice) [98]. Resistance to N-acyl-amidation with taurine or
glycine enables norUDCA to be reabsorbed by cholangiocytes and secreted again into bile,
which enhances its function [101,102]. These features make it a promising PSC drug [103].
Notably, it is also an autophagy inducer; in the PIZZ mouse model, norUDCA significantly
reduced ATZ globules by inducing autophagy [74,104] while exerting favorable effects
on various parameters such as serum liver enzymes and casp-3 and -12 (markers of ER
stress-induced apoptosis), it reduced compensatory liver proliferation and increased the ex-
pression of various genes involved in autophagy [74]. Similar to UDCA, norUDCA appears
to induce autophagy via AMPK activation through the mTOR/ULK1 pathway [105].

OCA is a second-line treatment strategy for PBC patients who do not respond to
or tolerate UDCA [106]. It is a semi-synthetic FXR agonist that exerts its anti-cholestatic
functions by repressing endogenous BA synthesis and modulating the hepatocellular BA
transporter system [107]. However, OCA has been shown to impair autophagic flux both
in vitro and in vivo [80]. In clinical settings, its anti-cholestatic properties seem to outweigh
the potential negative effects of reduced autophagy [108]. Fibrates are another valuable
option for PBC patients unresponsive to UDCA [106,109]. These ligands for the nuclear
receptor PPARα strongly induce autophagy, which suggests that part of their beneficial
effect may be attributed to this feature (Table 2).

In summary, the pro-autophagic effect of current cholangiopathy medications may
help reduce the damage induced by cholestatic disease.

Table 2. Summary of current therapeutic options and effects on autophagy of cholestatic disease treatment.

Drug Effects Ref

UDCA

↓ BA pool hydrophobicity [86,87]

↑ Bile flow and bicarbonate secretion [88]

Rebalances autophagic response [94]

↑ Autophagy ↓ Apoptosis [95]

UDCA & TUDCA

↓ Apoptosis [89]

↓ Necrotic properties [90]

↓ ER stress [91]

Cells 2021, 10, 2772 9 of 21 
 

 

Table 2. Summary of current therapeutic options and effects on autophagy of cholestatic disease 
treatment. 

Drug Effects Ref 

UDCA 

↓ BA pool hydrophobicity [86,87] 
↑ Bile flow and bicarbonate secretion [88] 
Rebalances autophagic response [94] 
↑ Autophagy ↓ Apoptosis [95] 

UDCA & 
TUDCA 

↓ Apoptosis [89] 
↓ Necrotic properties [90] 
↓ ER stress [91] 

 Casp-12 activation [92] 

norUDCA 

↓ Inflammation, fibrosis and proliferation [98] 
↑ Autophagy via AMPK [104] 
↓ ATZ globules in PIZZ mice 
↑ Ameliorates parameters 

[74] 

OCA 
↓ BA synthesis [107] 
Impairs autophagic flux [80] 
Overcomes adverse effects of reduced autophagy [108] 

Fibrates ↑ Autophagy [106,109] 

3.2. The Emerging Role of Nuclear Receptors in Autophagy and Cholestatic Disease 
Recently, BAs and their receptor, farnesoid X receptor (FXR), have been implicated 

in the regulation of hepatic autophagy, and therefore in cholestatic diseases. FXR is acti-
vated by BAs and initiates a transcriptional program that aims to reduce the hepatic BA 
load by (i) inhibiting their synthesis (blocking Cyp7a1), (ii) limiting basolateral BA uptake 
and (iii) inducing BA export transporters at the basolateral membrane [107,110]. BAs have 
been reported to inhibit autophagy degradation in vitro and may also play a role in im-
paired hepatic autophagy in FXR KO mice in vivo; moreover, by reducing Rab7 expres-
sion, they induced decreased autophagosomal–lysosomal fusion in primary cultured 
mouse hepatocytes [111]. These findings suggest a possible link between BAs and im-
paired autophagy in BA-induced hepatotoxicity and liver tumorigenesis [111]. In the il-
eum, FXR also reduces BA absorption to enterocytes and promotes their export. Intestinal 
hormone fibroblast growth factor 19 (FGF19, murine orthologue Fgf15) is released in the 
bloodstream upon FXR activation in the intestine and reaches the liver, where it induces 
further Cyp7a1 inhibition [107]. Transcriptional factor EB (TFEB) promotes lysosomal bi-
ogenesis, autophagy and mitochondrial function in response to nutrient deprivation and 
lysosomal stress. Recent findings show that cholesterol-induced lysosomal stress feed-for-
ward activates TFEB via nuclear translocation. In turn, TFEB activation induces CYP7A1 
expression to promote bile acid synthesis, which activates cholesterol catabolism and 
elimination. In addition, bile acids activate FXR to induce intestinal FGF15/19 expression 
to feedback inhibit TFEB by causing TFEB phosphorylation and cytosolic retention [112]. 
Other receptors that can be activated by BAs are pregnane X receptor (PXR), vitamin D 
receptor (VDR) and membrane receptors Takeda G-protein receptor 5 (TGR5) as well as 
sphingosine-1-phosphate receptor 2 (S1PR2) [113–115]. Interestingly, FXR and the fatty 
acid (FA) sensor peroxisome proliferator-activated receptor alpha (PPARα) have been 
shown to exert opposite effects on autophagy [116,117]. FXR and PPARα—activated, re-
spectively by BAs and FAs—regulate the transcription of a specific array of target genes 
[118]. The discriminant is the energy state, as FXR is activated in the postprandial stage 
and suppresses autophagy in nutrient-rich conditions, whereas PPARα—activated by the 
FAs released from peripheral adipose tissue—promotes autophagy in fasting conditions. 
Recent investigations into the involvement and role of FXR in autophagy and cholestasis 

Casp-12 activation [92]



Cells 2021, 10, 2772 9 of 20

Table 2. Cont.

Drug Effects Ref

norUDCA

↓ Inflammation, fibrosis and proliferation [98]

↑ Autophagy via AMPK [104]

↓ ATZ globules in PIZZ mice
↑ Ameliorates parameters [74]

OCA

↓ BA synthesis [107]

Impairs autophagic flux [80]

Overcomes adverse effects of reduced autophagy [108]

Fibrates ↑ Autophagy [106,109]

3.2. The Emerging Role of Nuclear Receptors in Autophagy and Cholestatic Disease

Recently, BAs and their receptor, farnesoid X receptor (FXR), have been implicated
in the regulation of hepatic autophagy, and therefore in cholestatic diseases. FXR is ac-
tivated by BAs and initiates a transcriptional program that aims to reduce the hepatic
BA load by (i) inhibiting their synthesis (blocking Cyp7a1), (ii) limiting basolateral BA
uptake and (iii) inducing BA export transporters at the basolateral membrane [107,110].
BAs have been reported to inhibit autophagy degradation in vitro and may also play a
role in impaired hepatic autophagy in FXR KO mice in vivo; moreover, by reducing Rab7
expression, they induced decreased autophagosomal–lysosomal fusion in primary cul-
tured mouse hepatocytes [111]. These findings suggest a possible link between BAs and
impaired autophagy in BA-induced hepatotoxicity and liver tumorigenesis [111]. In the
ileum, FXR also reduces BA absorption to enterocytes and promotes their export. Intestinal
hormone fibroblast growth factor 19 (FGF19, murine orthologue Fgf15) is released in the
bloodstream upon FXR activation in the intestine and reaches the liver, where it induces
further Cyp7a1 inhibition [107]. Transcriptional factor EB (TFEB) promotes lysosomal
biogenesis, autophagy and mitochondrial function in response to nutrient deprivation and
lysosomal stress. Recent findings show that cholesterol-induced lysosomal stress feed-
forward activates TFEB via nuclear translocation. In turn, TFEB activation induces CYP7A1
expression to promote bile acid synthesis, which activates cholesterol catabolism and
elimination. In addition, bile acids activate FXR to induce intestinal FGF15/19 expression
to feedback inhibit TFEB by causing TFEB phosphorylation and cytosolic retention [112].
Other receptors that can be activated by BAs are pregnane X receptor (PXR), vitamin D
receptor (VDR) and membrane receptors Takeda G-protein receptor 5 (TGR5) as well as
sphingosine-1-phosphate receptor 2 (S1PR2) [113–115]. Interestingly, FXR and the fatty acid
(FA) sensor peroxisome proliferator-activated receptor alpha (PPARα) have been shown to
exert opposite effects on autophagy [116,117]. FXR and PPARα—activated, respectively by
BAs and FAs—regulate the transcription of a specific array of target genes [118]. The dis-
criminant is the energy state, as FXR is activated in the postprandial stage and suppresses
autophagy in nutrient-rich conditions, whereas PPARα—activated by the FAs released
from peripheral adipose tissue—promotes autophagy in fasting conditions. Recent inves-
tigations into the involvement and role of FXR in autophagy and cholestasis implicate
RUN domain BECN1-interacting and cysteine-rich-containing (Rubicon) protein. Rubicon
inhibits autophagosome–lysosome fusion, thus interrupting autophagic flux [105]. In a
study conducted to identify the cause of impaired fusion in cholestasis patients [80], FXR
ChIP-seq analysis, performed to screen liver samples from cholestatic and normal subjects,
found strong FXR binding in proximity to the genes involved in macroautophagy in both
sample sets. However, the pathways involved in vesicle transport were specifically upreg-
ulated in the patients’ samples. Among a long list of candidate genes, the authors found a
significant binding peak in the first intron of Rubicon and documented its transcriptional
activity. Rubicon mRNA and protein were significantly overexpressed in the patients’ sam-
ples. The authors also showed that in healthy volunteers, treatment with obeticholic acid
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(OCA) induced Rubicon mRNA and protein expression. Their in vitro experiments yielded
similar results in primary human hepatocytes and HepG2 cells, whereas FXR knockdown
resulted in significantly decreased Rubicon mRNA and protein expression, confirming its
dependence on FXR. Finally, Rubicon silencing abrogated the inhibition of BA-induced
autophagy, confirming that Rubicon is a key mediator of BA inhibition of autophagic
flux [80]. However, FXR plays a much broader role in autophagy, also with the involve-
ment of other mediators. For instance, it physically interacts with the nutrient-sensitive
kinase AMPK, a well-known regulator of autophagy, in the cytoplasm [119,120]. Pharmaco-
logical activation of AMPK phosphorylates FXR, preventing the transcriptional activation
of FXR and all related regulated genes [119]. Another work has highlighted the role of
nerve growth factor (NGF) in regulating FXR and autophagy [81]. FXR downregulation in
the liver of hepatolithiasis patients correlated with hepatic NGF levels. In BDL-induced
cholestasis, NGF administration resulted in the upregulation of mouse hepatic FXR. Similar
results were obtained in cultured primary rat hepatocytes, where a parallel increase in
LC3 levels and the autophagy flux suggested a role for NGF [81]. Preliminary evidence
suggests that cholestasis and BAs are also closely involved in selective autophagy processes
such as lipophagy, mitophagy and pexophagy, and that peroxisomes play a major role in
BA biosynthesis [116,121].

4. Ageing in Cholestatic Diseases

Ageing involves a constant accumulation of DNA damage, telomere shortening and
epigenetic alterations that over time lead to a gradual decline in essential physiological
processes. In the liver, ageing results in changes to its structure and function, including
steatosis, fibrosis and altered regeneration, protein synthesis and autophagy [122–126]. The
lipid metabolism capacity of the liver declines with age, and in mice steatosis is already
observed after 12 months of age [127,128]. These changes not only impair the metabolic
capacity of the liver but are also a major risk factor for the development of several chronic
diseases, from degenerative disorders to cancer [129]. Cholestatic liver disease is strongly
influenced by age. In PBC patients, the risk of UDCA treatment failure, liver transplant
and death decreased significantly with advancing age [130]. In PSC patients, age at
diagnosis increases the risk of developing cholangiocarcinoma (21% for patients older than
60 years) [131]. Elderly liver transplant patients are at greater risk of complications, and
survival rates are lower in those older than 60 years [83,132]. Moreover, the increased
expression of senescent markers and senescence-associated secretory phenotype (SASP)
components described in liver samples from PSC and PBC patients corroborates data
obtained in animal models of cholestatic liver injury, stressing the close correlation between
ageing and cholangiopathy development [124,133].

4.1. Ageing and Autophagy

Ageing impairs autophagy in a wide range of tissues including the liver, brain and
ovary, but the mechanisms that underpin it are still unclear [134–136]. Aged mouse hep-
atocytes exhibit a reduction in the number of autophagic vacuoles and in LC3 protein
expression [137]. Autophagy seems to be involved in various longevity pathways. In-
vestigations into the correlation between autophagy and ageing and how it may affect
lifespan or health span have found that autophagic activity decreases with age in numerous
species [137–140]. The work carried out in Caenorhabditis elegans, and Drosophila has high-
lighted several conserved pathways with a key role in longevity, including insulin/IGF-1
signaling, calorie restriction, mitochondrial respiration and TOR signaling. Notably, au-
tophagy activation has been documented to extend animal lifespan, lending support to
the view that autophagy is one of the convergent mechanisms of several longevity path-
ways [141–145]. Beclin-1 (Bec-1) is required for lifespan extension in nematodes, as it
impairs the insulin signaling pathway [141]. The delayed manifestation of age-related
changes after tissue-specific deletion of critical autophagy genes has been described in
mouse tissues such as the kidneys and heart [146,147]. An increase in lifespan has been
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reported in mice overexpressing Atg5 [148] and as a result of pharmacological and physio-
logical autophagy induction (SPD and caloric restriction) [149–151]. In contrast, autophagy
inhibition is related to premature ageing, as seen in numerous loss-of-function studies of
key factors of the autophagic machinery [144,146]. Loss-of-function mutations in Atg1
(Unc-51), Atg7, Atg18 and Bec-1 reduced C. elegans lifespan [144], whereas deficient Atg1,
Atg8 and Sestrin1 expression reduced Drosophila melanogaster lifespan due to triglyceride
accumulation, mitochondrial dysfunction, muscle degeneration and cardiac malfunction,
which are typically age-related [140,152]. Similarly, the expression of various proteins
required for autophagy induction is reduced in ageing and pathological conditions; for
instance, Atg5, Atg7 and BECN1 are downregulated in the normal human aged brain [136],
Sirt1 is downregulated in subjects with insulin resistance and metabolic syndrome [153]
and ULK1, BECN1 and LC3 are downregulated in osteoarthritis patients [154], suggesting
that insufficient autophagy may contribute to the ageing phenotype. Furthermore, in
several species pharmacological inhibition of autophagy prevents the anti-ageing effects of
caloric restriction [155].

In the liver, ageing is also associated with lipid accumulation. This further impairs
autophagic activity, since it appears to prevent autophagosome acidification and to reduce
the expression of proteolytic enzymes, as reported in a mouse model of genetically induced
obesity [156]. The age-related reduction in autophagy efficiency also affects lipophagy,
which plays an important role in lipid metabolism [157,158]. The decline of lipophagy in
the aged or steatotic liver slows down the breakdown of lipids accumulated in the liver
and results in a lower FFA intake for lipid metabolism, compounding the cell function
impairment [38,159]. The concomitant increase in the number of senescent hepatocytes
further weakens cell function by damaging mitochondria, thus leading to lower FA oxi-
dation, reduced ATP synthesis and the production of large amounts of ROS [160]. High
ROS levels contribute to HSC activation and eventually to the development of liver fi-
brosis and structural impairment, besides inducing increased hepatocyte apoptosis and
hepatic inflammation [161–163]. Normal mitochondrial function is crucial for hepatic
metabolism. Ageing also reduces the mitochondrial turnover rate by affecting mitophagy
efficiency [164], resulting in a constant increase in the number of dysfunctional mitochon-
dria and in a gradual rise in ROS production that compounds the steatosis. The role of
autophagy in hepatic fibrosis is more debated. Ageing itself is considered a major risk
factor for fibrosis development [165]. In the past decade, several studies have demon-
strated that autophagy activation may have a pro-fibrotic role by providing the energy
for HSC activation, mainly through lipophagy and mitophagy [166–168]. On the other
hand, autophagy may play a protective role in alcohol-induced hepatic injury by selectively
eliminating dysfunctional mitochondria and lipid droplets [169]. A table summarizing
the main kinds of autophagy alterations is added below (Table 3). Moreover, the use of a
known autophagy inducer such as rapamycin in a rat study improved the panel of hepatic
fibrosis markers [170], possibly through an adverse effect on HSC proliferation.

Table 3. An outline of the main kinds of autophagy alterations involved in the pathogenesis of
cholestatic diseases and in age-related cholestatic diseases.

Relevance of Autophagy Key References

Cholestatic diseases

Macroautophay [68–74,80,81,96,105]
Mitophagy [53,101,121]
Lipophagy [155–159,166–169]
Pexophagy [121]
ERphagy [72]

Age related cholestatic diseases

Macroautophay [122–126,133]
Mitophagy [164,166–169]
Lipophagy [127,128,156–158,166–169]
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4.2. Molecular Mechanisms and Pathways Involved in Autophagy

In normal conditions, hepatic autophagy promotes ATP synthesis by degrading lipid
droplets into FFAs, which are then oxidized in the mitochondria [171,172]; the process also
prevents hepatocyte swelling and hepatotoxicity by removing damaged organelles and
breaking down misfolded proteins into amino acids for new protein synthesis [173–175].
One way in which ageing impairs autophagy is through a reduction in AMPK activation.
This affects autophagosome formation and cellular homeostasis, besides further weakening
mTOR inhibition [176–178]. A recent study [135] has found that in the ovaries of aged
rats the promoter regions of some ATGs, such as LC3 and Atg5, were highly hypermethy-
lated, with a consequent decrease in protein expression. A reduction in Atg5 and LC3B
mRNA expression has also been described in bone-marrow-derived macrophages from
aged mice [179]. These findings suggest that ageing may attenuate autophagy activity by
promoting ATG hypermethylation. Another way in which ageing affects the autophagy
potential is through the accumulation of lipofuscin, an intracellular brown–yellow pigment
composed of oxidated protein and lipid residues, which accumulates in lysosomes during
cell senescence [180–183]. When lysosomes are loaded with lipofuscin, they further draw
lysosomal enzymes from the Golgi apparatus, which are capable of degrading proteins, but
not lipofuscin, thus creating an imbalance in the distribution of lysosomal enzymes; the
resulting protein recycling slows down, leading to a marked reduction in lysosomal degra-
dation, which also impairs mitophagy and increases ROS production [182–186]. According
to a fairly recent study, reducing the interaction between BECN1 and Bcl-2 can efficiently ac-
tivate autophagic flux [187]. The authors generated a mutant mouse (BECN1 F121A/F121A)
where such an interaction was reduced and reported an extended lifespan due to autophagy
activation. The healthspan of the knock-in mice also improved, in a gender-independent
way, in terms of attenuation of age-related changes, especially in the kidney and heart,
and lower spontaneous tumorigenesis. Klotho, a single-pass membrane-bound protein
that can be cleaved and secreted into the circulation, is another protein with anti-ageing
effects [188]. Its expression declines with ageing in mice and humans; its removal in KO
mice led to premature lethality, decreased autophagy and infertility [188–190], whereas its
overexpression or soluble administration extended mouse lifespan, partially ameliorated
the ageing phenotype and promoted autophagic flux [191–193]. Interestingly, the klotho
KO mouse phenotype was rescued by crossing with BECN1 F121A/F121A KI mice, sup-
porting the notion that disruption of BECN1/Bcl-2 binding may play a mechanistic role in
klotho-induced autophagy [187]. Acting on the BECN1/Bcl-2 interaction can therefore be a
useful mechanism to modulate autophagy, prevent premature ageing, improve healthspan
and promote longevity in mammals. Recently, Rubicon—a B1-interacting protein that plays
a role as a negative regulator of autophagy [194,195]—has been demonstrated to inhibit
autophagosome–lysosome fusion and to reduce endocytic trafficking by binding the PI3K
complex [194]. Increased Rubicon expression associated with impaired autophagy has been
documented in the liver of mice fed a high-fat diet, whereas hepatocyte-specific Rubicon
KO mice showed improvement in hepatic steatosis and autophagy; these data suggest a
potential pathogenic role for Rubicon in NAFLD [196]. Furthermore, increased Rubicon
RNA expression with ageing and its downregulation in several long-life mutants support
the involvement of the protein in the age-dependent impairment of autophagy [195]. In line
with these findings, rub-1 knockdown significantly prolonged the wild-type worm lifespan,
while the benefit was completely abolished when using RNAi for the autophagy regulators
Bec-1/BECN1, unc-51/ULK1 and Atg18/ATG18. Similar results have been reported with
Rubicon systemic KO mice, with activation of basal autophagy due to elevated LC3-II and
reduced p62 levels as well as a reduction in age-related fibrosis markers [195].

The promotion of autophagy can therefore be considered as a novel therapeutic strategy
capable of reducing age-dependent liver deterioration and mitigate steatosis [157,164,197].
Moreover, the induction of autophagy with rapamycin and carbamazepine or natural sub-
stances such as resveratrol, trehalose and catalpol can considerably improve hepatic steatosis
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markers by removing dysfunctional mitochondria and leading to a reduction in ROS and
FFAs by promoting β-oxidation.

5. Conclusions

Autophagy is a multistep catabolic process that ensures cell homeostasis under stress-
ful conditions by controlling the energy and nutrient balance. Hepatic autophagy fluctuates
in response to fed and fasting states, regulated by pancreatic hormones such as insulin
and glucagon, as well as gastric hormones such as ghrelin and glucagon-like peptide-1
(GLP-1) [35,198,199]. The synergetic interplays of nervous, endocrine, and paracrine signals
along with circulating nutrient levels orchestrate the complexity of the autophagy in the
liver. Cholestatic liver disease is characterized by a dysregulation of autophagy activity,
and it was seen how it decreases with age in several species. The activity of autophagy
in cholestatic liver disease may, however, depend on the disease stage. In acute cellular
damage, the induction of autophagy seems to be a response to early injury. On the other
hand, in chronic cholestatic states such as cholangiopathies, impaired autophagy may be
the prevailing autophagic feature. The use of autophagy modulators (inductors/inhibitors)
combined with pharmacological agents appears to be a promising strategy to treat a variety
of cholestatic conditions. Interesting molecular targets such as Rubicon, which has recently
been correlated with ageing and which is overexpressed in various aged animal species,
are gradually emerging and await further investigation.
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