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A B S T R A C T   

COVID-19 caused by the novel SARS-CoV-2 has been declared a pandemic by the WHO is causing havoc across 
the entire world. As of May end, about 6 million people have been affected, and 367 166 have died from COVID- 
19. Recent studies suggest that the SARS-CoV-2 genome shares about 80% similarity with the SARS-CoV-1 while 
their protein RNA dependent RNA polymerase (RdRp) shares 96% sequence similarity. Remdesivir, an RdRp 
inhibitor, exhibited potent activity against SARS-CoV-2 in vitro. 3-Chymotrypsin like protease (also known as 
Mpro) and papain-like protease, have emerged as the potential therapeutic targets for drug discovery against 
coronaviruses owing to their crucial role in viral entry and host-cell invasion. Crystal structures of ther-
apeutically important SARS-CoV-2 target proteins, namely, RdRp, Mpro, endoribonuclease Nsp15/NendoU and 
receptor binding domain of CoV-2 spike protein has been resolved, which have facilitated the structure-based 
design and discovery of new inhibitors. Furthermore, studies have indicated that the spike proteins of SARS-CoV- 
2 use the Angiotensin Converting Enzyme-2 (ACE-2) receptor for its attachment similar to SARS-CoV-1, which is 
followed by priming of spike protein by Transmembrane protease serine 2 (TMPRSS2) which can be targeted by 
a proven inhibitor of TMPRSS2, camostat. The current treatment strategy includes repurposing of existing drugs 
that were found to be effective against other RNA viruses like SARS, MERS, and Ebola. This review presents a 
critical analysis of druggable targets of SARS CoV-2, new drug discovery, development, and treatment oppor-
tunities for COVID-19.   

1. Introduction 

Coronavirus disease 2019 (COVID-19) is a pandemic faced by the 
global community nearly a century after the Spanish flu [1]. The cur-
rent pandemic is due to a novel beta coronavirus, SARS-CoV-2, tax-
onomically belonging to the coronaviridae family, other members of 
which are known to cause respiratory infections in humans [2]. The 
rapid torrent of COVID-19 infections around the globe at an alarming 
rate is due to the estimated basic reproductive number R0 value be-
tween 1 and 3, predicted to be higher than the SARS-CoV-1, with the 
main transmission route being respiratory droplets and contact. Based 
on phylogenetic analysis, the natural host of the virus was found in 

bats, but to date, there has not been any confirmation regarding the 
intermediate host [3,4]. The virus was found to have been first iden-
tified in the city of Wuhan, Hubei province China in December 2019, 
and was declared as a pandemic by the WHO on March 11 and, as of 
May end, about for 6 million have been affected, and 367 166 have died 
from COVID-19. [5,6]. 

Broadly pyrexia, cough, hemoptysis, diarrhea, dyspnoea, muscle 
soreness, lymphopenia, dysosmia, and dysgeusia are the symptoms as-
sociated with COVID-19, but certain symptoms atypical from other 
coronavirus infections are to be acknowledged. They include the pre-
sence of Gastro-Intestinal distress in some of the cases, and clinical 
manifestations of lower respiratory tract infection, which are to be 
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addressed [7,8]. Current diagnostic approaches range from nucleic acid 
assays- Reverse transcriptase- quantitative Polymerase Chain Reaction 
(RT-qPCR), Computed Tomography (CT) scans to immunological de-
tection kits [9]. 

SARS-CoV-2 is an enveloped, single-stranded positive-sense RNA 
virus. The viral RNA genome contains 29,903 nucleotide bases and has 
ten open reading frames (ORF). The ORF1ab encodes for the large re-
plicase polyprotein PP1ab, which is cleaved by Papain Like protease 
(PLpro) and 3-Chymotrypsin like Protease (3CLpro) to non-structural 
proteins (nsps) 1–16. The structural proteins S, N, E, M, and auxiliary 
proteins are encoded by ORF2-10 [10,11] (Figs. 1 and 2). 

Entry of the virus into the host’s cells is aided by the attachment of 
the Spike protein (S) onto the host’s Angiotensin Converting Enzyme-2 
(ACE-2) receptor resulting in conformational changes that lead to the 
fusion of viral and cell membranes. Inside the endocytic vesicle, pH- 
dependent activation of cathepsin L leads to priming of the spike 

proteins that result in the release of the viral RNA genome into the 
cytoplasm (endocytic pathway). Alternatively, Transmembrane 
Protease Serine type 2 (TMPRSS2) is also involved in priming of the 
spike proteins at the cell surface, enabling entry of the viral genome 
(non-endocytic pathway). Once inside the cytoplasm, the ORF1ab 
fragment of the viral RNA genome is translated into the replicase 
polyprotein PP1ab, which is acted upon by viral enzymes like PLpro 
and 3CLpro (Mpro) to produce nsps 1–16 including RdRp and helicase 
that play a crucial role in the replication of the virus. The nsps assemble 
to form the replication-transcription complex. The positive strand of 
RNA genome is transcribed to produce a negative-strand template for 
the synthesis of the new viral RNA genome. The transcribed mRNAs are 
translated to produce structural proteins S, M, E, and N. The viral RNA 
genome along with the N protein interacts with other structural pro-
teins, and the assembled virions are delivered outside of the cell via 
exocytosis (Fig. 3). 

Fig. 1. Structure of SARS-CoV-2.  

Fig. 2. (A) Genomic organization of SARS-CoV-2. (B) non-structural proteins 1–16. (the numbers below each of the nsps represent the amino acid residues). ORF: 
Open reading frame, S: spike protein, E: Envelope protein, N: Nucleocapsid protein, M: Membrane protein, nsp: non-structural protein. 
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Fig. 3. The life cycle of SARS-CoV-2. ACE-2: Angiotensin converting enzyme-2, TMPRSS2: Transmembrane protease serine 2, PLpro: Papain-like protease, 3-CLpro: 
3-Chymotrypsin-like protease, ORF1ab: Open reading frame 1ab, PP1ab: Polyprotein 1ab, nsp: non-structural protein, S: spike protein, E: Envelope protein, N: 
Nucleocapsid protein, M: Membrane protein, ERGIC: Endoplasmic reticulum-Golgi intermediate compartment. 
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1.1. Approaches to anti-coronavirus drug discovery 

In general, three approaches were followed for the discovery and 
treatment options for the pathogenic coronaviruses- SARS and MERS [12]. 
Similar approaches were also being followed for the current pathogenic 
SARS-CoV-2. The first approach is the testing of broad-spectrum antiviral 
agents (mostly drugs) that have been used or previously tested for other 
viral infections by using standardized assays that measures the effects of 
these compounds on virus yields, infection rates, virus entry, and plaque 
formation. Some of the drugs identified via this approach during the pre-
vious two epidemics- SARS and MERS include ribavirin, Interferon-α, β, and 
γ [13–15]. A similar approach for the current pandemic has also identified 
antiviral agents like remdesivir, lopinavir/ritonavir, favipiravir, etc. A sig-
nificant advantage of this approach is that the pharmacodynamic, phar-
macokinetic, toxicity, dosing, etc. of the drugs will be readily available, thus 
reducing significant time in the drug discovery process. The second ap-
proach to the anti-coronavirus drug discovery involves the in-silico screening 
of chemical libraries that contains a large number of compounds. Rapid, 
high-throughput virtual screening (HTVS) of a large number of compounds 
is possible via this approach, which can be further validated by suitable 
antiviral assays. Drugs or investigational molecules belonging to different 
categories have been identified for the past epidemics- SARS and MERS as 
well for the current pandemic [15–19]. The major con associated with this 
approach is that, although the identified compounds exhibit antiviral ac-
tivity, they are associated with several side effects. The third approach is the 
de-novo design and development of novel inhibitors based on the biophy-
sical and genomic understanding of the individual coronaviruses. Examples 
include the development of antiviral peptides targeting the spike proteins, 
development of novel inhibitors targeting different viral enzymes, devel-
opment of inhibitors targeting host cellular proteases., development of 
monoclonal antibody (MAbs). Theoretically, this approach will lead to po-
tent compounds, but the development of these compounds usually takes 
years, as they undergo the entire drug discovery process. 

2. Druggable molecular targets of SARS-CoV-2 

2.1. Spike proteins of novel SARS-CoV-2 

The entry of SARS-CoV-2 depends upon the binding of its spike 
protein to the cell surface receptor. The spike proteins of SARS-CoV-2 

are 1273 amino acids long and structurally consists of two domains- the 
N-terminal S1 domain for binding to the cellular receptor and C-term-
inal S2 domain for fusion with the cell membrane [20]. The S1 subunit 
(aa 14-685) encompasses an N-terminal domain (aa 14-305) and a re-
ceptor-binding domain (RBD) (aa 319-541) [21,22]. The RBD consists 
of core and external sub-domains responsible for forming trimer par-
ticle and for interaction with the receptor, respectively [23,24]. The S2 
sub-domain encompasses Heptad repeat 1 (HR1), Heptad repeat 2 
(HR2), Fusion peptide (FP), and transmembrane domain. After binding 
of the S1 domain of spike protein to the host receptor, conformational 
changes take place in the S2 domain. The heptad repeat domains, HR1 
and HR2, interact with themselves to form a six-helix bundle fusion 
core bringing about the close association of cellular and viral mem-
branes for fusion [22]. Xia et al. designed novel peptides based on the 
HR1 and HR2 domains as fusion inhibitors [22] similar to the approach 
that was undertaken against SARS-CoV and MERS-CoV [25–27]. The 
two peptides designed were designated as 2019-nCoV-HR1P and 2019- 
nCoV-HR2P. 2019-nCoV-HR2P was shown to potently inhibit fusion in 
2019-nCoV spike mediated cell-cell fusion assay with a half-maximal 
inhibitory concentration (IC50) value of 0.18 µM. EK1, reported pre-
viously as a pan CoV fusion inhibitor targeting the HR1 domain [27], 
also showed potent fusion inhibition (IC50 = 0.19 µM). Furthermore, 
2019-nCoV-HR2P and EK1 were also found to effectively inhibit 2019- 
nCoV pseudovirus infection in 293 T cells with IC50 values of 0.98 µM 
and 2.38 µM, respectively (Fig. 4). 

Following the initial findings, Xia et al. and others designed a series 
of derivatives based on EK-1 [28]. EK-1 was covalently linked with 
cholesterol (designated as EK1C) and palmitic (designated as EK1P) at 
their C-terminus end with a polyethylene glycol (PEG) spacer (Fig. 4). 
Both the peptides exhibited potent fusion inhibition in SARS-CoV-2 
mediated cell-cell fusion (IC50 = 48.1 and 69.2 nM for EK1C and EK1P, 
respectively). Based on the inhibitory potential of EK1C, further deri-
vatives were designed with glycine / serine-based linkers (GSG) and 
PEG-based spacers. The peptides were designated as EK1C1-EK1C7 
(Table 1). The presence of the linker/spacer and length of the spacer 
influenced the activity, especially increased the activity of these lipo-
peptides. The most potent lipopeptide, EK1C4, contained the optimal 
five residues linker/spacer GSGSG-PGE4. EK1C4 also exhibited potent 
activity against SARS-CoV-2 pseudovirus infection and live SARS-CoV-2 
infection in vitro with IC50 values of 15.8 nM and 36.5 nM, respectively. 

Fig. 4. Peptide viral entry inhibitors.  

Table 1 
Derivatives of EK1C.        

DESIGNATION PEPTIDE LINKER LIPID INHIBITION OF SARS-CoV-2 MEDIATED CELL-CELL 
FUSION (IC50 in nM) 

INHIBITION OF SARS-CoV-2 PSEUDOVIRUS 
INFECTION (IC50 in nM)  

EK1C1 EK1  CHOLESTEROL 56.8 480.3 
EK1C2 EK1 GSG CHOLESTEROL 48.2 418.6 
EK1C3 EK1 GSG-PGE4 CHOLESTEROL 10.6 86.8 
EK1C4 EK1 GSGSG-PGE4 CHOLESTEROL 1.3 15.8 
EK1C5 EK1 GSGSG-PGE8 CHOLESTEROL 3.1 31.3 
EK1C6 EK1 GSGSG- 

PGE12 
CHOLESTEROL 3.9 77.4 

EK1C7 EK1 GSGSG- 
PEG24 

CHOLESTEROL 3.9 84.4 
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Furthermore, in vivo studies were conducted to evaluate the prophy-
lactic and post-infection potential of EK1C4 on the HCoV-OC43 infec-
tion mouse model. The studies revealed that EK1C4 was effective pro-
phylactically up to 12 h before challenging with the infection at a dose 
of 0.5 mg/kg intranasally, suggesting good stability and half-life of the 
peptide. EK1C4 also afforded protection to mice when administered at 
0.5 h post-infection [28]. Considering these results together, EK1C4 has 
all the potential to be a drug candidate for treating COVID-19. 

Similarly, Zhang et al. designed and synthesized two peptides 
streptavidin-binding peptide-1 (SBP-1) and streptavidin-binding pep-
tide-2 (SBP-2) based on the sequence of ACE-2 alpha-1 helix peptidase 
domain targeting RBD of the SARS-CoV-2 Spike protein in an attempt to 
disrupt the interaction between SARS-CoV-2- RBD and ACE-2 receptors 
(Fig. 5) [29]. Although SBP-2 did not show any affinity towards SARS- 
CoV-2 RBD, SBP-1 was found to potently bind to the SARS-CoV-2 RBD 
with a KD value of 47 nM, which was comparable to the binding of ACE- 
2 to SARS-CoV-2 RBD (KD = 14.7 nM). 

2.2. Extracellular proteases 

Entry and invasion of SARS-CoVs into the host cells are facilitated 
through the concerted action of membrane proteases. These proteases 
have been confirmed as valuable therapeutic targets, and the inhibitors 
have been identified as promising drug leads against SARS-CoV-2. 

2.2.1. Angiotensin converting enzyme-2 (ACE-2) 
Coronaviruses make use of the host receptors as a doorway for entry 

into the host cell. Spike proteins of MERS-CoV use human dipeptidyl 
peptidase-4 (DPP-4) enzymes as its receptor for attachment [30] while 
SARS-CoV uses human angiotensin converting enzyme-2 (ACE-2) as a 
gateway for entry into the host cell [31]. Recent studies have shown 
that spike proteins of SARS-CoV-2 bind to the human ACE-2 for entry 
into the host cell, thus making ACE-2 a druggable target for COVID-19  
[32,33]. However, the simplicity ends there. ACE-2, apart from being 
used as a receptor for cellular entry by SARS coronaviruses, has several 
protective functions. Angiotensin I is synthesized from angiotensi-
nogen, a process catalyzed by renin. Angiotensin I then serve as a 
substrate for the two enzymes Angiotensin converting enzyme-1 (ACE- 
1) and Angiotensin converting enzyme-1 (ACE-2). Angiotensin I is 
converted to an octapeptide angiotensin II by ACE-1 and a heptapeptide 
Angiotensin 1-7 by ACE-2. Angiotensin II and Angiotensin 1-7 have 
opposing effects on the vascular dynamics, the former being vasocon-
strictive in nature and latter being vasodilative in nature, mediated by 
binding to their receptor Angiotensin-1 (AT-1) and Mas, respectively. 
Thus ACE-2/Ang 1-7/Mas receptor complex serves as the suppressive 
axis of the classical renin-angiotensin system (RAS) [34]. Chronic ad-
ministration of Angiotensin Receptor Blockers (ARBs) leads to the up- 
regulation of ACE-2 [35,36]. Both SARS-CoV and SARS-CoV-2 use ACE- 
2 as the receptor for binding, and hence it might sound absurd to 
suggest ARBs for SARS patients. Studies have shown downregulation in 
ACE-2 levels following viral attachment and fusion. This leads to the 
elevation of Angiotensin I levels due to the enhanced action of ACE-1 
and repressed action of ACE-2, resulting in catastrophic changes in lung 
physiology mediated via AT-1 receptors [37]. Therefore, treating 
COVID-19 patients with ARBs, although paradoxical, may do more 
good than harm to the lungs. However, it is too early to recommend 
such therapy for COVID-19 due to its complexity. Currently, no mole-
cule in the clinical or preclinical trial is known to inhibit ACE-2. The 
drug discovery directed against it for treating COVID-19 may not be a 

fruitful approach considering its protective effects on the lungs. How-
ever, a rational approach would be to use a recombinant form of soluble 
ACE-2 that can act as a decoy receptor and bind to the spike proteins of 
SARS-CoV-2 to slow its entry into the host cell as well as to afford 
protection to the lungs [38]. Ou et al. demonstrated that the entry of 
SARS-CoV-2 into 293/hACE2 cells was significantly suppressed by the 
pre-incubation of the pseudoviruses with a soluble form of hACE2 at 10 
and 50 µg/ml [39]. 

2.2.2. Transmembrane protease serine 2 (TMPRSS2) 
As previously described, spike proteins of SARS-CoV-2 bind to the 

ACE-2 receptor in order to enter into the host cell. However, other 
players are also associated with the entry of the virus into the host cell. 
Transmembrane protease serine 2 (TMPRSS2) is a host cellular protease 
encoded by the TMPRSS2 gene. TMPRSS2 is predominantly localized in 
the cell membrane of the lung’s epithelial cells and aids in priming the 
spike proteins, a process that results in the fusion of viral and cellular 
membranes. Previous results have shown that the priming of spike 
proteins of SARS-CoV by TMPRSS2 is crucial for the entry of the virus 
into the host cells [40,41]. Recently, it was shown that entry of the 
novel SARS-CoV-2 also depends upon the priming of its spike proteins 
by TMPRSS2 and was blocked by a clinically known inhibitor of 
TMRSS2, camostat [33]. Hence, TMPRSS2 based therapeutics could 
prove to be useful armory in the war against COVID-19. Recently, Rensi 
et al. developed seven protein models of TMPRSS2 based on homology 
modeling and screened them against the clinically known serine pro-
tease inhibitors [42]. The top six molecules (anticoagulants with sig-
nificant and potentially dangerous clinical effects and side effects), 
along with their average docking scores (kcal/mol), are given in Fig. 6. 
An advantage of screening clinical molecules is that the safety and 
adverse effects of these molecules would have been already established, 
and priority thus would be to prove their efficacy. Further, in vitro 
studies of these molecules are currently underway to validate the pre-
dictions. 

2.2.3. Furin 
Furin belonging to the family of proprotein convertases, an enzyme 

that is responsible for activating precursor proteins like hormones, 
growth factors, cell surface receptors [48]. Furin selectively cleaves the 
proteins at multi-basic motifs of the sequence R-X-K/R-R↓ [49]. Furin is 
also known to activate fusion proteins of viruses like Human im-
munodeficiency virus (HIV), Ebola, highly pathogenic avian influenza A 
virus (HPAIV) as well as human coronaviruses like MERS and HCoV- 
OC43 [49–52]. However, no such activation is reported for SARS-CoV. 
Recently, the genetic sequence analysis of SARS-CoV-2 S protein iden-
tified a polybasic cleavage site that may be accessible for proteases like 
furin, making it distinct from SARS-CoV [53–55]. Four amino acid se-
quence (RRAR) was found to be present in the S1/S2 site of SARS-CoV-2 
S protein, thus corresponding to a canonical furin cleavage site. Hence, 
furin can also prime SARS-CoV-2 S proteins and aid in the entry of the 
virus. Bestle et al. and others demonstrated that furin activates SARS- 
CoV-2 S protein [56]. Furin was shown to cleave the S1/S2 site in the S 
protein of SARS-CoV-2 in HEK293 cells, which was decreased in the 
presence of furin inhibitor MI-1851 (Fig. 7). They also demonstrated 
that TMPRSS2 cleaves the S2′ site of SARS-CoV-2 S protein. Inhibition 
of either of these enzymes was shown to inhibit the replication of the 
virus in Calu-3 cells while inhibition of cathepsin L did not have any 
effect on the replication indicating that furin and TMPRRS2 are re-
quired for S protein activation while cathepsin L may or may not have a 
role in the activation of S protein in Calu-3 cells [56]. Thus, furin is 
essential for the multiplication of SARS-CoV-2 in airway epithelial cells 
and hence provides a favorable target of further exploration. 

2.3. Intracellular proteases 

After the virus enters into the host cells, some of the critical 

Fig. 5. Peptide viral entry inhibitors.  
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processes regarding endosomal proliferation and assembly of viral 
proteins require the processing of these proteins through intracellular 
proteases. These processes are essential for the proliferation of the 
virus. Disruption of these process through target protease inhibitors 
breaks the cyclic of virus proliferation and have been suggested as the 
antiviral drug targets. 

2.3.1. Cathepsin L 
Cathepsins are cysteine proteases that play a crucial role in protein 

catabolism in the endosomes and lysosomes. The ubiquitously ex-
pressed cathepsin L plays a fundamental part in the entry of the SARS- 
CoV into the host cells [43,44]. Once the virus enters the endosomes 
after binding onto the ACE-2 receptor, the spike proteins of SARS-CoV 
are activated by the pH-dependent cathepsin L, which results in the 
fusion of virus and endosomal membranes releasing the genetic mate-
rial of virus into the cytoplasm [45]. SID 26681509, Z-Phe-Tyr(t-Bu)- 
diazomethylketone, and E-64-d are some of the well-known cathepsin L 
inhibitors (Fig. 8). Teicoplanin, a glycopeptide antibiotic, was also 

shown to inhibit the entry of SARS-CoV and MERS-CoV by blocking 
cathepsin L [46]. It was also shown to inhibit the entry of SARS-CoV-2 
pseudoviruses [47]. Ou et al. demonstrated that cathepsin L is specifi-
cally required for the entry of SARS-CoV-2 S pseudovirus into 293/ 
hACE2 cells. Broad-spectrum cathepsin inhibitor, E-64-d, reduced the 
SARS-CoV-2 S pseudovirus entry by 92.5% and cathepsin L inhibitor, 
SID 26681509, reduced the entry by about 76% while cathepsin B in-
hibitor, (CA-074), had no significant effect on the virus entry [39]. 
Taken together, the priming of spike proteins of SARS-CoV-2 is de-
pendent on cathepsin L in the endosomes, making it an attractive 
therapeutic target for further exploration. 

2.4. RNA dependent RNA Polymerase (RdRp) 

RNA dependent RNA Polymerase (RdRp) is an enzyme that is re-
sponsible for the replication of RNA from an RNA template. RdRp is one 
of the nsp (nsp-12) that play an essential role in the life cycle of RNA 
viruses like hepatitis C virus, Zika virus, and coronaviruses [57,58]. In 
SARS-Cov-1 RdRp (nsp-12) functions as a tripartite polymerase com-
plex with nsp-7 and nsp-8. The nsp7 and nsp8 activate and confer 
processivity to the RNA-synthesizing activity of nsp12. This tripartite 
polymerase complex further associates with nsp-14, which confers 
proofreading exonuclease function [59]. Remarkably, RdRp of SARS- 
CoV and SARS-CoV-2 share 96% sequence similarity [60]. Therefore, it 
is very likely that the agents that target RdRp of SARS-CoV might also 
target the RdRp of SARS-CoV-2. Some of the compounds that target 
RdRp of SARS-CoV include favipiravir, ribavirin, penciclovir, galide-
sivir, remdesivir, among others (Fig. 9) [61]. Recently, ribavirin, favi-
piravir, penciclovir, and remdesivir were shown to inhibit SARS-CoV-2 
in vitro, probably due to their inhibitory activity towards RdRp [62]. 

Fig. 6. Structure of reported TMPRSS2 inhibitors.  

Fig. 7. Structure of furin inhibitor- MI-1851.  
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Several computer-aided molecular modeling studies have been done to 
find potential candidates that target RdRp of SARS-CoV-2. Elfiky et al. 
evaluated the effectiveness of antiviral agents to bind to SARS-CoV-2 
RdRp through a combination of homology modeling and molecular 
modeling studies [63]. The structures of the antiviral agents, along with 
their docking scores in kcal/mol, are given in Fig. 10. Datta et al. 
constructed a model of SARS-CoV-2 RdRp using sequence alignment 
and homology modeling and screened the model against antiviral 
drugs. Beclabuvir, an HCV RdRp inhibitor, was shown to bind effec-
tively to SARS-CoV-2 with a docking score of −9.95 kcal/mol and 

inhibition constant of 51.03 nM [64]. Recently, the structure of RdRp of 
SARS-CoV-2 was resolved in complex with nsp-7 and nsp-8 by the cryo- 
EM [65]. The overall architecture of the SARS CoV-2 nsp12/nsp7/nsp8 
complex was observed to be similar to the RdRp complex of SARS-CoV- 
1. Binding of remdesivir diphosphate, the RdRp inhibitor under clinical 
trials for the treatment of COVID-19, to SARS CoV-2 nsp12, was in-
vestigated based on modeling with sofosbuvir bound to hepatitis C virus 
(HCV) ns5b. The nsp12 of the SARS CoV-2 virus showed the highest 
similarity with the Apostate of ns5b. Sofosbuvir, a nucleoside prodrug, 
targets HCV ns5b polymerase and selectively binding catalytic site of 

Fig. 8. Structure of reported cathepsin L inhibitors.  

Fig. 9. Antiviral drugs targeting RdRp functions.  
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the HCV polymerase. Sofosbuvir has been approved for the treatment of 
chronic HCV infection [66]. The catalytic site of SARS CoV-2 nsp13 
shows remarkable structural similarity to HCV ns5b polymerase. The 
antiviral RdRp inhibitors (Fig. 9) are likely to target SARS CoV-2 RdRp 
and are excellent drug candidates for the treatment of COVID-19. 

2.5. 3-Chymotrypsin like protease or main protease (3CLpro or Mpro) 

3-Chymotrypsin like Protease or Main protease (Mpro) is one of the 
two crucial proteolytic enzymes that help in cleaving the replicase 
polyprotein 1ab in SARS-CoV-2. The Mpro, which is also known as non- 
structural protein 5 (nsp5), is 306 amino acid long and is translated 
from the Orf1ab of viral RNA genome[67]. Mpro is known to cleave the 
replicase polyprotein at 11 specific sites, the recognition sites being 
Leu-Gln↓(Ser, Ala, Gly), to release 12 nsps (nsp4, nsp6-16) that are 
essential for viral replication as well as viral assembly [10,67]. Struc-
turally, Mpro is a dimer, and each monomer has three domains- domain 
I, which includes residues 8-101, domain II which includes residues 
102-184 and domain III, which includes residues 201-303. The domains 
II and III are connected through the loop region that includes 185-200 

residues. The substrate-binding site containing the catalytic dyad 
(Cys145-His41) is located between domain I and domain II [19]. The 
functional importance of the enzyme in the life cycle of SARS-CoV-2 
and the fact that no human proteases possess similar cleavage re-
cognition site makes Mpro appealing target for drug discovery. Zhang 
et al. reported the optimization of α-ketamides for activity against the 
Mpro of SARS-CoV-2 [68] (Fig. 11). The lead compound 1 was found to 
be active against the SARS-CoV Mpro in picomolar concentration [69]. 
However, short half-life in plasma and unfavorable pharmacokinetic 
profile of compound 1 prevented further development and study. In 
order to improve its pharmacokinetic profile, the amide linkage be-
tween P2-P3 was replaced with a pyridine ring for improved metabolic 
stability, and the cinnamoyl moiety was replaced with a butylox-
ycarbonyl (BOC) group for increased solubility and reduced plasma 
protein binding. However, the better pharmacokinetic profile met with 
a decreased activity against the Mpro of SARS-CoV-2 of compound 2 
(IC50 = 2.39 µM) when compared with compound 1 (IC50 = 0.18 µM). 
In the next modification, P2 cyclohexyl moiety was replaced with a 
smaller cyclopropyl moiety in order to improve the antiviral activity. 
The resulting compound 3 inhibits Mpro of SARS-CoV-2 with an IC50 of 

Fig. 10. Structure of reported RdRp inhibitors along with their docking scores.  
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Fig. 11. Lead optimization of α-ketamides as Mpro inhibitor (Color representation indicates groups that are modified during the lead optimization of compound 1).  

Fig. 12. (A) 3D view of compound 3 inside the binding pocket of SARS-CoV-2 Mpro (B) 3D interaction diagram of compound 3 with active site residues of the target 
protein (C) 2D interaction diagram of compound 3 with active site residues of the target protein (PDB ID- 6Y2F) (Visualized using Maestro visualizer) [70]. 
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0.67 µM. Further, compound 3 effectively inhibited the replication of 
SARS-CoV-2 in Calu3 cells, while compound 4 formed by the removal of 
the BOC group was almost inactive, emphasizing that the BOC group is 
indispensable. The X-ray crystal structure of compound 3 with SARS- 
CoV-2 Mpro is depicted in Fig. 12. Compound 3 also had a favorable 
pharmacokinetic profile in vivo, suggesting it as an ideal lead for further 
development. 

Jin et al. developed a strategy encompassing structure-based drug 
design, virtual screening, and high throughput screening to repurpose 
existing drugs or agents to target Mpro of SARS-CoV-2 [19]. N3 (Fig. 13) 
was designed based on computer-aided drug design to target the Mpro of 
SARS-CoV and MERS-CoV [71,72]. Since Mpro is highly conserved 
among coronaviruses, compound N3 was also tested against Mpro of 
SARS-CoV-2, and it was found to be a potent inhibitor of Mpro. Enzyme 
kinetics studies revealed compound N3 as an irreversible inhibitor. The 
X-ray crystal structure of compound N3 in the binding pocket of SARS- 
CoV-2 Mpro is shown in Fig. 13. Based on the crystal structure of SARS- 
CoV-2 Mpro with N3, a virtual screening study identified cinanserin, a 
serotonin antagonist, as a promising antiviral candidate. Cinanserin 
exhibited activity against SARS-CoV-2 Mpro in vitro (IC50 = 125 µM). A 
high-throughput screening study consisting of approved drugs, natural 
products, and clinical drug candidates was performed to identify hit 
compounds against SARS-CoV-2 Mpro. The top six compounds, along 
with their IC50 values, are depicted in Fig. 14. These compounds were 
evaluated for the potential to inhibit the replication of SARS-CoV-2 in 
Vero E6 cells. Ebselen (also called PZ 51, DR3305, and SPI-1005, is a 
synthetic organoselenium drug molecule with anti-inflammatory, anti-
oxidant and cytoprotective activity) and N3 with half-maximal Effec-
tive Concentration (EC50) values of 4.67 and 16.77 µM, respectively 
were found to be the most potent compounds. Ebselen has low cyto-
toxicity, and its safety has been evaluated in a previous clinical trial  
[73,74], making it an ideal candidate for further development. 

Dai et al. reported the synthesis and evaluation of two peptidomi-
metic aldehydes targeting the Mpro of SARS-CoV-2 [75]. The two pep-
tidomimetic aldehydes 5 and 6 potently inhibited SARS-CoV-2 Mpro 

with IC50 values of 0.053 µM and 0.040 µM, respectively (Fig. 15). The 
crystal structures of SARS-CoV-2 Mpro with both the inhibitors were 
resolved and were found to bind with the substrate-binding site of the 
protein and showed vital interactions with the active site residues. 
Compounds 5 and 6 were also shown to possess potent antiviral activity 
against SARS-CoV-2 in Vero E6 cells with EC50 values of 0.42 and 
0.33 µM, respectively. Furthermore, in vivo pharmacokinetic and toxi-
city studies were conducted to substantiate these compounds as pro-
mising candidates for COVID-19. Both the compounds exhibited good 
pharmacokinetic properties, and compound 5 exhibited low toxicity in 
vivo. 

Fintelman-Rodrigues and co-workers shed light on the promising 
potential of atazanavir and atazanavir/ritonavir combination for the 
treatment of COVID-19 [76]. Through a combination of molecular 
docking and molecular dynamics, atazanavir was shown to bind to the 
active site of SARS-CoV-2 Mpro. It was also shown to inhibit the enzyme 
through zymographic studies. Atazanavir and atazanavir/ritonavir 
combination were evaluated for their inhibitory potential against SARS- 
CoV-2 in Vero E6 cells and human epithelial pulmonary cell lines 
(A549). The solo treatment, as well as the combination treatments, was 
found to inhibit SARS-CoV-2 in both the cell lines potently. The EC50 

values of atazanavir and atazanavir/ritonavir combination against 
SARS-CoV-2 in Vero E6 cells and A549 cells are shown in Fig. 16. 
Furthermore, atazanavir and atazanavir/ritonavir also prevented pro- 
inflammatory cytokine production in monocytes infected with SARS- 
CoV-2, as confirmed by the low levels of lactate dehydrogenase (LDH) 
and Interleukin-6 (IL-6). 

2.6. Papain like protease (PLpro) 

Papain like protease is the other proteolytic enzyme that helps in 
processing of the replicase polyprotein. PLpro is known to cleave the 
replicase polyprotein at three sites releasing the nsp-1, nsp-2, and nsp-3, 
which are essential for viral replication [10]. Apart from its proteolytic 
function, PLpro is also reported to possess de-ubiquitinating property  

Fig. 12.  (continued)  
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[77]. It also plays a central role in countering the strength of host im-
mune response to viral infection by shutting down crucial pathways  
[78–80]. Currently, no in vitro studies have been performed against 
PLpro of SARS-CoV-2. However, computational studies have been per-
formed which could provide a direction for further exploitation of 
PLpro. Wu et al. constructed a homology modeling of SARS-CoV-2 

PLpro and screened it virtually against the ZINC drug database and an 
in-house database of Chinese medicine and natural products. The vir-
tual screening study identified ribavirin, valganciclovir, β-thymidine, 
and natural products Platycodin D, Chrysin, and Neohesperidin as po-
tential leads with high binding affinity with SARS Cov-2 PLpro [10]. 
Arya et al. also constructed a homology model of SARS-CoV-2 PLpro 

Fig. 13. (A) Structure of compound N3 (B) 3D view of compound N3 inside the binding pocket of SARS-CoV-2 Mpro (C) 3D interaction diagram of compound N3 with 
active site residues of the target protein (D) 2D interaction diagram compound N3 with active site residues of the target protein (PDB ID- 6LU7) (Visualized using 
Maestro visualizer) [70]. 
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Fig. 13.  (continued)  

Fig. 14. Structure of reported Mpro inhibitors.  
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and screened it against a library of 2525 FDA approved drugs. Prazi-
quantel (anti-parasitic), cinacalcet (anti-hyperparathyroidism), procai-
namide (anti-arrhythmic), terbinafine (antifungal) and pethidine 
(opioid analgesic) were identified with potent binding affinity with 
SARS-CoV-2 PLpro [81] (Fig. 17). No major adverse effects have been 
reported for praziquantel and cinacalcet. However, procainamide, ter-
binafine, and pethidine have major adverse effects like cardiac ab-
normalities, hepatic failure, and respiratory depression, respectively  
[82–84]. 

3. Treatment opportunities for COVID-19 

3.1. Antivirals 

3.1.1. Remdesivir 
Remdesivir, a prodrug of adenosine analog GS-441524 (Fig. 18), is 

an investigational antiviral molecule that was developed by Gilead 
Sciences for the treatment of the Ebola virus [85]. Remdesivir is in the 
frontline in ongoing clinical trials for COVID-19. Remdesivir is a direct- 
acting antiviral drug, which stops replication of SARS-CoV-2 in host- 

Fig. 15. Peptidomimetic aldehydes 5 and 6 targeting SARS-CoV-2 Mpro.  

Fig. 16. Structure of atazanavir and ritonavir.  
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cells [86]. Remdesivir was also found to exhibit antiviral activity 
against other flavo viruses like Marburg virus, Pneumo viruses like 
respiratory syncytial virus, and paramyxoviruses like mumps, measles, 
Nipah virus, and Hendra virus [87]. A recent study reported prophy-
lactic as well as the therapeutic potential of remdesivir in the rhesus 
macaque model of MERS-CoV infection [88]. Remdesivir potently in-
hibited the replication of SARS-CoV and MERS-CoV in human airway 
epithelial cell cultures with IC50 values of 0.069 and 0.074 µM, re-
spectively [89]. In addition, it was also effective against zoonotic cor-
onaviruses [89,90]. Recently, remdesivir was shown to exhibit potent 
activity against the novel coronavirus SARS-CoV-2 in vitro. Remdesivir 
was effective in blocking the viral infection in Vero E6 cells infected 
with nCoV-2019BetaCoV/Wuhan/WIV04/2019 (EC50 = 0.77 µM)  
[62]. Remdesivir was also shown to afford clinical benefits in rhesus 
macaques infected with SARS-CoV-2 [91]. The preliminary results of a 
double-blinded, randomized, placebo-controlled study evaluating the 
effectiveness of intravenous remdesivir for the treatment of COVID-19 
was recently published. The study findings revealed that remdesivir was 
superior to placebo in reducing the time to recovery in adults hospi-
talized with COVID-19 with a median recovery time of 11 days as 
compared to 15 days for the placebo-treated group [92]. Recently, 
Gilead Sciences announced that a 5-day treatment course of remdesivir 
was associated with significantly greater clinical improvement in hos-
pitalized patients with moderate COVID-19 when compared with 
standard care in a Phase-3 clinical study, further demonstrating the 
importance of remdesivir in the battle against COVID-19 [93]. The 

adverse effects that have been reported due to remdesivir administra-
tion include hypersensitivity- infusion-related and anaphylaxis and 
elevation in liver transaminases [94]. In the USA, the Food and Drug 
Administration (FDA) has granted remdesivir an Emergency Use Au-
thorization (EUA) for the management of hospitalized patients with 
severe COVID-19. 

3.1.1.1. Mechanism of action. Remdesivir being a nucleoside analog 
inhibits the viral genome replication process by targeting the RdRp 
enzyme. After host-dependent conversion to its active form- nucleoside 
triphosphate (NTP) (Fig. 18), it incorporates into the RNA strand after 
fending off Adenosine triphosphate (ATP), the natural nucleotide 
incorporated in this process resulting in premature termination of 
RNA synthesis [85,86,95] 

3.1.2. Lopinavir/ritonavir combination 
Lopinavir and ritonavir are two structurally related protease in-

hibitors that were developed for the treatment of (HIV). Lopinavir ex-
hibited higher selectivity, about 10-fold against both the wild and 
mutant strains of HIV-1 protease enzyme in vitro than ritonavir. 
However, it lacked the same potency in vivo due to metabolic in-
activation by cytochrome P-450 (CYP) enzymes [96]. Ritonavir inhibits 
cytochrome P-450-3A4 (CYP3A4) at sub-therapeutic levels and hence is 
always co-administered with lopinavir to prevent its metabolic de-
gradation [97]. Lopinavir was found to inhibit both SARS-CoV and 
MERS-CoV replication in vitro (EC50 = 17.1 and 8 µM against SARS- 

Fig. 17. Structure of top 5 compounds reported as PLpro inhibitor.  
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CoV and MERS-CoV, respectively). The combination of lopinavir/rito-
navir was found to be effective in the animal model as well [98,99]. It 
was proposed that the 3CLpro inhibition capacity of lopinavir/ritonavir 
partly contributes to their anti-CoV activity [100]. It was postulated 
that the combination could be effective against SARS-CoV-2. A study on 
analysis of molecular complexation between lopinavir and ritonavir 
with SARS-CoV-2 3CLpro suggested interaction of these drugs with 
residues at the active site of the enzyme [101]. There are 39 ongoing 
studies registered in ClinicalTrial.gov on clinical evaluation of lopi-
navir/ritonavir for the treatment of COVID-19. The results posted on a 
recently conducted clinical trial, Lopinavir Trial for Suppression of 
SARS-Cov-2 in China (LOTUS China), revealed that the combination of 
lopinavir/ritonavir offered no benefits over the standard care in hos-
pitalized adult COVID-19 patients [102]. Considering the dynamic si-
tuation and differential pathologies of COVID-19 in different areas, it is 
important to wait for reports and outcomes of other ongoing clinical 
trials before drawing any conclusion on the therapeutic utility of this 
combination for COVID-19. 

3.1.3. Favipiravir 
Favipiravir is an antiviral drug approved for the treatment of the 

influenza virus. Favipiravir is a prodrug that is metabolically activated 
by the human hypoxanthine-guanine phosphoribosyltransferase 
(HGPRT) to its active metabolite-favipiravir-ribofuranosyl-5′-tripho-
sphate (favipiravir-RTP) [103]. Favipiravir is an RdRp inhibitor that 
has shown promise as a therapeutic intervention for the Ebola virus  
[104–107]. Favipiravir was shown to inhibit the replication of SARS- 
CoV-2 in vitro (EC50 = 61.88 µM) [62]. An open-label non-randomized 
control study was undertaken to compare the clinical effectiveness of 
favipiravir and lopinavir/ritonavir as a treatment strategy for COVID- 
19. The study findings revealed that favipiravir had better treatment 
outcomes on COVID-19 in terms of viral clearance and disease pro-
gression [108]. A clear understanding of clinical pharmacokinetics and 
pharmacodynamics profiles of favipiravir based on its previous clinical 

trials for influenza treatment [109] may be useful for determining the 
appropriate doses and course of treatment for COVID-19. 

3.1.4. Ribavirin 
Ribavirin, a guanosine analog, has been used for the treatment of 

RNA viruses like hepatitis and respiratory syncytial virus. It interferes 
with the viral RNA synthesis and viral mRNA capping after undergoing 
metabolic activation to its active metabolite [110]. Past studies have 
highlighted the combination of ribavirin and interferon therapy as an 
effective treatment strategy for SARS-CoV and MERS-CoV [111–113]. 
Recently, Wang et al. highlighted the potential of ribavirin to inhibit 
SARS-CoV-2 in vitro in Vero E6 cells (EC50 = 109.50 µM). Clinical trials 
are underway to evaluate the efficacy of ribavirin in the treatment of 
COVID-19 [62]. 

3.1.5. Other antiviral drugs 
Other antivirals that are currently being tested include umifenovir, 

oseltamivir, darunavir/cobicistat combination (Fig. 19). Umifenovir is 
used for the treatment of influenza in Russia and China. Umifenovir 
exhibits its action by preventing the fusion of the virus with the cell 
membrane blocking its entry into the host cell [114]. Oseltamivir, also 
used for the treatment of influenza viruses, acts as a neuraminidase 
inhibitor, preventing the release of new virus particles [115]. Darunavir 
is a protease inhibitor approved for the treatment of HIV, and cobicistat 
prevents the catabolism of darunavir [116]. Clinical trials are underway 
to evaluate the efficacy of these drugs for treating COVID-19. 

3.2. Antibiotics 

3.2.1. Teicoplanin 
Teicoplanin belonging to the class of glycopeptide antibiotic is used 

for the treatment of gram-positive bacterial infections. The previous 
report suggested that teicoplanin and its derivatives were capable of 
blocking the viral entry of the Ebola virus, SARS-CoV, and MERS-CoV 

Fig. 18. (A) Structure of GS-441524 (B) Metabolic activation of remdesivir.  
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into the cell by blocking cathepsin L [46]. A recent report by the same 
research group suggests that teicoplanin potently inhibits the entry of 
SARS-CoV-2-S-pseudoviruses by blocking cathepsin L. (IC50 = 1.66 µM)  
[47]. Given its antibacterial prowess, teicoplanin could be considered 
as a dual inhibitor of the SARS-CoV-2 and its associated bacterial co- 
infections. However, further evidence is required to support such a 
claim. 

3.2.2. Azithromycin 
Azithromycin is a broad-spectrum antibiotic that is used for the 

management of several bacterial infections (Fig. 20). A recently con-
ducted clinical trial highlighted the importance of azithromycin for the 
management of SARS-CoV-2 infection [117]. A total of 36 patients were 
enrolled for the study, out of which 20 patients received chloroquine, 
and 16 patients served as control. Among the chloroquine treated pa-
tients, six patients received azithromycin as a precautionary measure 
against bacterial superinfection. At the end of day 6, 100% of the pa-
tients treated with chloroquine and azithromycin were cured off the 
virus while only 57.1% of the patients were cured who received 
chloroquine alone (negative PCR results). These outcomes should be 
further dwelled on to consider azithromycin as viable adjuvant therapy 
for SARS-CoV-2 infection. Fascinatingly, azithromycin has been re-
ported to be active against other RNA viruses like Ebola and Zika virus 
in vitro [118,119]. Further studies might shed light on its potential 
against SARS-CoV-2. 

3.2.3. Carrimycin 
Carrimycin, a macrolide antibiotic, is under clinical investigation 

(NCT04286503) to evaluate its efficacy in treating patients with 
COVID-19. Carrimycin has been patented for the treatment of myco-
bacterial infections (European patent EP 3384915 A1). However, after a 
thorough search, no information could be obtained regarding the 
structure or mechanism of action of this drug. 

3.3. Antiprotozoal drugs 

3.3.1. Chloroquine and hydroxychloroquine 
Chloroquine and hydroxychloroquine belonging to the class of 4- 

aminoquinolines are primarily used as antimalarials. Structurally, hy-
droxychloroquine differs from chloroquine by the presence of one extra 
hydroxyl group. Besides its antimalarial prowess, chloroquine has es-
tablished itself as a broad-spectrum antiviral agent exhibiting potent 
activity against both DNA and RNA viruses [120–123]. Concerning 
coronaviruses, chloroquine has been reported to be potent against the 
SARS-CoV-1 [124]. A recent report by Wang et al. shed light on the 
antiviral prowess of chloroquine against the SARS-CoV-2. Chloroquine 
effectively blocked the viral infection with a high selectivity index 
(EC50 = 1.13 µM) [62]. Gao et al., in a recent publication, disclosed 
that chloroquine treatment offered superior efficacy than control 
treatment in a trial that involved a hundred infected patients [125]. 

Now answering the elephant in the room- Can hydroxychloroquine 
also be used for the treatment of Covid-19? A recent report demon-
strated that hydroxychloroquine is also effective against the SARS-CoV- 
2, and a study also highlighted that hydroxychloroquine is more potent 
against SARS-CoV-2 than chloroquine [126,127]. More arguments favor 
the use of hydroxychloroquine over chloroquine. Firstly, the presence 
of an extra hydroxyl group makes it more hydrophilic and hence faster 
clearance lessening the risk of retinal toxicity than chloroquine. Sec-
ondly, hydroxychloroquine is a safer option than chloroquine with re-
spect to therapeutic window and safety margins. Thirdly, owing to its 
proven immunomodulatory properties, hydroxychloroquine can act as 
an ideal treatment intervention in severely ill cases where cytokine 
storm is a significant issue to deal with COVID-19 [128]. 

Recently, a controversial observational study on the effectiveness of 
chloroquine or hydroxychloroquine with or without a macrolide for the 
treatment of COVID-19 was published. The study comprising data from 
over 600 hospitals in six continents concluded that chloroquine or 

Fig. 19. Antiviral drugs currently being repurposed for treating COVID-19.  

Faheem, et al.   Bioorganic Chemistry 104 (2020) 104269

16



hydroxychloroquine treatment afforded no protection to COVID-19 
patients and was associated with an increased incidence of ventricular 
arrhythmias. However, serious questions were raised on the validity of 
the data published in the study. The study was later retracted from the 
journal as independent auditing of the data was not possible [129]. 
Reports from clinical trials like solidarity trials, RECOVERY trials have 
demonstrated that hydroxychloroquine offers no benefit to COVID-19 
patients [130,131]. USFDA has also withdrawn its EUA status given to 
chloroquine and hydroxychloroquine in view of the recent develop-
ments [132]. 

3.3.1.1. Mechanism of action of chloroquine. Chloroquine is claimed to 
act via two mechanisms. Chloroquine, in its unprotonated state, 
spontaneously moves across the cell membranes and gets 
accumulated in highly acidic vesicles like lysosomes and endosomes 
and organelles like Golgi, where it gets ionized and raises their pH 
thereby inactivating several proteolytic enzymes. Evidence suggests 
that viral entry, replication, and infection requires an acidic 
environment in the endosome-lysosomes and the catalyzing efficiency 
of endosomal-lysosomal enzymes. By raising the pH of the vesicles, 
chloroquine can effectively inhibit the entry and replication process  
[133]. 

Chloroquine indirectly interferes with the interaction between the 
SARS-CoV-1 spike proteins and ACE-2 receptors. Interactions between 
the glycosylated form of ACE-2 receptor and SARS-CoV-1 S protein is 
necessary for the viral entry into the cell. Chloroquine impairs the Golgi 
mediated N-terminal glycosylation of ACE-2, which results in decreased 
affinity to SARS-CoV-1 S proteins. Hence weak interaction ensues, and 
the viral entry is prevented [124]. 

3.3.2. Nitazoxanide 
Nitazoxanide, a thiazolide class of drugs, is an antiprotozoal agent 

used for the treatment of various protozoal and helminthic infections  
[134]. Apart from its antiprotozoal potential, nitazoxanide has estab-
lished itself as a broad-spectrum antiviral agent showing potency 
against both the DNA and RNA viruses [135]. Recently, nitazoxanide 
was shown to effectively inhibit the SARS-CoV-2 in Vero E6 cells 

(EC50 = 2.12 µM) [62]. Considering its antiviral property along with its 
anti-inflammatory potential [136], nitazoxanide could act as a possible 
therapeutic intervention for COVID-19. However, further studies must 
be conducted to warrant such a claim. 

3.3.3. Ivermectin 
Ivermectin (Fig. 21) is a broad-spectrum anti-parasitic agent [137]. 

It has also been reported to possess antiviral activity against viruses 
such as HIV and dengue [138]. Ivermectin was shown to inhibit the 
replication of SARS-CoV-2 in vitro [139]. A single treatment of iver-
mectin at the dose of 5 µM resulted in an about 5000-fold reduction in 
viral titers following 48 h of ivermectin treatment. The safety profile of 
ivermectin is well established, and hence ivermectin can be potentially 
repurposed against COVID-19. 

3.4. Fusion inhibitors 

3.4.1. Camostat 
As previously mentioned, SARS-CoV-2 also uses the ACE-2 receptor 

for its attachment and TMPRSS2 for S-protein priming [33]. Camostat, 
a serine protease inhibitor that has been approved in Japan for the 
treatment of pancreatitis, was shown to block the cellular entry of 
SARS-CoV-2 by inhibiting TMPRSS2 [33]. Having already established 
its safety profile, camostat might prove to be a valuable drug in the 
arsenal, which can be repurposed to combat COVID-19. Camostat is 
currently under clinical trials (NCT04338906, NCT04321096) to prove 
its efficacy for the treatment of COVID-19. 

3.4.2. Nafamostat 
Following the footsteps of camostat is nafamostat (Fig. 22), a serine 

protease inhibitor used as an anticoagulant [140]. Nafamostat has been 
shown to inhibit the entry of MERS-CoV by inhibiting cellular TMPRSS2  
[141]. Recently, nafamostat was also shown to inhibit the novel SARS- 
CoV-2 in vitro (EC50 = 22.50 µM) [62]. Scientists from Research Center 
for Asian Infectious Diseases of the Institute of Medical Science, the 
University of Tokyo, have disclosed that nafamostat prevents the entry 
of novel SARS-CoV-2 by potently binding to the transmembrane 

Fig. 20. Antibiotics that are being explored for the treatment of COVID-19.  
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protease TMPRSS2. Nafamostat was able to achieve the fusion inhibi-
tion at less than one-tenth of the concentration required by camostat  
[142]. Nafamostat can also be repurposed for therapeutic utility against 
COVID-19. 

3.5. Immunomodulators and anti-inflammatory drugs 

A coordinated effort by the host’s immune system is essential for 
battle against SARS-CoV-2. However, a dysregulated immune response 
has been reported in patients with COVID-19. Patients who were ad-
mitted to ICU on account of severe COVID-19 were reported to possess 
higher levels of IL-7, IL-2, IL-10, Granulocyte colony-stimulating factor 
(GCSF), Monocyte chemoattractant protein-1 (MCP-1), Tumor necrosis 
factor- α (TNF-α) compared with non-ICU patients suggesting a possible 
cytokine storm that ultimately culminates in Acute Respiratory Distress 
Syndrome (ARDS) [143]. Therefore, corticosteroids can be considered 
as an adjunct treatment option. However, currently, corticosteroid 
therapy is a topic of debate. Recently, Russel et al. suggested that there 
is no clinical evidence to support the use of corticosteroids in COVID-19 

patients [144]. Notably, in a retrospective study, it was demonstrated 
that early, low-dose treatment intervention with corticosteroids was 
associated with quicker improvement of clinical symptoms [145]. 
Therefore, the use of corticosteroids for patients with COVID-19 is still 
under debate, and additional evidence is needed to be considered as a 
treatment intervention. Currently, a clinical trial is underway to eval-
uate the efficacy of dexamethasone in patients with ARDS secondary to 
SARS-CoV-2 infection (NCT04325061). Zhou et al. demonstrated that 
inflammatory and pro-inflammatory mediators like Granulocyte-mac-
rophage colony-stimulating factor (GM-CSF) and IL-6 are highly ex-
pressed following viral infection [146]. Therefore, blocking GM-CSF 
and IL-6 receptors can reduce the inflammatory response. In accordance 
with this, Mavrilimumab, a monoclonal antibody targeting the GM-CSF 
receptor, is currently under clinical trials (NCT04337216) to evaluate 
its efficacy. Clinical trials are also underway to evaluate the safety and 
efficacy of IL-6 receptor blockers like Sarilumab (NCT04315298), 
Tocilizumab (NCT04320615, NCT04315480) and Siltuximab 
(NCT04329650) for treating COVID-19. Baricitinib has been proposed 
as a potential drug for the treatment of COVID-19 [147]. AP-2 

Fig. 21. Antiprotozoal drugs that are being repurposed for treatment of COVID-19.  

Fig. 22. Fusion inhibitors- camostat and nafamostat.  
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associated protein kinase 1 (AAK1) is a promoter of endocytosis. Bar-
icitinib is known to bind and inhibit AAK1 potently even at therapeutic 
doses (2 mg or 4 mg) and hence has the potential to prevent the virus 
entry. Moreover, it is also a known inhibitor of Janus kinases (JAK1 and 
JAK2), essential enzymes that are involved in signal transduction in-
itiated by cytokines [147]. Therefore, inhibiting JAK enzymes con-
tributes to its anti-inflammatory properties. However, inhibition of 
JAK1 and JAK2 by baricitinib appears to be a double-edged sword with 
respect to the treatment of COVID-19 [148]. Interferons are essential 
soldiers deployed by host’s immune system in response to virus entry. 
Interferons mediate their antiviral effects via the JAK-STAT pathway. 
Hence, inhibiting JAK enzymes by baricitinib can inhibit interferon 
mediated antiviral response and might aid in the replication of SARS- 
CoV-2 [148]. Currently, baricitinib is under clinical investigation 
(NCT04321993) as a potential drug for treating SARS-CoV-2 infection. 

3.6. Traditional Chinese Medicine (TCM) and natural products 

Traditional Chinese Medicine (TCM) has played a substantial role in 
the treatment and prevention of past epidemics. Past clinical studies 
have underlined the importance of TCM in the treatment and preven-
tion of SARS and H1N1 influenza [149,150]. Since there is a high 
correlation between SARS-CoV and SARS-CoV-2, it was proposed that 
TCM can also be beneficial for the management of COVID-19 [151]. 
National Health Commission (NHC) of the People’s Republic of China 
has recommended the use of TCM for Covid-19 since the fourth version 
of Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia  
[152]. The TCM recommended in the current version (seventh trial 
version) of Diagnosis and Treatment Protocol for Novel Coronavirus 
Pneumonia are highlighted in Table 2 [153]. 

Ni et al. reported the treatment of 3 COVID-19 patients in Wuhan 
with Shuanghuanglian oral liquid (SHL). SHL is a patented TCM that is 
used for the treatment of cough, cold, and fever. The symptoms of all 
three patients improved after the consumption of SHL, and the patients 
finally recovered without any side effects [154]. Currently, it is under 
clinical investigation (ChiCTR2000029605). Lianhuaqingwen (LH), a 
TCM formula consisting of 13 herbs, was found to exhibit antiviral 
activity against the SARS-CoV-2 in vitro [155]. LH inhibited the re-
plication of SARS-CoV-2 with an IC50 value of 411.2 µg/ml. Electron 
microscopic studies revealed that LH caused viral deformities. Fur-
thermore, LH was also shown to suppress the levels of inflammatory 
cytokines like TNF-α and IL-6 [155]. Though TCM seems to be a 
treatment strategy for COVID-19, the safety aspects of TCM needs fur-
ther warranting. Recently, Gray et al. addressed the potentially harmful 
effects of TCMs [156]. Although TCMs were found to exhibit potential 
beneficial effects in clinical trials conducted for SARS-CoV, most of 
these studies were poorly designed [152,157]. Hence, double-blinded, 
randomized, placebo-controlled clinical trials should be conducted to 
prove safety as well as efficacy aspects of TCMs. 

Chen et al. identified five natural compounds- baicalin, hesperetin, 
scutellarin, nicotianamine, and glycyrrhizin that could potently bind to 
ACE-2 by molecular docking studies [158]. Incidentally, glycyrrhizin 
(Fig. 23), a triterpene saponin found in liqourice roots, has been 

previously reported to inhibit the replication of SARS-CoV [159,160]. A 
derivative of glycyrrhizin with 2-acetamido-β-d-glucopyranosyl amine 
into the glycoside chain showed 10-fold increased activity in vitro 
against SARS-CoV. An amine derivative of glycyrrhizin and the con-
jugates of glycyrrhizin with two amino acid residues and a free 30- 
COOH function showed 70-fold increased activity against SARS-CoV. 
However, these modifications also increased cytotoxicity [161]. Since 
the safety and toxicity profiles of glycyrrhizin are well established, 
further studies are needed to establish the efficacy of glycyrrhizin 
against SARS-CoV-2. 

4. Conclusion and future perspectives 

Extensive efforts are being made across the whole globe to find 
potential vaccines and therapeutic agents against COVID-19. However, 
until now, no vaccine or therapeutic agent has shown the results re-
quired for the approval for the treatment of COVID-19 or protection 
against SARS-CoV-2 infections. This review summarizes the potential 
druggable targets of SARS-CoV-2 for the discovery and development of 
novel therapeutics against COVID-19 based on the current under-
standing of molecular structures and functions of the targets as well as 
an understanding of the pathogenesis of the disease. The treatment 
approaches that are currently being explored have also been high-
lighted. The drugs that are currently being explored for the treatment of 
COVID-19 is summarized in Table 3. 

Infectious diseases resulting from novel pathogens will continue to 
be a global health concern, further epitomized by COVID-19. The world 
is still unprepared for such epidemics/pandemics despite former cor-
onaviruses infections SARS-CoV and MERS-CoV. Although vaccines are 
the only way to prevent/eradicate SARS-CoV-2, at least a year is needed 
to develop vaccines with desired protection and address their safety 
issues before they can be deployed for large scale vaccination cam-
paigns. Given the lengthy process associated with drug development, 
repurposing of approved drugs appears to be an appropriate solution to 
answer the short-term goals for the management of COVID-19. Only the 

Table 2 
Chinese patent medicines recommended under the diagnosis and treatment protocol for novel Coronavirus Pneumonia (Trial version seven) [153].     

Disease stage Clinical manifestation Recommended Chinese patent medicine  

Medical observation Fatigue and Gastrointestinal 
discomfort 

HuoxiangZhengqi capsules 

Fatigue and fever Jinhua Qinggan granules, LianhuaQingwen capsules (granules), ShufengJiedu capsules 
(granules), FangfengTongsheng pills (granules) 

Clinical treatment (confirmed cases) Severe cases Xiyanping injection, Xuebijing injection, Reduning injection, Tanreqing injection, Xingnaojing 
injection 

Critical cases Xuebijing injection, Reduning injection, Tanreqing injection, Xingnaojing injection, Shenfu 
injection, Shengmai injection, Shenmai injection 

Fig. 23. Structure of Glycyrrhizin.  
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efficacy of these drugs needs to be established against COVID-19 since 
their safety profiles are already well established. Many clinical studies 
are currently underway to repurpose existing drugs for COVID-19 
management. 

The long-term goals for management of COVID-19 should be di-
rected against the development of novel inhibitors aimed at any of the 
druggable targets discussed in this review. The starting point of such a 
journey would be to modify the agents that have been shown to be 
promising against other coronaviruses like SARS-CoV, as demonstrated 
by Xia et al. and Zhang et al. in their respective studies [28,68]. The 
main protease of SARS-CoV-2 appears to be an attractive target for the 
discovery and development of novel drug candidates because of its 
importance in virus replication and the fact that its active site is highly 
conserved among coronaviruses. Peptidomimetics targeting the entry of 
the virus and small peptide molecules targeting Mpro have shown the 
potential to combat SARS-CoV-2. However, questions regarding their 
stability inside the body, selectivity against the target protease, and 
their delivery to the target site should be addressed. Structures and 
functions of RdRp have been extensively investigated for RNA viruses. 
Considerable efforts have also been made, and several lead compounds 
have been identified targeting specific RdRp functions through ex-
tensive structure-activity-relationship studies. A few of them have been 
advanced to the clinical use and are clinical evaluation. Current re-
pertoire of lead RdRp inhibitors offer unparalleled starting point for 
optimization of their efficacy against SARS CoV-2. The inhibitors of 
RdRp may have low propensity to development of resistance, due to 
requirement of high fidelity for CoV RdRp functions. 

Well-coordinated efforts between various disciplines are required to 
contain this global pandemic. Clinically proven therapeutics and vac-
cines are the needs of the hour to curb the growth of this pandemic and 
ensure global safety. 
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