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Abstract

Molecular evaluations of successful invaders are common, however studies of intro-
duced species that have had limited invasion success, or have died out completely,
are rare. We studied an introduced population of speckled dace (Rhinichthys os-
culus) from northern California, USA that has rapidly increased in abundance
but remained restricted to a 25-km stretch of river since its introduction in the
mid-1980s. Field and laboratory analyses indicate that invasion success of speck-
led dace is constrained by the combined effects of multiple predators. The role
of bottleneck effects associated with the introduction has not been studied. We
assayed variation in seven microsatellite loci and one mitochondrial DNA gene in
the introduced population and nine putative source populations to identify the
source population and evaluate bottleneck effects. The Trinity River system was
supported as the source owing to its genetic similarity and geographic proximity
to the introduced population. Consistent with a bottleneck, the introduced pop-
ulation exhibited reduced allelic and haplotype richness in comparison to source
populations. Estimates of the genetically effective number of individuals founding
the introduced population using nuclear coalescent analyses and a mitochondrial
simulation procedure were highly concordant in suggesting that the initial coloniz-
ing group was comprised of about 10 individuals. A bottleneck effect in an exotic
species exhibiting limited invasion success has rarely been documented and thus
introduction of speckled dace represents an important model system for future in-
vestigation. Establishing a relationship between genetic diversity and factors limiting
invasion success in this system (e.g., predator avoidance) will help determine the
extent to which genetic diversity loss has constrained invasion success in speckled
dace.

Introduction

Exotic species are considered second to habitat loss and frag-
mentation as a threat to global biodiversity (Walker and Stef-
fan 1997; Wilcove et al. 1998). Exotic species can alter nat-
ural evolutionary patterns of native species by competitive
exclusion, niche displacement, hybridization, introgression,
predation, and extinction (Mooney and Cleland 2001). Thus,
development of tools for predicting invasion success is im-
portant for management of exotic species (Kolar and Lodge
2001).

Genetic diversity is considered essential for establishment
and spread of exotic species (Sakai et al. 2001). For pragmatic
reasons, genetic diversity is generally evaluated in successful
invaders, not in those that have died out or those that failed
to expand their range following establishment. However, un-
successful invaders are key for understanding the importance
of genetic diversity for predicting invasion success (Dlugosch
and Parker 2008). Unsuccessful invaders are expected to ex-
perience dramatic losses in genetic diversity as a result of
bottlenecks that reduce adaptive potential and limit spread
or cause extinction (Sakai et al. 2001; Reed and Frankham
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2003). Thus, to more clearly define the role of genetic diversity
for predicting invasion success, studies of introduced species
that have had no or limited invasion success are needed to
complement studies of successful invaders.

Estimating the number of individuals founding introduced
populations using genetic data provides a powerful approach
for evaluating bottleneck effects and genetic diversity loss
associated with exotic species introductions (e.g., Ross and
Shoemaker 2008). Given genotypic data from an introduced
population and its source, estimates of founder number can
be generated using a coalescent-based maximum likelihood
approach (Anderson and Slatkin 2007). Importantly, esti-
mates of founder number can be used to specify the maxi-
mum number of alleles per locus that can be retained in an
introduced population and apply to all loci in the genome,
thereby avoiding issues associated with using a few neutral
loci as a proxy for genome-wide patterns. Founder number
is also an important demographic parameter for evaluating
propagule pressure, which is critical for predicting future es-
tablishment and spread of invaders (Lockwood et al. 2005).

We investigated genetic diversity in an introduced popula-
tion of speckled dace (Rhinichthys osculus), a small (usually
less than 80 mm standard length) cyprinid fish, which has had
limited invasion success since their introduction to the Van
Duzen River (northern California, USA) in the mid-1980s
(Brown and Moyle 1997; Moyle 2002). Initially suitable habi-
tat conditions and low predation risk allowed establishment
and rapid range expansion (Brown and Moyle 1997). How-
ever, despite the availability of suitable habitat, speckled dace
have remained restricted to a 25-km stretch of the Van Duzen
River.

The key trait limiting the invasion success of speckled dace
appears to be their inability to evade multiple predators (Har-
vey et al. 2004). Speckled dace contact sculpins (Cottus aleu-
ticus and C. asper) and pikeminnow (Ptychocheilus grandis)
at their downstream limit in the Van Duzen River. Compe-
tition for microhabitat and predation by benthic sculpins,
combined with predation by the water-column-occupying
pikeminnow, appear to prevent spread of speckled dace in
this system (Harvey et al. 2004). However, the severity of the
genetic bottleneck resulting from the original introduction
event is unknown, thus the extent to which traits associated
with predator avoidance may have been lost is unknown. It is
possible that dace are within a lag period between establish-
ment and the initiation of range expansion (Sakai et al. 2001)
and that evolution of adaptations associated with predator
avoidance will allow spread to other portions of the river
basin in the future.

We studied invasion genetics of speckled dace by assay-
ing microsatellite and mitochondrial DNA in the introduced
population and nine potential source populations. First, we
attempted to identify the source population(s) for the intro-
duction. Establishing a source population provides a bench-

mark to evaluate genetic changes in introduced populations
(Dlugosch and Parker 2008). Accuracy of assignment of
source populations is directly related to the degree of ge-
netic differentiation among them (Muirhead et al. 2008).
Speckled dace exhibit deep mitochondrial DNA divergence
among, and sometimes within, major river drainages in their
native range (Oakey et al. 2004; Pfrender et al. 2004). Thus,
we expected accuracy of assignment of the source population
to be at the basin scale or perhaps finer. Second, to gauge the
severity of the bottleneck and consequent genetic diversity
loss associated with introduction, we used two approaches.
First, we estimated the number of founding individuals in
the introduced population using our genetic data. Second,
we compared levels of genetic diversity in the introduced
population to the genetic diversity in likely source popula-
tions.

Materials and Methods

Sample collection and molecular methods

Speckled dace were collected from the introduced popula-
tion (Van Duzen River) and nine putative source popula-
tions (Fig. 1). Collections included all rivers surrounding
the introduced population known to contain speckled dace.
The geographic proximity of the sampled source populations
makes them reasonable locations for bait collection and live
transport to the introduction site. Speckled dace were col-
lected using a seine net or backpack electrofisher, euthanized
by administration of an overdose of tricaine methanesul-
fonate, and preserved in 95% ethanol. Whole genomic DNA
was extracted from fin tissue using chelex methods (Miller
and Kapuscinski, 1993).

A total of 71 (introduced) and 491 (source) speckled dace
were genotyped with seven microsatellite loci (see Table S1).
Microsatellite loci amplification was performed using Master
Mix (Promega, Madison, WI) in an MJ Research (Waltham,
MA) PTC-100 thermal cycler using 10 or 12.5-μl volumes.
Polymerase chain reaction (PCR) products were visualized
and allele size established using the Beckman–Coulter CEQ
8000 Genetic Analysis System. Allele scores were determined
twice and discrepancies were either resolved or no score was
assigned.

Tests for conformance to Hardy–Weinberg proportions
for each locus in each population were conducted using the
Markov chain Monte Carlo approximation of Fisher’s exact
test implemented in ARLEQUIN 3.1 (Schneider et al. 2000).
Loci were tested for null alleles, large allele dropout, and
stutter peaks in MICROCHECKER v 2.2.3 (Van Oosterhout
et al. 2004). Tests for linkage disequilibrium between all locus
pairs in each population were conducted in GENEPOP (Ray-
mond and Rousset 1995) (5000 batches of 2000 iterations).
We corrected for multiple tests using Bonferroni methods
(Rice 1989).
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Figure 1. Distribution of sampling sites for speckled dace in northern California, USA. Star indicates the introduced population (Van Duzen River [VD])
and filled circles indicate populations from the native range (Pit River [PT], Clear Creek [CL], Cache Creek [CA], Shasta River [SR], Hunter Creek [HU],
Trinity River [TR], Canyon Creek [CY], Hayfork Creek [HA], Forest Glen [FG]). River systems with speckled dace in bold and those that are not known
to contain speckled dace in gray.

Introduction source

Estimates of nuclear genetic differentiation (FST) between
all population pairs and permutation tests of their signifi-
cance were implemented in FSTAT V2.9.3.2 (Goudet 1995).
PHYLIP (Phylogeny Inference Package, version 3.68) was
used to calculate Cavalli-Sforza genetic distance between pop-
ulation pairs and to construct an unrooted neighbor-joining
tree (Felsenstein 1993). Branch support was evaluated by
conducting a bootstrap analysis from 1000 pseudoreplicates.
Multivariate assessment of population differentiation was
generated using Discriminant Analysis of Principal Compo-
nents (DAPC) (Jombart et al. 2010) using the DAPC function
implemented in the adegenet package (Jombart 2008) for the
R software (R Development Core Team 2009). DAPC per-
forms a preliminary data transformation step using Principal
Component Analysis (PCA) to create uncorrelated variables
that summarize total variability (e.g., within- and between-
group). These variables are used as input to DA, which aims
to maximize between-group variability and achieve the best
discrimination of genotypes into predefined clusters. The
Bayesian clustering algorithm employed in STRUCTURE
2.3.3 (Pritchard et al. 2000; Falush et al. 2003) was used
to generate an ad hoc estimate of the most likely number
of genetically distinct groups of speckled dace present in the
data, and to estimate individual admixture proportions (Q),
the proportion of each individual’s genome assigned to each
group. Estimates of the number of genetic clusters present in
the data were generated by calculating the log probability of
the data (ln Pr[X|K]) and �K (Evanno et al. 2005) assum-
ing our data consisted of K = 1, . . . , 10 genetically distinct

groups (Pritchard et al. 2000). All STRUCTURE analyses were
performed using the admixture and the correlated allele fre-
quencies models with no prior population information. The
Markov chain Monte Carlo simulation was run for a mini-
mum of 15,000 steps (with 7500 discarded as burn-in) and
a minimum of 20 independent runs were conducted at each
value of K . Inspection of summary statistics (e.g., divergence
distances among populations and likelihoods) indicated that
run lengths were sufficient for convergence. Graphical de-
pictions of STRUCTURE results were generated using DIS-
TRUCT (Rosenberg 2004).

Founder number

The effective number of individuals founding the introduced
speckled dace population was estimated using maximum
likelihood methods implemented in COALIT and NFCONE
(Anderson and Slatkin, 2007). Required inputs include nu-
clear genotypic data from the source and introduced popu-
lation, number of generations since the introduction event,
and demographic history of the introduced population since
initial founding (effective carrying capacity and intrinsic rate
of increase). While the exact value for most inputs was un-
known, we could confidently place limits on the range of
possibilities for each parameter. Three separate analyses were
conducted, each one assuming a different source population
(CY, FG, and HA), from within the Trinity River system, as
our findings (see below) indicated that these three locations
were the most likely sources. The date of the introduction was
set to 10 generations ago. Assuming a 2-year generation time
for speckled dace (Moyle 2002), this value would place colony
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founding approximately 20 years ago, which represents the
number of years between the introduction event (mid-1980s;
Brown and Moyle 1997) and our field collections in 2004.
The current speckled dace population in the Van Duzen River
numbers in the thousands (BCH and RJN, personal observa-
tion), thus we evaluated a range of effective carrying capaci-
ties centered on this observation, including 500, 1000, 2000,
4000, 8000, 16,000. Speckled dace rapidly expanded their
range following the original introduction (Brown and Moyle
1997), so we explored intrinsic rates of increase of 0.5, 1.0,
1.5, 2.0, and 3.0. We obtained estimates of founder number
using all 90 combinations of effective carrying capacity (500,
1000, 2000, 4000, 8000, 16,000), intrinsic rate of increase (0.5,
1.0, 1.5, 2.0, and 3.0), generations since founding (10), and
source population (CY, FG, and HA). Locus CYPG33 was
monomorphic in FG and the introduced population and was
eliminated from analysis of this source–founder pair because
it provided no information for estimating founder number.

Nuclear genetic diversity

ARLEQUIN 3.1 (Schneider et al. 2000) was used to calculate
proportion of polymorphic loci (P), allelic richness (A), ob-
served heterozygosity (HO), and Hardy–Weinberg expected
heterozygosity (HE). HP-RARE 1.0 (Kalinowski 2005) was
used to calculate standardized private allelic richness (Ap),
and standardized allelic richness (AR), equalized to a sample
size of 26 genes using rarefaction. We compared allelic rich-
ness, standardized allelic richness, and expected heterozygos-
ity using a two-way analysis of variance (ANOVA) with popu-
lation and locus considered as random factors. We specifically
evaluated the contrast between the introduced population
and the nine populations within the species’ native range
and a pairwise contrast between the introduced and the most
likely source population.

Mitochondrial DNA

We sequenced a total of 186 individuals from the introduced
population and nine putative source populations for a 759-bp
fragment of the mitochondrial cytochrome b gene. Amplifi-
cations were conducted using primers L14724 and H15915
under the following conditions (Irwin et al. 1991): 35 cycles
of 94◦C for 60 s, 48◦C for 60 s, and 72◦C for 120 s. Sequences
were generated using L14724 at High-Throughput Sequenc-
ing Solutions (University of Washington, Department of
Genome Sciences). Sequences were aligned in CLUSTALX2
(Larkin et al. 2007). Haplotype frequencies, average number
of nucleotide differences between population pairs, haplo-
type diversity (h), and nucleotide diversity (π) were estimated
using ARLEQUIN 3.1.

Estimates of the genetically effective number of founders
for the introduced population were generated using com-
puter simulations to model the effects of the founding event

on haplotype richness. Random samples of founder individ-
uals were drawn (with replacement) from a list of haplo-
types and their counts in the source population. A probabil-
ity distribution was constructed describing the proportion of
draws, out of 100,000 trials, which contain two haplotypes,
the number detected in the introduced population, assuming
the introduced population was founded by 2, . . . ,20 individ-
uals. The analysis was first run assuming the source was FG
(eight haplotypes), the only location containing both haplo-
types found in the introduced population. A second analysis
was conducted assuming the source consisted of a pooled
sample of the three most likely ancestral populations (CY,
HA, and FG; 19 haplotypes total), to account for haplotype
sampling error. Our analysis follows that of Ross and Shoe-
maker (2008).

Results

All nuclear loci were highly polymorphic, ranging from 6 to
48 alleles, with an average of 22 alleles per locus across all
populations. On average, <2% of the microsatellite geno-
types were missing from the final dataset, and missing data
were not characteristic of loci or populations. Of the 70 tests
for conformance to Hardy–Weinberg proportions (10 popu-
lations at seven loci), five were significant following Bonfer-
roni correction for multiple tests (critical value = 0.0007).
MICROCHECKER suggested deviations were primarily due
to null alleles; however, no single locus or population con-
sistently departed from expectations, eliminating locus- and
population-specific factors as causes for the deviations. A to-
tal of two of 210 pairwise tests for linkage disequilibrium were
significant following Bonferroni correction for multiple tests
(critical value = 0.0002).

Introduction source

Pairwise comparisons of nuclear genetic differentiation (FST)
indicated that the introduced speckled dace population was
most similar to native populations from the Trinity River
(TR and CY), 0.0659 and 0.0541, and South Fork Trinity
River (HA and FG), 0.1410 and 0.0815, and divergent from
all other native populations, 0.2281–0.4807 (Table 1). In the
neighbor-joining tree, the introduced population clustered
with samples from the Trinity River (CY) and South Fork
Trinity River (HA and FG) with 94% bootstrap support
(Fig. 2). In the DAPC, 90% of the total genetic variation
was captured by the first 45 principal components of PCA
and these were used as input to DA. The eigenvalues result-
ing from DA indicated that the first two axes captured the
majority of genetic structure among our speckled dace pop-
ulations (Fig. 3, inset). The introduced population clustered
with samples from the Trinity River (CY) and South Fork
Trinity River (FG and HA). In the STRUCTURE analysis,
the ad hoc statistic �K indicated K = 2 suggesting our data
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Table 1. Pairwise estimates of genetic differentiation among speckled dace populations. Microsatellite (FST) is below diagonal and mitochondrial
DNA (average number of nucleotide differences between populations) is above diagonal. Introduced population (VD) is shown in bold.

PT CL CA SR HU TR CY HA FG VD

PT – 2.2 4.9 31.1 27.9 26.2 23.3 23.3 24.1 23.9
CL 0.1031 – 4.6 30.8 27.6 26 23.1 23.2 23.9 23.8
CA 0.3603 0.2553 – 31.8 29.5 28.3 25.7 25.7 26.5 26.3
SR 0.2116 0.1217 0.1939 – 8.2 18.2 25.5 25.6 25.6 24.6
HU 0.1796 0.1055 0.1859 0.0438 – 16.6 22.5 22.5 22.6 21.7
TR 0.2819 0.2422 0.3588 0.1625 0.0818 – 12.2 12.1 12.4 11.9
CY 0.4337 0.4255 0.5228 0.3353 0.2422 0.1007 – 1 1.7 1.6
HA 0.4829 0.4773 0.5383 0.3997 0.2972 0.1542 0.1549 – 1.1 1
FG 0.3967 0.3837 0.4745 0.3050 0.2092 0.0759 0.0992 0.0745 – 1.3
VD 0.4059 0.3937 0.4807 0.3206 0.2281 0.0659 0.0541 0.1410 0.0815 –

0.01

TR

VD*

CYHA

FG

HU

SR

CA
PT

CL
98

94

100

100

89

Figure 2. Unrooted neighbor-joining tree generated using PHYLIP.
Branch lengths are equivalent to Cavalli-Sforza genetic distance. Boot-
strap values are along branches. The introduced population (VD) is indi-
cated by an asterisk.

consisted of two clusters (Fig. 4). One cluster consisted of the
introduced population and samples from the Trinity River
(CY) and South Fork Trinity River (FG and HA) and the
second cluster included samples PT, CL, CA, and SR (Fig. 5).
Samples TR and HU contained individuals of mixed ancestry
between the two clusters. The probability of the data (L[K])
arrived at a plateau at K = 6, suggesting another lower level
of structure featuring six clusters (Fig. 4). In this analysis,
the introduced population was assigned to a private cluster.
Some degree of admixture of the introduced population with

populations TR, CY, HA, and FG is evident from inspec-
tion of the individual membership proportions but the 90%
probability intervals ranged from 0 to 1, indicating lack of
statistical support (Fig. 5).

Founder number

Estimates of the number of founders in the introduced pop-
ulation ranged between 7 and 17 (support limits 6–25), de-
pending on parameter inputs. Intrinsic rate of increase had
a modest influence on the founder number estimate. When
r = 0.5, the estimated number of founders was about 15, but
when r ≥ 1.0, the expected number of founders stabilized at
about 10 (Fig. 6). The larger estimated founder number at
r = 0.5 is attributable to postintroduction drift resulting from
smaller population sizes in the initial generations immedi-
ately following population founding. Source population and
effective carrying capacity had limited influence on founder
number estimates, generally causing estimates to vary by less
than three individuals when all other parameters were held
equal (Fig. 6).

Genetic diversity

The proportion of polymorphic loci ranged from 0.57 to 1
in the native populations and was 0.86 in the introduced
population (Table 2). Standardized private allelic richness
ranged from 0.1 to 1.2 in the native populations and was
0.3 in the introduced population. Mean standardized allelic
richness ranged from 4.4 to 8.2 in the native populations and
was 3.7 in the introduced population. Mean unstandardized
allelic richness ranged from 6.0 to 13.0 in the native pop-
ulations and was 4.7 in the introduced population. Mean
observed heterozygosity ranged from 0.34 to 0.61 in the na-
tive populations and was 0.47 in the introduced population.
The maximum number of alleles observed at a locus in the
introduced population was nine.

c© 2011 The Authors. Published by Blackwell Publishing Ltd. 77
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Figure 3. Scatterplot of the first two principal components of DAPC using population locations as prior clusters. Populations are labeled inside
their 95% inertia ellipses and dots represent individuals. The inset indicates the eigenvalues of the first nine principal components. Putative source
population (CY) is superimposed by the introduced population (VD).

Both allelic richness and standardized allelic richness were
lower in the introduced population compared to the nine
native populations (F = 9.03, df 1,54, P = 0.004 for allelic
richness; F = 10.57, df 1,54, P = 0.002 for standardized al-
lelic richness), but expected heterozygosity in the introduced
population did not differ detectably from the native popu-
lations (F = 1.61, df 1,54, P = 0.210) (Table 2). A pairwise
contrast between the introduced population and the most
likely source population (FG) produced a difference in allelic
richness (P = 0.025), a marginal difference for standardized
allelic richness (P = 0.085), and no difference for heterozy-
gosity (P = 0.748).

Mitochondrial DNA

A total of 186 mitochondrial DNA sequences were aligned,
and 88 variable nucleotide positions defined 61 haplotypes
(see Table S2). The introduced speckled dace population ex-

hibited one to two nucleotide differences in comparison to the
Trinity River (CY) and samples from the South Fork Trinity
River (FG and HA), and marked divergence in comparison to
the remaining populations (11.9–26.3 nucleotide differences;
Table 1). The introduced speckled dace population contained
two haplotypes, one of which was shared only with the South
Fork Trinity River sample FG and a second haplotype that
was shared with samples from the Trinity River (TR and CY),
South Fork Trinity River (HA and FG), and Klamath River
(HU) (Fig. 7).

The presence of only two haplotypes in the introduced
population contrasted with a range of 4–12 haplotypes
present in the native populations (Table 2). The lack of pri-
vate haplotypes in the introduced population contrasted with
three to nine private haplotypes in the native populations.
Haplotype diversity was 0.34 in the introduced population
and ranged from 0.35 to 0.94 in the native populations.
Nucleotide diversity ranged from 0.0015 to 0.0212 in the

78 c© 2011 The Authors. Published by Blackwell Publishing Ltd.
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Figure 4. L(K) (solid line, filled circles, ±SD) and �K (dotted line, open
circles) resulting from 20 runs at each value of 1, . . . ,10 clusters (K).

native populations and was 0.0005 in the introduced pop-
ulation. Ignoring the potential for postintroduction genetic
drift, the most likely number of founders bearing only two
haplotypes was two regardless of whether the source was as-
sumed to consist of FG only or a pooled sample of the three
most likely ancestral populations (CY, HA, and FG) (Fig. 8).

Discussion

Introduction source

Our results show the Trinity River system (Trinity River main-
stem and its major tributary, the South Fork Trinity River)
was the most likely source for the introduced speckled dace
population. This result was indicated by parallel trends in es-
timates of pairwise genetic differentiation, neighbor-joining
trees, multivariate plots, and Bayesian clustering analyses. All
methods show high levels of microsatellite and mitochon-
drial similarity between the Trinity River system samples and
the introduced population and marked divergence of this
founder–source combination from all other populations we
examined from the native range. The geographic proximity
of the Trinity River system and the introduced population
further supports the results of the genetic analyses (Fig. 1).

Bottleneck

Several lines of evidence support the hypothesis that the in-
troduced population has experienced a severe bottleneck.
First, the introduced speckled dace population exhibited di-
vergence from all other populations, including all of the likely
source populations, in the analysis of microsatellite variation.
Divergence is an indicator of a bottleneck, which causes an
increase in frequency of rare alleles among individuals surviv-

Figure 5. The proportion of each individual’s genome (Q) assigned to
each of two clusters and six clusters inferred by Bayesian cluster analysis
with STRUCTURE. The introduced population (VD) is indicated by an
asterisk.

ing the bottleneck (Dlugosch and Parker 2008). Divergence
is expected to be large when the number of individuals sur-
viving the introduction is small. The appreciable divergence
we detected between the introduced and source populations
in our analyses suggests a severe bottleneck. Second, loss

c© 2011 The Authors. Published by Blackwell Publishing Ltd. 79
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Figure 6. Maximum likelihood estimates of the effective number of
founders versus intrinsic rate of increase. Population sources FG (aster-
isks), HA (circles), and CY (triangles). Results are for generation length
of 10 and points are for effective carrying capacity of 500, 1000, 2000,
4000, 8000, and 16,000.

of genetic diversity in the introduced population suggests a
bottleneck. Loss of microsatellite allelic richness was most
evident and is a strong indicator of population bottlenecks
(Allendorf 1986; Spencer et al. 2000). Mitochondrial haplo-
type loss was even more severe, consistent with the smaller
effective population size for mitochondrial DNA in compar-
ison to nuclear DNA (Allendorf and Luikart 2007). In con-
trast, nuclear heterozygosity was not significantly reduced in
the introduced population. This discrepancy likely occurred
because heterozygosity estimates derived from microsatellite

loci provide almost no signal for detecting bottlenecks un-
less founder numbers are four or less (Spencer et al. 2000).
Further, when founded populations rapidly increase in size,
as expected in this case, the effects of drift on heterozygosity
are expected to be minimal (Nei et al. 1975).

Founder number

Over broad ranges of carrying capacity and intrinsic rates of
increase, the microsatellite data suggest an effective founder
number between 7 and 17. Variation in our estimate could be
primarily attributed to the assumed intrinsic rate of increase
following introduction (Fig. 6). We hypothesize rapid pop-
ulation growth of speckled dace following introduction for
several reasons: (1) field surveys indicate that speckled dace
quickly expanded their range in the years immediately fol-
lowing introduction (Brown and Moyle 1997), (2) speckled
dace have relatively high fecundities (192–790 eggs per indi-
vidual; Moyle 2002), (3) speckled dace can be exceptionally
good colonizers of disturbed habitats (Pearsons et al. 1992),
and (4) the introduced population is currently composed of
thousands of speckled dace (BCH and RJN, personal obser-
vation). Thus, assuming r ≥ 1.0 seems reasonable, which
suggests a genetically effective founding population of 10.
Furthermore, overall genetic drift in a growing, colonized
population is influenced most strongly during the early gen-
erations when the population is small and there is little den-
sity dependence. During such episodes, it is not unrealistic
to expect that the variance in reproductive success amongst a
small group of founders could be reduced relative to that in
later generations. Accordingly, though we have estimated the
effective number of founders, this quantity should be close
to the census number of (successful) founders.

Computer simulations using mitochondrial DNA hap-
lotypes suggested that the genetically effective number of

Table 2. Population, sample ID, microsatellite DNA results [sample size (n), proportion of polymorphic loci (P), number of private alleles (Ap), rarified
allelic richness (AR), allelic richness (A), observed heterozygosity (HO), and expected heterozygosity (HE)], and mitochondrial DNA results [sample size
(n), number of haplotypes (nH), number of private haplotypes (npH), haplotype diversity (h), and nucleotide diversity (π )] in speckled dace. Introduced
population (VD) in bold.

Microsatellite DNA Mitochondrial DNA

Population ID n P Ap AR A (±SD) HO (±SD) HE (±SD) n nH npH h (±SD) π (±SD)

Pit River PT 28 0.86 0.6 6.2 8.3 (5.0) 0.52 (0.31) 0.54 (0.33) 16 9 6 0.89 (0.06) 0.0029 (0.0019)
Clear Creek CL 27 0.86 1.0 6.2 8.1 (6.0) 0.56 (0.30) 0.58 (0.30) 24 7 4 0.78 (0.06) 0.0021 (0.0015)
Cache Creek CA 68 0.57 0.3 4.5 6.7 (7.3) 0.39 (0.38) 0.40 (0.38) 15 4 4 0.64 (0.09) 0.0012 (0.0010)
Shasta River SR 59 1.00 1.2 7.5 12.4 (8.3) 0.60 (0.26) 0.66 (0.28) 16 9 8 0.82 (0.10) 0.0148 (0.0080)
Hunter Creek HU 71 0.86 0.6 8.2 13.0 (8.6) 0.61 (0.28) 0.70 (0.32) 16 12 9 0.94 (0.05) 0.0160 (0.0085)
Trinity River TR 15 0.86 0.4 6.6 7.0 (4.5) 0.60 (0.27) 0.61 (0.29) 15 11 6 0.93 (0.05) 0.0212 (0.0112)
Canyon Creek CY 33 0.71 0.1 4.5 6.0 (5.3) 0.40 (0.33) 0.39 (0.31) 23 9 7 0.81 (0.07) 0.0029 (0.0019)
Hayfork Creek HA 124 1.00 0.4 4.4 8.4 (6.7) 0.34 (0.29) 0.37 (0.29) 31 5 3 0.35 (0.11) 0.0015 (0.0011)
Forest Glen FG 66 0.86 0.3 5.3 8.9 (7.2) 0.44 (0.29) 0.47 (0.32) 15 8 4 0.88 (0.06) 0.0022 (0.0015)
Van Duzen River VD 71 0.86 0.3 3.7 4.7 (3.0) 0.47 (0.28) 0.44 (0.27) 15 2 0 0.34 (0.13) 0.0005 (0.0005)

80 c© 2011 The Authors. Published by Blackwell Publishing Ltd.



A. P. Kinziger et al. Founder Number in Introduced Speckled Dace

0.
0

0.
2

0.
4

0.
6

0.
8

VD

0.
0

0.
2

0.
4

0.
6

0.
8

FG

0.
0

0.
2

0.
4

0.
6

0.
8

HA

F
re

qu
en

cy

35 38 44 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

0.
0

0.
2

0.
4

0.
6

0.
8

CY

Haplotype

Figure 7. Haplotype frequencies in the introduced population (VD) and the most likely source populations FG, HA, and CY.

founders was two. Although smaller than the nuclear-based
estimates, mitochondrial DNA is expected to provide an un-
derestimate in comparison to nuclear markers for several rea-
sons. First, due to maternal inheritance, mitochondrial DNA
has a smaller effective population size than nuclear DNA. Sec-
ond, unlike the nuclear DNA simulations, our mitochondrial
DNA simulations did not account for loss of haplotypes via
drift in the generations immediately following introduction.
Lastly, mitochondrial data provide an estimate of the num-
ber of female founders, which could be considerably less than
the total number of founders. Considering these factors, the
nuclear and mitochondrial estimates are highly concordant.

Single introduction

Our findings are most consistent with a single introduction
for multiple reasons. First, our estimate of an actual found-
ing number of 10 individuals is consistent with a single in-
troduction. Second, significant losses of genetic diversity in
the introduced population suggest a single introduction, as

multiple introductions would likely serve to restore genetic
diversity. Lastly, we found no evidence of admixture from
multiple founding sources in the Bayesian cluster analysis.
Thus, the introduced population of speckled dace in the Van
Duzen River apparently contrasts with some successfully in-
troduced populations that have had genetic diversity restored
by multiple founding sources and large founder numbers
(Stepien et al. 2005; reviewed in Roman and Darling 2007;
Brown and Stepien 2009). The absence of repeated introduc-
tions despite close geographic proximity of the introduced
and native range may be the result of limited fishing pressure
and associated bait release combined with regulations that
make it illegal to use speckled dace as bait in California.

The mitochondrial DNA analysis points to the South Fork
Trinity River site FG as the most likely source, due to one
shared haplotype occurring at high frequencies in FG and
the introduced population but not found elsewhere (Fig. 7).
In contrast, the microsatellite DNA comparisons indicated
that the Trinity River sample CY was most genetically similar
to the introduced population. However, random divergence
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Figure 8. Probability of two haplotypes being represented in different-
sized groups of founder individuals. Population source FG only (eight
haplotypes, circles) and pooled ancestral source of FG, HA, and CY (19
haplotypes, triangles).

between source and founder populations due to drift asso-
ciated with the introduction event or sampling biases (e.g.,
Muirhead et al. 2008) could easily mislead source-population
assignments at such a fine scale. Divergence between the in-
troduced population and the likely source populations in the
microsatellite analysis suggests drift-induced differentiation
associated with the original introduction of speckled dace,
precluding assignment of a specific Trinity River basin pop-
ulation as the precise source.

Influence of genetic diversity on ecological
performance

The key limitation on the invasion success of speckled dace
in the Van Duzen River appears to be their inability to evade
multiple predators (Harvey et al. 2004). The severe bottleneck
experienced by the introduced population may have caused
loss of traits associated with predator avoidance. Previous re-
search has established the heritability of predator avoidance
behavior (Endler 1980; Magurran 1990; Reimchen 1994).
However, the loss of genetic diversity associated with the in-
troduction may have had no influence on predator avoidance
ability. Neutral genetic markers may not accurately reflect
variation in traits related to establishment and spread (Allen-
dorf and Luikart 2007; reviewed in Roman and Darling 2007;
reviewed in Dlugosch and Parker 2008). Or, it is possible that
bottlenecks may facilitate invasion by releasing individuals
from former genetic constraints (Carson 1990). Examples
of successful exotics founded by very few individuals (e.g.,
bluegill: Kawamura et al. 2006; fire ants: Ross and Shoemaker

2008; lake trout: Kalinowski et al. 2010) suggest that bottle-
necked populations can retain critical behavioral capabilities.

Another possibility is that predator avoidance behaviors
may be limited in the introduced population because the
source population experiences relatively modest predation
risk and, therefore, limited predator avoidance behaviors.
The source river lacks pikeminnow and contains few sculpins
in much of the river network. Geographic variation in an-
tipredator behavior, according to the presence or absence of
major predators in their native range, has been documented
for other fish (e.g., three-spined stickleback: Reimchen 1994;
Trinidadian guppy: Endler 1980).

Finally, the ecological setting in the Van Duzen River
may be such that the spread of speckled dace would be
resisted regardless of the relative predator avoidance abili-
ties of the introduced population. An experiment by Har-
vey et al. (2004) suggested the combination of sculpins and
pikeminnow caused a greater negative effect on speckled dace
than would be predicted from their separate effects. However,
while speckled dace within their native range are susceptible
to displacement and consumption by sculpins (Baltz et al.
1982; Moyle 2002), the species does co-occur with sculpins
and pikeminnow. Expansion of an introduced population
into areas with multiple predators may be a more challeng-
ing process than maintaining a population in the presence of
those same predators within a species’ native range, where
metapopulation processes and, in this example, more com-
plex species assemblages may contribute to persistence.

The relative importance of genetic diversity loss associated
with bottlenecking and source population effects could be
resolved by conducting laboratory predator avoidance trials.
The original multiple predator trials of Harvey et al. (2004)
used speckled dace from the introduced population. Com-
parative analyses that included the introduced and source
populations, plus one or more from the native range where
both sculpins and pikeminnow occur, could be used to de-
termine the extent to which genetic diversity loss may con-
strain the introduced population. These experiments will be
needed to predict whether the speckled dace populations will
evolve characteristics that will allow them to overcome the
predation risk environment that appears to be limiting their
distribution in the Eel River drainage.
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