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Abstract

Two ongoing movements in human cognitive neuroscience have researchers shifting focus from 

group-level inferences to characterizing single subjects, and complementing tightly controlled 

tasks with rich, dynamic paradigms such as movies and stories. Yet relatively little work combines 

these two, perhaps because traditional analysis approaches for naturalistic imaging data are geared 

toward detecting shared responses rather than between-subject variability. Here, we review recent 

work using naturalistic stimuli to study individual differences, and advance a framework for 

detecting structure in idiosyncratic patterns of brain activity, or “idiosynchrony”. Specifically, we 

outline the emerging technique of inter-subject representational similarity analysis (IS-RSA), 

including its theoretical motivation and an empirical demonstration of how it recovers brain-

behavior relationships during movie watching using data from the Human Connectome Project. 

We also consider how stimulus choice may affect the individual signal and discuss areas for future 

research. We argue that naturalistic neuroimaging paradigms have the potential to reveal 

meaningful individual differences above and beyond those observed during traditional tasks or at 

rest.

4One advantage of the mean(i,j) formulation of the AnnaK model is that the same model can detect effects in both directions, based on 
the sign of the resulting r-value between the brain and behavioral similarity matrices. If high scorers are alike and low scorers 
different, the resulting r-value would be positive; if low scorers are alike and high scorers different, it would be negative. (Note that the 
other two formulations—min(i,j) and abs(i-j)*mean(i,j)—would also be expected to yield negative r-values in a case where low scorers 
were alike, but because these models are not symmetric about the counterdiagonal [top-right to bottom-left], they would be less 
precise at detecting inverse relationships, and would require two different models to accurately detect inverse relationships.).
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1. Introduction

At present, there are two exciting movements afoot in cognitive neuroscience. First, the field 

is shifting focus from the group to the individual: instead of averaging data across a 

population, studies are isolating brain function in single subjects and determining how it 

relates to behavioral phenotypes (Bartolomeo et al., 2017; Dubois and Adolphs, 2016; 

Seghier and Price, 2018). Second, researchers are embracing the complexity of so-called 

“naturalistic” stimuli—e.g., film clips, spoken narratives—as experimental paradigms, to 

complement and extend the tightly controlled, parametric tasks that form the pillars of 

classical psychology work (Sonkusare et al., 2019).

While each of these movements has brought promising discoveries on its own, studies at the 

intersection—i.e., that use naturalistic stimuli to study individual differences—are relatively 

few and far between. Why might this be? Naturalistic stimuli evoke patterns of brain activity 

that are, by and large, highly consistent across subjects (Hasson et al., 2004, 2010), and 

typically, naturalistic imaging data are collected and analyzed in ways geared toward 

detecting similarities between subjects rather than differences (Nastase et al., 2019). 

Adapting naturalistic tasks to study individual differences and brain-behavior relationships 

raises several challenges, demanding new approaches to both experimental design and data 

analysis. The potential payoff, however, is high. Naturalistic tasks offer a “happy medium” 

between the extremes of highly controlled cognitive tasks, which often lack ecological 

validity, and resting-state acquisitions, which are entirely unconstrained, making them 

vulnerable to confounds and difficult to interpret (Vanderwal et al., 2019). They allow 

experimenters to probe intermingled signals throughout the hierarchy of neural systems—

from low-level sensory processing up to social cognition—using data from a single 

acquisition, and while the brain is engaged in activities more similar to everyday life. Thus, 

they may offer more “bang for the buck” than either rest or traditional tasks for 

characterizing spatiotemporal patterns of brain activity in individual subjects.

Here, our goals are threefold. In the first section, we briefly describe the inter-subject 

correlation (ISC) family of approaches to analyzing naturalistic imaging data, which exploit 

the time-locked nature of the task across subjects to isolate brain activity driven by the 

stimulus (Hasson et al., 2004; Nastase et al., 2019). Also in this section, we review existing 

literature using ISC to study individual differences. (For comprehensive reviews on 

naturalistic tasks and inter-subject correlation more generally, we refer the reader to 

Sonkusare et al. (2019) and Nastase et al. (2019), respectively. Our focus here is specifically 

on how these intersect with the study of individual differences.) In the second section, we 

advance a framework for studying individual differences in spatiotemporal patterns of brain 

activity during naturalistic stimulation, a phenomenon we call “idiosynchrony”. We focus 

specifically on the emerging technique of inter-subject representational similarity analysis 
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(IS-RSA), which adapts ISC to highlight stimulus-driven responses that are idiosyncratic 

rather than shared. We present the theory behind IS-RSA, then apply it to data from the 

Human Connectome Project to demonstrate how brain responses during movie viewing 

share structure with behavioral traits, including working memory and personality. In the 

final section, we consider directions for future work, including how we might choose stimuli 

to amplify behaviorally relevant individual signals.

2. Inter-subject correlation: stimulus-locked, fewer assumptions

Because naturalistic paradigms sit somewhere between resting state and traditional tasks, 

researchers have at their disposal a variety of analysis approaches. The presence of a 

stimulus permits classic techniques for detecting activation to specific features of the 

stimulus, such as the general linear model (GLM) and other regression techniques. At the 

same time, thanks to their continuous, non-parametric nature, these paradigms also lend 

themselves to approaches developed primarily for rest—for example, functional 

connectivity, which considers co-activations between regions rather than magnitude of 

activation in any single region.

We place these approaches in a landscape with two major axes: how time-locked to the 

stimulus they are, and how many assumptions they require. Functional connectivity (FC)—

especially static FC, which collapses across the whole time series—demands relatively few 

assumptions, but is impossible to map back onto the stimulus, and therefore fails to separate 

stimulus-driven from stimulus-independent sources of neural activity. Dynamic FC gets 

closer to a time-resolved signal, but in most cases the need for windows of a minimum 

length makes it difficult to map connectivity fluctuations to specific events within the 

stimulus, and resulting signals still contain a mixture of stimulus-related and stimulus- 

unrelated variation within each subject.

GLM-based analyses do capitalize on the “ground truth” of a stimulus with known timing, 

but in doing so make two critical assumptions: one, that the experimenter knows which 

features of the stimulus are important for driving brain activity, and two, that they have 

modeled these features accurately. Non-optimal assumptions at either step will impair 

sensitivity.

While both families of approaches can and have been applied to naturalistic data (regression-

based activation: (Bartels and Zeki, 2004; Lahnakoski et al., 2012a; Lahnakoski et al., 

2012b; Russ and Leopold, 2015); functional connectivity: (Betti et al., 2013; Geerligs et al., 

2015; Guo et al., 2016; Vanderwal et al., 2017), to name a few), neither was designed 

specifically for these paradigms. The inter-subject correlation (ISC) family of approaches 

(Hasson et al., 2004; Nastase et al., 2019; Simony et al., 2016), which was developed 

specifically for naturalistic paradigms, maximize sensitivity to stimulus-driven activity with 

fewer assumptions. These approaches use one subject’s brain activity as a model for a 

second subject’s brain activity, reasoning that as long as two subjects receive the same input 

at the same time, any shared variance must be due to stimulus processing.
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In brief, ISC is defined as the Pearson correlation of the activity time course in a spatial 

location (i.e., voxel, parcel) across different subjects. It is typically computed using either a 

leave-one-out framework, in which one subject’s time course is correlated with the average 

of all other subjects, or a pairwise framework, in which correlation is performed between 

every possible pair of subjects. For our purposes, this latter approach is more relevant, since 

it preserves information about which specific subject pairs show the highest and lowest 

correlations, which can later be related to behavioral scores.

Unlike FC, ISC isolates stimulus-driven signal and can be interpreted with respect to events 

in the stimulus itself. And unlike GLM-based approaches, even if the experimenter doesn’t 

know—or can’ t model—the most important features of the stimulus, as long as there is 

some consistent signal across subjects, ISC will recover it (Pajula et al., 2012), in some 

cases with more sensitivity than deconvolution/GLM-based analyses (Hejnar et al., 2007). 

Thus, ISC is a powerful, data-driven technique for detecting shared responses, anticipated or 

otherwise.

2.1. Adapting ISC to an individual-differences framework

The classic formulation of ISC assumes that the signal observed at each voxel x and time 

point t reflects a mixture of three components. Loosely following the notation of Nastase et 

al. (2019), these components are:

c, a stimulus-evoked response that is consistent across subjects; id, a stimulus-

evoked response that is idiosyncratic to each subject; ε, a noise component (which 

may reflect both neural activity that is unrelated to the stimulus, i.e., mind-

wandering, as well as noise from non-neural physiological and scanner sources).

Thus, for a given subject i, the response in voxel x at timepoint t can be described as follows:

xi t = c t + idi t + εi t

In this formulation, it is not possible to distinguish id from ε, unless subjects are exposed to 

the same stimulus multiple times. Even then, results must be interpreted with caution, 

because repetition can change how a stimulus is processed. Another approach is to anchor id 
to some other known information about each subject, like a trait score (b), and search for 

structure in these responses across subjects:

xi t = c t + bi id t + εi t

xj t = c t + bj id t + εj t

...

xn t = c t + bn id t + εn t
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Notice that now the id term has lost its subject subscript, since we are assuming that there is 

some canonical response associated with a given trait, and each subject’s trait score acts as a 

sort of bias term governing to what degree a subject expresses that response.1

This framework lets us distinguish stimulus-related responses in individual subjects from 

stimulus-unrelated noise, and does so in a way that facilitates interpretation, since we are 

linking idiosyncratic responses to a known behavioral measure. Generally, we might predict 

that the influence of individual differences on x(t)—that is, the ratio of id to c—grows as one 

moves up the cortical processing hierarchy, such that the shared, behavior-independent 

signal dominates in unimodal cortex, while the idiosyncratic, behavior-dependent signal 

becomes stronger in higher order association cortex. This may explain why ISC is 

traditionally high in primary visual and auditory cortex, and drops off (but doesn’t 

necessarily disappear completely) in areas of prefrontal cortex, for example: it is not the case 

that these regions are not responding to the stimulus, but rather that they respond with 

different spatiotemporal signatures across subjects (Chang et al., 2018; Hasson et al., 2010). 

Some of this variance might be explained by trait-level phenotypes.

3. Existing work on ISC & individual differences

Despite the traditional focus on shared responses, in recent years, researchers have begun to 

investigate how ISC varies with both state- level factors related to either the stimulus or 

experimental instructions, and—more relevant for our purposes—with trait-like factors 

intrinsic to the subjects themselves.

Several studies have shown that ISC is sensitive to features of the stimulus (Dmochowski et 

al., 2014; Hasson et al., 2010; Nummenmaa et al., 2014; Schmälzle et al., 2015). Other 

studies have kept the stimulus constant and used priming to show that ISC is sensitive to 

explicit manipulations of attention or prior beliefs about a stimulus (Cooper et al., 2011; 

Lahnakoski et al., 2014; Yeshurun et al., 2017). While informative, these studies do not 

examine why different individuals often spontaneously—i.e., with no explicit priming—

show different neural or behavioral responses to the same stimulus.

A handful of studies have reported spontaneous individual differences in time-locked 

activity to a stimulus that relate to behavioral appraisal of the stimulus. Using emotional 

clips, comedy videos, and moral dilemma scenarios, respectively, Nummenmaa et al. (2012), 

Jaaskelainen et al. (2016) and Tei et al. (2019) found that ISC in certain brain regions 

correlated with similarity of post-hoc behavioral ratings (of dynamic valence/arousal, humor, 

and moral conflict) across pairs of subjects. Using an abstract video of animated shapes and 

an audio story, respectively, Nguyen et al. (2019) and Saalasti et al. (2019) found that subject 

pairs with higher ISC in certain cortical regions during the stimulus ultimately had more 

similar interpretations of the stimulus. These studies provide a fascinating window into how 

individual differences in brain activity during stimulus exposure relate to subsequent 

differences in reactions and interpretations. But because both brain responses and behavior 

1In this formulation, we assume that b is static within individuals, since it represents a trait-level measure. However, this formulation 
could be extended to support an individual behavioral measure that changes over the course of the stimulus—for example, attentional 
state or affective experience—by postulating that b is also a function of time (i.e., bi(t)).
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are tied to the specific stimulus at hand, the extent to which these state-like differences 

reflect trait-like predispositions—i.e., intrinsic individual characteristics—remains unclear.

Recent studies take this additional step and link idiosyncratic responses during naturalistic 

stimulation to stable, trait-like factors. Finn et al. (2018) report that individuals with higher 

trait paranoia show stronger ISC in cortical regions involved in social processing during an 

ambiguous social narrative. Bacha-Trams et al. (2018) report that individual differences in 

cognitive style (i.e., holistic versus analytical thinking) relate to strength of ISC in several 

cortical regions during a drama movie. In a sample of college-age males, Chen et al. (2020) 

report that variations in socio sexual desire and self-control preferences are linked to 

variations in activity in several higher-order brain networks, during erotic (but not neutral) 

films. In a sample of children and adolescents spanning ages 7–21 years, Gruskin et al. 

(2020) report that patterns and severity of depression symptoms are linked to brain responses 

during an emotionally evocative animated clip, but only in adolescents, suggesting that these 

idiosyncratic responses emerge over the course of development. Finally, in a study of 

individuals with dyslexia, ISC calculated from MEG envelope time series correlated with 

similarity in phonological processing, technical reading, and working memory (Thiede et al., 

2019). Encouragingly, these studies show that there is meaningful—i.e., behaviorally 

relevant—structure in idiosyncratic responses to naturalistic stimuli.

Other studies have addressed variability by dichotomizing subjects into diagnostic groups. 

Several studies have reported differences in ISC during naturalistic paradigms between 

healthy controls and populations with mental illnesses and disorders—most commonly, 

autism (Bolton et al., 2018; Byrge et al., 2015; Hasson et al., 2009; Salmi et al., 2013), but 

also depression (Guo et al., 2015) and first-episode psychosis (Mäntylä et al., 2018; Yang et 

al., 2020). In general, these studies report reduced cross-subject synchrony in the patient 

group, an effect that sometimes scales with symptom severity (Guo et al., 2015; Salmi et al., 

2013).

Group contrasts between patients and controls can be useful to assess population-level 

differences in broad strokes. But rather than distinct canonical responses for each group, 

patients are typically characterized by increased heterogeneity of responses (Bolton et al., 

2018). This suggests that a better framework would approach the question as an individual-

differences problem. Indeed, Byrge et al.’s post-hoc analyses revealed that their ISC effect 

was driven entirely by five individuals from the ASD group with particularly idiosyncratic 

responses that could not be easily explained by other factors (i.e., data quality, symptom 

severity); when these five individuals were removed, the ASD and neurotypical groups were 

indistinguishable (Byrge et al., 2015). Interestingly, Hasson et al. (2009) reported that while 

the responses of subjects with autism were more variable, these idiosyncratic responses were 

reliable within single individuals across repeated presentations of the same stimulus, 

suggesting a trait-like component.

Rather than a dichotomy between health and disease, most mental illnesses are likely better 

conceptualized as the extreme end of a phenotypic spectrum (Cuthbert and Insel, 2013; Insel 

et al., 2010). Instead of stratifying subjects into patients and controls, we can improve 

sensitivity by using continuous measures—task performance, symptom severity, genetic load
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—as our independent variables (Finn and Constable, 2016). To then take advantage of the 

richness of information embedded in these continuous spaces, we need analysis frameworks 

that can appropriately handle the intricate interdependencies of dyads rather than 

individuals. Recent work has proposed using multilevel modeling and other expanded 

statistical formulations, some of which offer the ability to include subject-level covariates 

into ISC analyses (Chen et al., 2017; Chen et al., 2020). In the next section, we outline 

another promising approach, used by several of the studies cited above, that is flexible, 

intuitive and can be applied to detect relationships between any type of brain and behavioral 

data.

4. Inter-subject representational similarity analysis: Theory

By definition, inter-subject correlation cannot be calculated for a single subject. How, then, 

can we relate ISC, which operates at the level of subject pairs, to traits and behaviors, which 

operate at the level of single subjects? We can triangulate between these two levels of 

measurement using a framework we call “idiosynchrony”, which leverages each subject’s 

unique pattern of synchrony with other subjects to reveal a covariance structure that also 

reflects a known behavioral measure—for example self-report questionnaires, 

demographics, task performance, clinical assessments, or genotypes, among others. The 

intuition is that individuals who are more similar in behavior should also be more similar in 

their neural responses.

We operationalize this by computing two subject-by-subject distance matrices: one for the 

brain data (using, for example, ISC), and one for the behavioral data. We can then compare 

the geometry of these two matrices by correlating them, a procedure known as distance 

correlation or representational similarity analysis (Mantel, 1967; Kriegeskorte et al., 2008). 

We and others call this inter-subject representational similarity analysis (Chen et al., 2020; 

van Baar et al., 2019). The advantage of comparing similarity matrices over a typical first-

level analysis is that instead of directly linking two physically different quantities like brain 

data and behavior, we use a second-order isomorphism to compare the geometry of brain 

data with the geometry of behavioral data (Fig. 1) (Kriegeskorte and Kievit, 2013).

This sounds straightforward enough. But one critical question is, how do we measure 

behavioral similarity? In choosing a distance metric, particularly when our behavior is one-

dimensional (e.g., age (Mor- aczewski et al., 2018; Richardson et al., 2018), a trait score 

(Finn et al., 2018), accuracy on a cognitive task), we imbue our analysis with some 

fundamental assumptions about the structure of the brain-behavior representational 

similarity that affect the ultimate results and how we interpret them. To get a feel for some 

potential structures, imagine arranging the rows and columns of the ISC matrix such that 

subjects are ordered by their behavioral score. What would we expect the resulting matrix to 

look like?

If we use Euclidean distance or another relative distance metric, we implicitly assume that 

subjects with closer scores should be more similar to one another, regardless of where they 

fall on the scale. In other words, for a behavior that is measured on a scale from 0 to 100, a 

pair of subjects scoring 0 and 1 should be just as similar as a pair of subjects scoring 99 and 
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100 (since in both cases, the Euclidean distance is 1). We call this the Nearest Neighbors 

(NN) model, since it assumes that a subject should always look most similar to his or her 

immediate neighbors, regardless of their absolute position on the scale (Fig. 2a).

The NN model may be appropriate for certain behaviors, but we could imagine an equally if 

not more plausible scenario: that similarity between subjects increases or decreases as one 

moves up or down the scale, in an absolute rather than relative sense. For example, perhaps 

high-scoring subjects are more similar to other high scorers, while low-scoring subjects are 

less similar both to high scorers and other low scorers. In other words, brain responses 

cluster together for subjects at one end of the behavioral spectrum, while variability 

increases as one moves toward the opposite end of the spectrum. We call this the Anna 
Karenina (or AnnaK) model, after the famous opening line of Leo Tolstoy’s novel, which 

reads “All happy families are alike; each unhappy family is unhappy in its own way” (or, in 

this context, “all high [low] scorers are alike; each low [high] scorer is different in his or her 

own way”). In this case, Euclidean distance would not be the most appropriate choice. 

Instead, we would want to model similarity using a metric that reflects absolute position on 

the scale—for example, mean: (i + j)/2, minimum: min(i, j), or the product of the mean and 

minimum (Fig. 2b–d).2

In the case of traits and behaviors that consist of a vector of responses per subject (e.g., self-

report questionnaires) rather than a single scalar number (e.g., age), we have the option to 

calculate item-wise similarity using any number of potential distance metrics—for example, 

correlation, Euclidean distance, cosine distance and many others. In this case, we are 

assuming that it is the pattern of individual responses, and not the composite score, that 

should determine the inter-subject similarity structure. This approach is likely best suited to 

assessments consisting of unique items that are not interchangeable—personality 

questionnaires, for example.3 As a general heuristic, quantitative assessments—those with 

clear “better” and “worse” ends of the scale—are likely more suited to distance models 

based on single composite scores, while qualitative scales could be suited to either 

composite or item-wise models. We can also imagine scenarios where both models are 

theoretically appropriate, and each might capture different effects. For example, 

questionnaires assessing symptom type and severity might show some effects that scale with 

overall score (Anna Karenina model), and others that scale with item-wise similarity 

(nearest neighbors)—and each of these effects might be present in different brain regions.

2While in theory these three potential formulations of the AnnaK model have somewhat different interpretations, in practice, they tend 
to yield highly correlated distance matrices, making it difficult to select the most appropriate formulation via model comparison. In the 
empirical section of this paper, we elected to test only the first formulation (Fig. 2b, mean(i,j)), because it is the simplest, and because 
it has the advantage that any inverse relationships (i.e., lower behavioral scores associated with higher ISC) will be captured using the 
same model (see also Footnote 4). Future work could attempt to disentangle these and other formulations using advanced model 
comparison techniques and/or simulations.
3Since most cognitive performance tests consist of more than one item, we could in theory calculate item-wise distance on these tests 
as well. But because trials in these tests are generally interchangeable, it is more straightforward and interpretable to consider the 
similarity of two subjects’ composite score rather than the similarity of their performance on individual trials (unless one has a specific 
hypothesis about learning rates, attention fluctuations, or other effects with a dynamic component).
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5. Inter-subject RSA: application

To investigate if and how brain similarity reflects behavioral similarity during naturalistic 

stimulation, and more specifically, how the choice of distance model affects results, we 

applied inter-subject RSA to an empirical dataset from the Human Connectome Project 

(HCP) (Van Essen et al., 2013). Subjects (all healthy volunteers aged 22–35 years) engaged 

in a movie-watching paradigm during high-resolution (voxel size = 1.6 mm3, TR = 1s) 

functional MRI scanning at 7 T. The sample used here (n = 184) reflects all available data 

for this paradigm. This dataset contains many sets of twins (both mono- and dizygotic) and 

siblings (the 184 subjects come from n = 93 unique families). Details of data acquisition and 

basic preprocessing are published elsewhere (Glasser et al., 2013a; Van Essen et al., 2012; 

Vu et al., 2017). Each subject watched four 15-min movie runs; data from the first run 

(MOV- IE1_7T_AP) are used here. This run comprised five video clips presented in a fixed 

order. Four clips were from independent films and documentaries, all with some degree of 

social and affective content, and one was a montage of brief (1.5s) moving scenes depicting 

people and places. All fMRI analyses began with the FIX-denoised data, which includes 

standard preprocessing (motion correction, distortion correction, high pass filtering, and 

nonlinear alignment to MNI template space (Glasser et al., 2013b)) plus regression of 24 

frame wise motion estimates (six rigid-body motion parameters and their derivatives and the 

squares of those 12) and regression of confound time series identified via independent 

components analysis (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014).

Each subject also completed a battery of self-report and behavioral measures outside the 

scanner (Barch et al., 2013). We focused on two trait-level measures from the cognitive and 

emotional domains, respectively: working memory (as measured by a list-sorting task) and 

personality (as measured by the NEO Five-Factor Inventory). We chose these two traits 

because we hypothesized that the structure of brain-behavior similarity would manifest 

differently for each one, and therefore that each trait would be best modeled by a different 

distance function in IS-RSA, as detailed below. The primary outcome measure from the list-

sorting task is a single scalar measure of working memory span, or how many items can be 

accurately stored and manipulated in working memory at one time (higher scores indicate 

higher performance). The NEO-Five Factor Inventory consists of 60 items, and subsets of 

these are summed to yield scores for five dimensions: agreeableness, extraversion, 

conscientiousness, neuroticism, and openness.

For both working memory and all five personality traits, we tested two models: 1) a nearest-

neighbor model based on overall score (abs(i- j)), to test the prediction that people that score 

more similarly on a behavioral measure look more similar, regardless of whether they score 

high or low; and 2) an AnnaK model based on the mean(i,j) formulation, to test the 

prediction that people who score high on a given trait share similar patterns of brain activity, 

while people that score low show more variability (or vice versa).4 Within the personality 

domain, we tested a third model: nearest-neighbor based on item wise responses to the 

4One advantage of the mean(i,j) formulation of the AnnaK model is that the same model can detect effects in both directions, based on 
the sign of the resulting r-value between the brain and behavioral similarity matrices. If high scorers are alike and low scorers 
different, the resulting r-value would be positive; if low scorers are alike and high scorers different, it would be negative. (Note that the 
other two formulations—min(i,j) and abs(i-j)*mean(i,j)—would also be expected to yield negative r-values in a case where low scorers 
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personality questionnaire, to test the prediction that people who fill out the questionnaire in 

more similar ways, regardless of their summary trait scores, would show more similar brain 

activity. We hypothesized that working memory would be best captured by the AnnaK 

model in most brain regions. We did not have strong hypotheses about the best model for 

personality, as any of the above scenarios were plausible a priori.

Because we might expect both behavioral phenotypes and brain activity to be more similar 

between siblings—and especially twins—due to any number of genetic and environmental 

influences, we avoided performing IS-RSA on related individuals. We split the dataset into 

two cohorts of unrelated subjects (n = 93 and n = 89, respectively), which had the benefit of 

giving us a natural replication sample to help guard against false positives. We performed all 

analyses on each cohort separately, and leveraged this test-retest framework to correct for 

multiple comparisons, described further below.

For each subject, we extracted activity time courses from every node in a 268-node 

functional parcellation (Shen atlas; Shen et al. (2013)) by averaging signal across all voxels 

for each volume. (Because activity is expected to be smooth across neighboring voxels, this 

step reduces the dimensionality of the data, thus avoiding the computational cost of a voxel 

wise analysis.) For each node n and each subject pair {i, j} within a cohort, brain similarity 

was calculated as the Pearson correlation (ISC) of activity time courses across the whole 

run. Behavioral similarity was calculated according to either an NN model (i - j; Fig. 2a) or 

an AnnaK model (mean(i, j); Fig. 2b). Representational similarity was assessed by 

calculating Spearman’s rank correlation between the vectorized upper triangles of the brain 

and behavioral similarity matrices.

For each node, the significance of the brain-behavior representational similarity was 

assessed non-parametrically using a Mantel test (Mantel, 1967), in which subject labels (i.e., 

rows and columns) are randomly permuted for one of the two similarity matrices a large 

number of times (in this case, 10,000) and the correlation between the two matrices is 

recalculated to form a null distribution of surrogate correlation values. The observed 

correlation coefficient is then compared to this null distribution to obtain a p-value for each 

node for each cohort. These p-values were then corrected for multiple comparisons using 

two parallel approaches, both of which leveraged the two-cohort framework: (1) Bonferroni-

style, in which a corrected p-threshold was calculated to reflect the probability of obtaining a 

p < 0.05 result in both Cohort 1 and Cohort 2 for any given node (in this case, p = 0.0136)5; 

and (2) familywise error control, in which we used permutation testing to compute a null 

distribution for how many nodes across the whole brain would be expected to survive an 

initial p-threshold (in this case 0.05) in both cohorts, and compared the observed number of 

were alike, but because these models are not symmetric about the counterdiagonal [top-right to bottom-left], they would be less 
precise at detecting inverse relationships, and would require two different models to accurately detect inverse relationships.).
5If each node is tested at an alpha of α = 0.05, the probability of a false positive for the same node in both cohorts is 0.052, or 0.0025. 
If there are 268 tests, the probability that any one of them is significant in both cohorts is 0.0025*268, or 0.67. We can set this 
outcome probability to a desired alpha level, in this case 0.05: 268*α2 = 0.05, which gives 0.0136. Note that this approach assumes 
that Cohorts 1 and 2 are independent, which is not strictly true since there are twins and non-twin siblings split across cohorts. 
However, in the absence of clear data as to how genetic relatedness influences brain activity during naturalistic stimulation, we believe 
this approach, akin to using discovery and replication samples, is a step toward ensuring statistical rigor and generalizability (and is 
still preferable to including pairs of siblings within the same cohort, which would violate independence assumptions in the first-level 
analyses).
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nodes to this null distribution. Note that the second approach was not designed to test 

significance of any particular node, but rather to assess and compare overall detection power 

across the brain for our two models.

For working memory, as we hypothesized, brain-behavior representational similarity was 

best captured by the AnnaK model (Fig. 3, bottom row). High-scoring subjects were similar 

to other high scorers across much of the brain, while low-scoring subjects had more 

idiosyncratic responses—in other words, they were less similar to both the high scorers and 

other low scorers. The AnnaK model fit the data better than the nearest-neighbors model in 

that it yielded stronger effect sizes (compare distributions of RSA values between the two 

scatter plots in Fig. 3) that were more replicable across the two subject cohorts 

(rcohort 1, cohort 2 = 0.60 for the AnnaK model versus 0.18 for the NN model). The AnnaK 

model captured significant relationships between brain and behavioral similarity in 52 nodes 

(familywise p < 0.0001) across parietal, temporal, occipital and cerebellar cortex (of these, 

16 survived Bonferroni-style correction). This pattern is consistent with previous findings 

that working memory and other high-level cognitive abilities depend on distributed networks 

of regions mostly in association cortex, and that individual differences in the functional 

organization of these regions are to some degree intrinsic, i.e., they can be observed even in 

the absence of task states designed specifically to probe these processes (Cole et al., 2012; 

Finn et al., 2015; Hampson et al., 2006; Song et al., 2008). In contrast, the NN model 

captured significant brain-behavior relationships in only 2 nodes (familywise p = 0.14; 

neither survived Bonferroni correction).

For personality, results were more complicated. Using trait summary scores, the nearest-

neighbor model based on trait summary scores did not yield any significant nodes across any 

of the five dimensions (Fig. 4b, top scatter plots), and the AnnaK model yielded only two 

significant nodes at an uncorrected threshold across all five dimensions (Fig. 4b, bottom 

scatter plots). However, the nearest-neighbor model based on item-wise responses captured 

16 nodes across the brain (familywise p < 0.0001; though only one individual node survived 

Bonferroni-style correction), including fusiform, right inferior frontal gyrus, and several 

nodes in the cerebellum (Fig. 4a). Interestingly, this suggests that brain responses during 

naturalistic stimulation may depend less on overall levels of certain personality traits, and 

more on personality “fingerprints” captured by specific patterns of item-wise responses to 

the personality questionnaire. The relative overrepresentation of results in the cerebellum 

adds to a growing body of evidence for its role in social cognition, especially processes that 

involve a high level of abstraction (Van Overwalle et al., 2014); the present results suggest 

that individual-specific traits may be encoded in patterns of cerebellar activity during 

complex stimulation of a largely social nature.

In sum, we observed that different traits and behaviors are best modeled by different 

distance functions in different brain regions. These results raise several questions to be 

addressed in future work. For example, which model(s) perform best on other traits and 

behaviors? Can we use dynamic analyses (Glerean et al., 2012; Simony et al., 2016) to 

reveal particular time windows where the brain-behavior signal is strongest? Do these 

windows relate to known features of the stimulus? For now, we can conclude that IS-RSA is 

a promising framework to detect brain-behavior relationships during naturalistic imaging, 
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and that choosing the appropriate model not only improves sensitivity, but also offers the 

flexibility to test multiple hypotheses with fundamentally different interpretations.

6. Inter-subject RSA: Future directions

6.1. Boosting individual signal by removing common variance

Our intent here was to demonstrate IS-RSA using a straightforward, whole-brain method 

without an overly burdensome computational load. However, ISC may also suffer from the 

reliability paradox (Hedge et al., 2018): the stronger the shared response, the harder it is to 

identify individual differences. This is clear especially in sensory areas with high ISC values 

reflecting a strong shared time-locked response, possibly masking inter-individual 

differences.

A refined pipeline for IS-RSA might incorporate additional processing steps to boost 

individual signal and improve detection power for brain- behavior relationships. For 

example, simply regressing out the group-average time course from each individual’s node 

wise data before computing IS-RSA might highlight differences of interest. Alternatively, 

stimulus features (e.g., luminance, visual flow, acoustic properties (Lahnakoski et al., 

2012b)) could be used as confounds to regress out strongly time-locked components from 

brain signals.

Yet another approach would be to first estimate a common set of latent features at the group 

level via hyper alignment (Haxby et al., 2011) or shared-response modeling (Chen et al., 

2015), then calculate IS-RSA based on either the individual-subject data transformed into 

feature space or on the residuals after factoring out group variance. More sophisticated 

techniques using wavelet decomposition or mutual information can pull out shared signal 

components that are not time locked between individuals or with the stimulus, conceptually 

similarly to the evoked and induced oscillations in electrophysiology (Tallon-Baudry and 

Bertrand, 1999) (see also subsection “Increasing spatiotemporal complexity”). All of these 

techniques seek to decompose spatiotemporal signals into a set of features that model the 

shared component of subjects’ responses, thereby minimizing the impact of misaligned 

anatomical or functional topographies in favor of emphasizing “true” functional differences 

between individuals. Shared-response modeling and hyper-alignment have been shown to 

increase sensitivity to group differences (Chen et al., 2015) and individual differences 

(Feilong et al., 2018), respectively; future work should investigate whether one or more of 

these approaches increases sensitivity to brain-behavior relationships in the IS-RSA 

framework.

6.2. Extending IS-RSA to a predictive framework

We can readily extend IS-RSA to a predictive framework (Bzdok and Ioannidis, 2019; 

Gabrieli et al., 2015), in which a model is trained to take in patterns of brain activity during 

naturalistic stimulation and generate a predicted behavioral score for never-before-seen 

individuals (or vice versa). In this context, too, the success of the model will depend 

crucially on knowing whether the brain-behavior relationship shows an AnnaK or NN-type 

structure.
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The success of the AnnaK model for at least one behavior investigated here has interesting 

implications for not only IS-RSA, but any approach to predicting behavior from brain 

features: it suggests that the relationship between imaging-derived features and behavior 

may be linear (or at least monotonic) only at one end of the behavior spectrum, while the 

other end is associated with increased variability but not necessarily in a consistent direction. 

One implication may be to consider radial kernels for regression, which measure distance 

from a central point (as opposed to linear kernels, which measure absolute position on a set 

of axes). However, the AnnaK structure does predict a linear or monotonic relationship 

between a subject’s behavioral score and their mean (or median) ISC value with all other 

subjects, a fact that could be leveraged in a predictive analysis.

On the other hand, the NN models do not predict any relationship between behavior and 

overall mean or median ISC value, but rather between behavior and ISC with specific 

partners. In this case, non-parametric methods such as k-nearest neighbors would be more 

appropriate. In either case, feature selection could be applied to uncover the brain regions 

where similarity is most strongly related to behavioral similarity, to improve model 

performance.

6.3. Unsupervised IS-RSA

As we amass larger neuroimaging datasets that include naturalistic tasks, it may become 

possible to perform unsupervised analyses. In other words, instead of using known 

behavioral scores to pre-label the data, we could cluster inter-subject brain similarity 

matrices to detect natural categories or continua in a data-driven fashion, then see if these 

relate to present or future behavioral outcomes (Cerliani et al., 2017). In this way, we may be 

able to leverage naturalistic neuroimaging to organize individuals along axes that are more 

biologically valid than current diagnostic and self-report measures, potentially shedding new 

light on how individual variability is reflected in nuanced brain function.

6.4. Increasing spatiotemporal complexity

Thus far we have been using inter-subject correlation, or simple Pearson correlation between 

two subjects’ time series, as our primary measure of brain similarity, largely because it is 

straightforward to compute, visualize, and interpret. However, in theory we could calculate a 

brain similarity matrix (cf. Fig. 1) based on any type of information extracted from single 

subjects’ neuroimaging data. For example, we could use functional connectivity (Glerean et 

al., 2016), or compare subjects’ temporal trajectories over the course of a stimulus using 

low-dimensional topological embeddings (e.g., Gonzalez-Castillo et al., 2019; Saggar et al., 

2018), latent state discovery (Chang et al., 2018), or projection into a higher-order space 

using recurrent neural networks (Venkatesh et al., 2019). Furthermore, the brain and 

behavioral inter-subject similarity matrices (cf. Fig. 1) can also be interpreted as networks, 

meaning they could be analyzed using geometry-aware methods such as geodesic distance 

(Venkatesh et al., 2020). Rather than mass univariate tests for how behavior is reflected in 

single regions, these approaches allow for linking behavior to multivariate patterns of 

activity across multiple regions, and may prove even more powerful for uncovering brain-

behavior relationships during naturalistic imaging.
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7. Stimulus selection: How much synchrony is enough?

Thus far, we have discussed how to optimize sensitivity to stimulus- evoked individual 

differences from an analysis perspective. What about from an acquisition perspective? While 

naturalistic imaging experiments are growing in popularity, currently, there is no principled 

way to choose stimuli. Common wisdom is that for studying shared responses, we should 

choose something maximally engaging, to “drive” as much of the brain as possible. Indeed, 

previous work has shown that features of the stimulus affect ISC levels: more rhetorically 

powerful speeches (Schmälzle et al., 2015), emotionally arousing narratives (Nummenmaa 

et al., 2014), and highly rated television programs (Dmochowski et al., 2014) all evoke 

higher synchrony than their less engaging counterparts.

But, when the goal of a study is specifically to investigate individual differences, 

considerations for choosing a stimulus may be different. In the theoretical limit, a stimulus 

that evoked perfect synchrony across subjects would be useless for studying individual 

differences—since there would be no neural variability to relate to behavioral variability 

(Hedge et al., 2018). Practically, however, we are quite far from that theoretical limit, since 

individual BOLD responses are “noisy” both in terms of uninteresting variability (scanner 

noise, non-neural BOLD signals, stimulus-unrelated neural activity) and the stimulus-driven 

idiosyncratic responses that constitute the “signal” of interest here.

Is there a “sweet spot” where a stimulus evokes enough synchrony to build a successful 

cross-subject model, but not enough to saturate the individual signals of interest? To test 

their hypothesis that social network proximity predicts increasingly similar neural responses 

to movies, Parkinson et al. (2018) chose videos that might differentially appeal to those with 

different tastes (reasoning that friends would be more likely to have similar tastes; e.g., 

styles of humor, opinions on controversial topics). A handful of studies have created bespoke 

stimuli that were ambiguous by design, such that different individuals might arrive at 

different interpretations of the same material. Finn et al. (2018) created a narrative 

describing a complex social scenario that seemed highly suspicious or nefarious to some 

individuals, but less so to others; Nguyen et al. (2018) created a Heider-Simmel-esque video 

(Heider and Simmel, 1944) depicting an interaction among animated shapes in which the 

relationships between the shapes were open to interpretation. These studies found that 

individuals who were more similar on either trait-level (i.e., intrinsic) or state-level (i.e., 

stimulus-driven) measures, respectively, showed increased inter-subject correlation during 

stimulus presentation in regions of higher-order association cortices, especially those linked 

to social cognition.

None of these studies, however, directly assessed how the degree of ambiguity or so-called 

“taste-dependence” of a stimulus affects its utility for drawing out meaningful individual 

signal. If the goal is to study idiosyncratic responses, how much synchrony is optimal? If we 

imagine plotting stimuli by the strength of the ISCs they evoke versus their sensitivity to 

individual differences, several potential scenarios emerge (Fig. 5.). One possibility is that 

idiosyncratic signals are quickly saturated by a powerful stimulus, such that the optimal 

stimulus would evoke only minimally correlated responses when averaged across all 

subjects, leaving room for specific subject pairs to be more or less correlated with one 
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another according to variations in behavior (Scenario 1). Alternatively, the optimal level of 

average synchrony could be higher, such that sensitivity to individual differences benefits 

from a stronger foundational shared response at the group level (Scenario 2). Another 

possibility is that the theoretical “saturation point” is much higher, such that stimuli that 

evoke very strong responses are the ones that are most sensitive to individual differences 

(Scenario 3). This third scenario would be consistent with the observation that stimuli and 

task states that make subjects look more similar to one another can actually boost signal-

tonoise for individual differences, since even though these states reduce overall cross-subject 

variation, the remaining variation is presumably more stable and trait-like (Finn et al., 2017; 

Vanderwal et al., 2017).

Understanding how stimulus choice affects sensitivity to individual differences will be an 

important area for future research, especially as large-scale data collection efforts begin to 

incorporate naturalistic scans into their protocols (Alexander et al., 2017; Van Essen et al., 

2012). We believe acquiring naturalistic scans should be encouraged for several reasons: 

beyond improving subject compliance (and therefore data quality) compared to resting-state 

scans (Greene et al., 2018; Huijbers et al., 2017; Vanderwal et al., 2015), naturalistic 

paradigms yield data that can be mined in any number of ways, expanding their potential to 

generate insights into a variety of open questions in human neuroscience. Yet, to the extent 

that stimulus choice affects the individual signals we observe, it will behoove us to be as 

principled as possible in choosing stimuli.

Of course, there may not be a single “best” stimulus for studying individual differences; 

rather, the most appropriate stimulus may depend on the specific behavior(s) of interest. For 

example, a threatening or suspenseful stimulus—e.g., the opening scene in a horror film—

might evince neural responses that share structure with trait anxiety, as compared to one 

depicting positive emotion—e.g., the happily-ever-after final scene of a romantic comedy. 

Conversely, the positive stimulus might yield better predictions of trait anhedonia. At the 

same time, both of these stimuli may yield better predictions of either trait than a neutral 

stimulus with little to no emotional content. Testing these hypotheses will require datasets 

with a range of both stimuli and behavioral measures per subject. However, there is already 

some supporting evidence: for example, differences between controls and patients with 

melancholic depression are more pronounced during a negative film clip than a positive one 

(Guo et al., 2015).

8. Limitations

Despite the many clear advantages and—we believe—great potential of using naturalistic 

paradigms to study individual differences, there are several outstanding challenges. For one, 

the test-retest validity of these paradigms is unclear. Repetition is known to alter neural 

processing, and this is likely especially true for emotionally evocative and memorable 

stimuli. Thus, naturalistic paradigms that rely on a single stimulus may be less appropriate 

for longitudinal studies, since it would be near impossible to disentangle within-subject 

changes from repetition effects.
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There are computational challenges associated with using inter-subject approaches, since 

pairwise techniques mean that the number of observations increases as n2 rather than n. 

Especially in the case of inter-subject functional connectivity (ISFC; Simony et al. (2016)), 

reducing dimensionality using pre-defined atlases, and/or selecting regions of interest based 

on a priori hypotheses or a first-pass analysis of which regions surpass some minimal 

threshold for response consistency (cf. Fig. 5.), may help in this regard.

Another challenge, albeit not one unique to naturalistic paradigms, is understanding which 

traits and behaviors we should target. Predicting a performance-based or self-report score 

acquired close in time to the imaging data itself, which is the goal of the vast majority of the 

current literature on brain-behavior relationships, is an important proof-of- concept, but 

ultimately the imaging data will always be simply a noisier version of whatever “ground 

truth” we are trying to predict. Ultimately, the goal should be to determine the value of 

baseline brain responses to naturalistic stimuli as predictors of follow-up measures such as 

learning rates (Cantlon and Li, 2013), illness trajectory, or response to intervention.

9. Concluding remarks

Here, we have advanced an emerging framework for studying individual differences during 

naturalistic neuroimaging, a phenomenon we call “idiosynchrony”. Inter-subject 

representational similarity analysis (IS-RSA) combines the time-locked nature of the 

stimulus with known phenotypic information to move from shared responses to activity in 

individual subjects that is idiosyncratic, yet structured and interpretable. Unlike traditional 

approaches that rely on explicit models of the task, inter-subject approaches promise to 

capture as much nuance and variance of the evoked activity as possible. And, unlike 

functional connectivity approaches that treat naturalistic neuroimaging data akin to rest, 

inter-subject approaches afford near certainty that the observed signals are both neural in 

origin and driven by the stimulus. Above and beyond a boost in signal-to-noise, these 

paradigms open up exciting opportunities to link individual patterns of brain activity to 

specific events within the stimulus that unfold over various timescales, from its low-level 

sensory properties up to high-level narrative features that may evoke different memories, 

associations and emotions for each individual. Linking naturalistic patterns of brain activity 

to trait- and state-related variability across subjects will deepen our understanding of how 

individual brains give rise to individual behaviors, and may eventually lead to imaging- 

based tools for real-world applications.

Data and code availability

Raw data for the empirical results presented here come from the Human Connectome 

Project (http://www.humanconnectomeproject.org/). Code for all IS-RSA analyses—both 

simulations (cf. Fig. 2) and empirical application to HCP data (cf. Figs. 3 and 4)—can be 

found in the following Github repository: https://github.com/esfinn/intersubj_rsa, which also 

contains the processed HCP data (node wise time series) that formed the input to the 

empirical analyses.
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Fig. 1. Schematic of inter-subject representational similarity analysis.
Each subject (bottom layer) is associated with a behavioral score (middle layer) and a 

pattern of brain activity (top layer, e.g., a time series from a given brain region during 

naturalistic stimulation). The middle and upper layers depict weighted graphs obtained using 

the similarity matrices as adjacency matrices, where thicker lines indicate increased 

similarity between nodes (subjects). In IS-RSA, we construct pairwise (i.e, subject-by-

subject) similarity matrices for the behavioral data and the brain data, then compare these 

matrices using a Mantel test. Thus, we can leverage inter-subject analysis methods such as 

ISC to detect shared structure between brain data and behavioral data. This figure is a 

modified version of Fig. 1 in Glerean et al. (2016).
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Fig. 2. Simulated potential structures for brain-behavior representational similarity matrices.
For each row a-d, the left panel depicts a simulated pairwise brain similarity matrix in which 

subjects are ordered along both rows i and columns j by their behavioral score (from low to 

high), and each cell {i, j} reflects the correlation between subjects i and j of the timeseries of 

a given brain region (pairwise inter-subject correlation). The right panel depicts a two-

dimensional embedding of the corresponding distance matrix (i.e., 1 – similarity matrix) 

using t-SNE (t-Distributed Stochastic Neighbor Embedding), in which each dot represents a 

subject, and subjects are colored according to their behavioral score. Under the t-SNE 
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solution, similar observations (in this case, subjects) appear nearby, while dissimilar 

observations appear further away.
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Fig. 3. Inter-subject RSA: Working Memory.
Do pairs of subjects that score more similarly on a test of working memory (Human 

Connectome Project: ListSort_Unadj) also show stronger ISC in certain brain regions during 

naturalistic viewing? Two models for behavioral similarity are tested: a nearest-neighbor 

model (top row; cf.Fig. 2a) where the behavioral similarity matrix is constructed as |i - j|, 

and an “Anna Karenina “ model (bottom row, cf. Fig. 2b) where the behavioral similarity 

matrix is constructed as mean(i,j). In the scatter plots, each dot represents one node in the 

Shen atlas (268 total), plotted according to its representational similarity (Spearman 

correlation between brain similarity and behavioral similarity matrix, r) in cohort 1 (x- axis) 

versus its representational similarity in cohort 2 (y-axis). Large gray dots are nodes that 

show significant representational similarity (p < 0.05, uncorrected) after permutation testing 

in both cohorts (no. permutations = 10,000 for each cohort); large black dots are nodes that 

show significant representational similarity (p < 0.0136) after Bonferroni-style correction at 

α <0.05. The dashed diagonal line represents the identity line y = x (not the regression line), 

to facilitate visual inspection of replicability—if the results are replicable across cohorts, the 

RSA r-values should fall close to this line. Glass brains show nodes colored by IS-RSA 

value. Nodes outlined in gray and black show significant representational similarity after 

familywise and Bonferroni correction, respectively (corresponding to the large gray and 

black dots in the scatterplots).

Finn et al. Page 25

Neuroimage. Author manuscript; available in PMC 2021 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. Inter-subject RSA: Personality.
Do pairs of subjects with more similar personalities (as measured with the Five-Factor 

Inventory) also show stronger ISC in certain brain regions during naturalistic viewing? a) IS- 

RSA, where personality similarity is calculated as the Pearson correlation between item-

wise responses of each pair of subjects (“NN-itemwise “). b) IS-RSA where personality 

similarity is calculated based on summary scores for each of the five traits. For each trait, 

two models for behavioral similarity are tested: a nearest-neighbor model (top graph in each 

column; cf.Fig. 2a) where the behavioral similarity matrix is constructed as |i - j|, and an 

“Anna Karenina” model (bottom graph in each column, cf.Fig. 2b) where the behavioral 

similarity matrix is constructed as mean(i,j). In all scatter plots, each dot represents one node 

in the Shen atlas (268 total), plotted according to its representational similarity (Spearman 

correlation between brain similarity and behavioral similarity matrix) in cohort 1 (x-axis) 

versus its representational similarity in cohort 2 (y-axis). Large gray dots are nodes that 

show significant representational similarity (p < 0.05, uncorrected) after permutation testing 

in both cohorts (no. permutations = 10,000 for each cohort); large black dots are nodes that 
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show significant representational similarity (p < 0.0136) after Bonferroni-style correction at 

α < 0.05. The dashed diagonal line represents the identity line y = x (not the regression line), 

to facilitate visual inspection of replicability—if the results are replicable across cohorts, the 

RSA r-values should fall close to this line. Glass brains show nodes colored by IS-RSA 

value. Nodes outlined in gray and black show significant representational similarity after 

familywise and Bonferroni correction, respectively (corresponding to the large gray and 

black dots in the scatterplots).
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Fig. 5. Theoretical stimulus tuning curves for sensitivity to individual differences.
In the upper limit, as the degree of cross-subject synchrony evoked by a stimulus approaches 

1, that stimulus will lose sensitivity to individual differences, since there will be no brain 

variability left to relate to behavioral variability. However, in the lower limit, if a stimulus 

evokes no correlation across subjects, there will be no meaningful structure in brain 

similarity to relate to behavioral similarity. Therefore, the optimal tuning curve likely 

follows an inverted-U shape. Determining where this curve peaks—in other words, the 

optimal degree of synchrony for extracting meaningful individual differences in a certain 

behavioral domain—should be a goal for future work.
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