Small Molecule Antiviral Compound Collection (SMACC): a database to support the discovery of broad-spectrum antiviral drug molecules.

4

Holli-Joi Martin¹, Cleber C. Melo-Filho¹, Daniel Korn¹, Richard T. Eastman², Ganesha Rai²,
Anton Simeonov², Alexey V. Zakharov^{2,*}, Eugene Muratov^{1,*}, Alexander Tropsha^{1,*}

7

¹UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA. E mail: <u>alexey.zakharov@nih.gov</u>, <u>murik@email.unc.edu</u>, <u>alex_tropsha@unc.edu</u>

10 ² Division of Preclinical Innovation, National Center for Advancing Translational Sciences,

- **11** *Rockville, MD, 20850*
- 12

13 Abstract

14 Diseases caused by new viruses costs thousands if not millions of human lives and trillions of 15 dollars in damage to the global economy. Despite the rapid development of vaccines for SARS-16 CoV-2, the lack of small molecule antiviral drugs that work against multiple viral families (broad-17 spectrum antivirals; BSAs) has left the entire world's human population vulnerable to the infection 18 between the beginning of the outbreak and the widespread availability of vaccines. Developing 19 BSAs is an attractive, yet challenging, approach that could prevent the next, inevitable, viral 20 outbreak from becoming a global catastrophe. To explore whether historical medicinal chemistry 21 efforts suggest the possibility of discovering novel BSAs, we (i) identified, collected, curated, and 22 integrated all chemical bioactivity data available in ChEMBL for molecules tested in respective assays for 13 emerging viruses that, based on published literature, hold the greatest potential threat 23 24 to global human health; (ii) identified and solved the challenges related to data annotation accuracy 25 including assay description ambiguity, missing cell or target information, and incorrect BioAssay 26 Ontology (BAO) annotations; (iii) developed a highly curated and thoroughly annotated database 27 of compounds tested in both phenotypic (21,392 entries) and target-based (11,123 entries) assays 28 for these viruses; and (iv) identified a subset of compounds showing BSA activity. For the latter 29 task, we eliminated inconclusive and annotated duplicative entries by checking the concordance 30 between multiple assay results and identified eight compounds active against 3-4 viruses from the 31 phenotypic data, 16 compounds active against two viruses from the target-based data, and 35 compounds active in at least one phenotypic and one target-based assay. The pilot version of our 32 SMACC (Small Molecule Antiviral Compound Collection) database contains over 32,500 entries 33 for 13 viruses. Our analysis indicates that previous research yielded very small number of BSA 34 35 compounds. We posit that focused and coordinated efforts strategically targeting the discovery of such agents must be established and maintained going forward. The SMACC database publicly 36 37 available at https://smacc.mml.unc.edu may serve as a reference for virologists and medicinal 38 chemists working on the development of novel BSA agents in preparation for future viral 39 outbreaks.

41 Introduction

Infectious diseases have had profound impacts on global human health since the beginning 42 43 of time. In the past two decades factors such as population growth and travel have increased the rate of viral outbreaks, with a new viral threat seen nearly every year.¹ This includes the emergence 44 45 of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome 46 (MERS-CoV), Zika virus disease, Ebola virus disease, and variety of influenza strains (H5N1, 47 H7N9, H1N1, etc.). These viruses are just a handful of over 200 viral species annotated by the International Committee for Taxonomy of Viruses as threats to human health.² The millions of 48 lives lost and trillions of dollars in damage to the global economy due to the recent pandemic 49 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlight the 50 51 importance of medications that can offer protection against diverse viral threats that can emerge in the future.³ 52

It is evident from the current SARS-CoV-2 outbreak that scientific advances have increased our capabilities for rapid development of new vaccines. However, none of the vaccines developed thus far offers 100% protection. Furthermore, viral evolution poses a threat to further decrease the vaccines efficacy, additionally, widespread hesitancy against vaccination leaves a large majority of the population susceptible to the viral disease.

Broad-spectrum antiviral (BSA) drugs could protect against emergent viruses; however, the development of such drugs has been challenging. The standard drug development and clinical testing process averages 10–15 years; thus, it is impossible to see an immediate emergence of new, effective drugs following an outbreak. As of today, there are only 90 approved antiviral drugs of which 11 are approved to treat more than one virus.⁴ One could speculate that the ability of the 11 drugs to be effective against more than one virus could be explained by the conservation of their

targets or mechanisms of action. For example, acyclovir triphosphate competes with dGTP to inhibit viral DNA polymerase activity in two human neurotropic alpha herpesviruses, herpes simplex virus and varicella zoster virus.⁴ Most approved antiviral drugs are effective against herpes, hepatitis, or human immunodeficiency viruses, but offer no protection against the recent SARS-CoV-2 pandemic. However, the fact that medications active against more than one virus do exist fuels the hypothesis that such medications can be developed in principle via concerted strategic effort.

71 Despite the clear need for BSA medications, previous outbreaks have shown that the 72 interest in supporting viral research and drug discovery vanishes quickly after about a year past the viral threat, leaving the work toward an effective medication unfinished.⁵ A good example is 73 74 the history of Paxlovid, a recently approved Pfizer medication against SARS-CoV-2. The 75 respective drug candidate was initially discovered to work against SARS in 2002-2003 by 76 inhibiting the virus' main protease (3CL-Pro) but its further development was frozen after SARS 77 vanished. When SARS-CoV-2 emerged, and it was quickly discovered that its main protease, 78 especially its active site, is almost identical to its counterpart in the original SARS, the initial drug 79 development program was restarted and Paxlovid was relatively quickly developed by Pfizer through focused medicinal chemistry optimization efforts.⁶ This story clearly indicates that there 80 81 is a strong need for ongoing and well-funded research programs focused on the rational discovery 82 of BSA drugs.

More than 380 trillion different viruses exist inside the human virome, but so far only about 200 have been considered harmful for human health.⁷ To support focused development of BSAs and learn from history, in this study we endeavored to collect, curate, and integrate all publicly accessible data on compounds tested in both phenotypic and target-based assays for emerging

87 viruses of concern. To this end, we have (i) conducted a comprehensive evaluation of viruses 88 holding the greatest potential threat to global human health, (ii) used the data available in 89 ChEMBL, an online collection of bioactive molecules with drug-like properties, to build a curated, 90 annotated, and publicly available database of compounds tested in both phenotypic and target-91 based assays for these viruses, and (iii) identified the most promising candidates with potential 92 BSA activity. We dubbed this database Small Molecule Antiviral Compound Collection (SMACC) 93 and made it publicly available online at https://smacc.mml.unc.edu. We expect that SMACC 94 database can support further computational and experimental medicinal chemistry studies 95 targeting rational design and discovery of novel BSAs.

96

97 Methods

98 Selection of viruses of interest and initial database generation

99 The ability of an infectious disease pathogen to cause a pandemic is impacted by several 100 intrinsic characteristics, including the mode and timing of transmission, host population 101 susceptibility, lack of effective therapeutic interventions or control measures, among others. 102 Microbial pathogens infect humans through many routes of transmission, including through animal 103 vector, fecal-oral or respiratory. Respiratory transmitted diseases are more likely to possess 104 pandemic potential, as interventions to block human-to-human transmission via aerosols are more 105 challenging to implement. The timing of disease transmission also impacts the spread of a disease, 106 if a pathogen is transmissible early in the course of disease, especially if an individual is 107 asymptomatic, this greatly facilitates potential for spread.

109 Viruses with a high replication rate, especially coupled with mutability of RNA and segmented 110 RNA can rapidly gain attributes, including increased transmission or evading preexisting 111 immunity, which also facilitates outbreak or pandemic spread. Viruses with high pandemic 112 potential include Coronaviridae, Paramyxoviridae, Bunyavirales, Picornaviridae, Filoviridae, 113 Togaviridae, and Flaviviridae virus families. Thus, we selected the following 13 viruses 114 representative of five families to query respective chemical bioactivity data in ChEMBL: 115 Coronaviridae (SARS-CoV-2, MERS-CoV, HCoV-229E), Orthomyxoviridae (H1N2, H7N7), 116 Paramyxoviridae (RSV, HPIV-3), Phenuiviridae (Sandfly Fever), and Flaviviridae (Dengue, 117 Zika, Yellow Fever, Powassan, West Nile).

All data was extracted from ChEMBL 29.8 The virus name, and any known alias were used as 118 119 keywords to extract all phenotypic and target-based assays for each virus. For the target-based 120 assays, we ran an additional search using virus and target name as the keywords to ensure no 121 respective viral data was lost. To identify drug targets for each virus we searched existing literature 122 using the keywords "[virus name] virus drug targets." After extraction, the data for each virus 123 were pre-processed and curated as described below. When examining the resulting datasets, we 124 have identified a need for additional curation of assay annotations as discussed in the Results 125 section.

126

127 Data Curation

We followed protocols for chemical and biological data curation described by Fourches et al.^{9–11} In brief, specific chemotypes were normalized. Inorganic salts, organometallic compounds, and mixtures were removed. Duplicate compound entries were kept to define the activity calls for compounds tested against the same virus but using different assay protocols. Additionally, keeping duplicates in the database can be important for analyzing the overlap of compound activity between
different viruses in a search for potential BSAs. However, mindful of computational modeling
studies that require the removal of duplicate compound entries, these entries were carefully
annotated in our database. All steps of data curation and integration were performed in KNIME
v.4.1.4¹² integrated with python v.3.7.3, RDKit v.4.2.0, and ChemAxon Standardizer v. 20.9
(ChemAxon, Budapest, Hungary, http://www.chemaxon. com). We summarized our database
entries after curation in Table S1.

139 Identification of compounds with multiple antiviral activity

140 A threshold of 10 μ M, irrespective of the type of activity measurement, was applied to 141 define the outcome (i.e., if a compound was active or inactive). When compound activity was 142 reported with ambiguous operators (greater than, ">", or less then, "<", certain value), it was 143 annotated as inconclusive. The final definition of the activity call for each compound was based 144 on the concordance of all compound replicate entries tested against the same virus but in different 145 assays (or the same viral target for the target-based dataset). Three outcomes were possible: (i) the 146 compound was active when tested in all assays; (ii) it was active in some assays and inactive in 147 others; and (iii) it was inactive in all assays. In case (i), the compound was considered active while 148 in case (iii), inactive. Any compound in case (ii), with discordant activity calls resulting from 149 different assays, i.e., with at least one activity call different from other ones for the same virus, 150 was considered inconclusive and was not used for the overlap analysis to identify compounds with 151 multiple antiviral activity. A compound was also annotated as inconclusive if the assay reported 152 the compounds activity as "Not Determined." Finally, all compounds tested in different viruses 153 (or viral targets in the target-based dataset) were analyzed and those showing activity against two

- 154 or more viruses were selected as potential BSAs. Table 1 summarizes our protocols to decide on
- the final activity calls for compounds included in SMACC database.
- 156

157 Table 1. Rules for making the final activity calls for compounds in SMACC database.

Virus	Assay	Cell Type	Activity discordance*	Standard Value	Activity Call
same	same	same	no	<10 uM or >50%	active
same	same	same	no	>10 uM or <50%	inactive
any	any	any	no	"Not Determined"	inconclusive
same	same	same	yes	Any	inconclusive
same	different	same	yes	Any	inconclusive
same	different	different	yes	Any	inconclusive

¹⁵⁸

```
* At least one discordant duplicate/replicate compound
```

159

160 Cluster Analysis

The curated compound structures were submitted to hierarchical cluster analysis in KNIME
v.4.1.4¹² integrated with python v.3.7.3 (SciPy and Matplotlib libraries) and using RDKit
descriptors (RDKit v.4.2.0). The optimal number of clusters was determined by the software
default Euclidean distance cut-off.

165

166 **Results**

167 Ontological examination and curation of assays reported in ChEMBL

168 <u>Phenotypic assays</u>. While ChEMBL does an exceptional job at providing the
169 largest curated and publicly available bioactivity database, we have identified multiple issues
170 requiring additional data curation efforts to yield a clean database of antiviral activity data.
171 Specifically, we found that phenotypic assays for antiviral compounds have been annotated in

172 ChEMBL with inconsistent ontological annotation, which creates uncertainty in the data. The

173 most common finding was the inconsistent use of BioAssay Ontology annotations for the assay type. As stated on the BioAssay Ontology's homepage,¹³ "The BioAssay Ontology (BAO) 174 175 describes chemical biology screening assays and their results including high-throughput 176 screening (HTS) data for the purpose of categorizing assays and data analysis." In practice, 177 proper BAO usage has been considered a universal best practice and highly trusted by users. 178 However, in the phenotypic assay data collection from ChEMBL, the misuse of the BAO 179 ontology was evident: for 9 of 13 viruses the assay type was recorded in ChEMBL as 180 "Organism-Based" rather than "Cell-Based". This was concerning because a virus does not meet 181 the criteria of a living organism as its life cycle relies on the host organism. Therefore, these 182 assays should be properly reported as cell-based; thus, we corrected their annotation respectively 183 in our database. The impact of this round of curation on the quality and usability of the extracted 184 data was dramatic. Indeed, in the absence of such manual analysis and correction of mis-185 annotated data, if one were to search ChEMBL for "cell-based assays" for these viruses, 99.44% 186 (27,410 of 27,562 entries) of the data would have been uncovered. This analysis indicates a 187 critical importance of careful data processing by chemical bioactivity data curators for both the accuracy of chemical structures (which has substantially improved over the years^{14,15}) and 188 189 correctness of activity labeling such that users can obtain the entirety of existing but effectively, 190 hidden data for which they searched.

Missing, i.e., absent from their designated entry field, data annotations were also extremely common. For example, despite there being a distinct field for the respective entry, 13.72% of all phenotypic assays results did not indicate which cell type was used. Instead, we found the records of the cell type in the assay descriptions, which allowed us, in this case, to extract and properly annotate this field. However, 36.73% of all missing cell types were not listed in the assay

196 description either, leaving one searching for the exact assay in the linked paper and trying to 197 identify the cell type used, which is what we had to do. This process had to be done manually, 198 which made it extremely time consuming, and, in some cases, no clear cell type could be identified. 199 If the cell type was not identified eventually, it was annotated as "unclear." These cases are 200 reported in Table 2 as "Cell Type Completely Missing". Yet, this tedious work resulted in the 201 additional recovery of ~4% of all phenotypic assay results. Another issue of missing data 202 annotations was uncovered when we looked into the class of assays. Most assays were not labeled 203 to indicate whether they were primary, counter, or cytotoxicity assays. Furthermore, the assay 204 descriptions also failed to provide an appropriate level of detail. Many assay descriptions simply 205 reported "Antiviral activity against virus X." Such descriptions are missing information on assay 206 conditions like time, substrate, equipment as well as cell type and purpose of the assay. Lacking 207 such details makes it impossible to analyze data reproducibility and prohibits meaningful 208 integration of multiple assay results. **Table 2** summarizes of our effort to procure and enrich the 209 original annotation of data found in ChEMBL.

210	Table 2.	Curation	issues of	phenotypic data
		0.0100000	1000000	

Virus	# of Entries	# of Assays	Incorrect BAO Assay Annotation	Assay Type Missing in Description	Cell Type Missing	Cell Type Available in Description	Cell Type Completely Missing
SARS-CoV-2	18,190	21	18,190	2	7	0	7
MERS-CoV	49	9	49	0	49	49	0
HCoV-229E	164	11	164	7	69	65	5
Dengue	2,685	581	2,685	191	1,682	1,495	187
Yellow Fever	930	66	930	41	169	72	97
Zika	357	91	357	19	334	308	26
West Nile	514	102	514	81	308	148	160

Powassan	24	1	0	0	0	0	0
RSV	2,906	239	2,862	586	608	141	467
HPIV-3	1,632	161	1,566	435	520	96	421
H1N2	61	7	43	0	18	18	0
H7N7	26	7	26	0	18	0	18
Sandfly Fever	24	3	24	0	2	0	2

211

<u>Target based assays</u>. While many of the issues discussed above for phenotypic assays
were not present in the target-based assays, there were some cases that needed further attention.
One example includes 536 entries deposited as compounds tested against "genome polyprotein"
of West Nile or Zika viruses. However, upon closer examination of the ChEMBL records, we have
established that these compounds were actually tested against the NS2B-NS3 Protease, rather than
the entire genome polyprotein.

To summarize this section, when using ChEMBL as a curated¹⁶ source of data on antiviral compounds, we have uncovered multiple special issues with inconsistency or mislabeling (cf. Table 1) of the biological assays data. We have addressed these issues by assigning correct BAO annotation to the data extracted from ChEMBL to enable the creation of a refined specialized SMACC database of antiviral compounds tested in diverse antiviral assays.

- 223
- 224 225

Development of the curated data entries in the SMACC database

Our extensive curation efforts following the protocols described in Methods led to the removal of compounds from each viral family in the phenotypic data set (**Figure 1**). From the initial compound list through the normalization of specific chemotypes, we removed the ~ 26 % of compounds (n=4801) from *Coronaviridae* family, 25% (n=6) from the *Phenuiviridae*, $\sim 21\%$

230 (n=594) from *Flaviviridae* and ~8% (n=7) from *Orthomyxoviridae* and ~8% (n=350) from

231 *Paramyxoviridae*.

	Coronaviridae	Orthomyxoviridae	Paramyxoviridae	Phenuiviridae	Flaviviridae	
	SARS-CoV-2, MERS-CoV, HCoV-229E	H1N2 H7N7	RSV HPIV-3	Sandfly	Dengue Zika Yellow Fever Powassan West Nile	Total
INITIAL COMPOUND LIST	18,190	81	4,363	24	4,492	27,150
Removal of inconsistent data Removal of mixtures/inorganics Cleaning/removal of salts	13,389	74	4,013	18	3,898	21,392
Normalization of specific chemotypes	13,389	74	4,013	18	3,898	21,392

Figure 1. The effect of phenotypic assay data curation on reducing the resulting dataset sizes.
For the target-based curation, there were less compounds removed due to inconsistent data
and molecular cleaning (Figure 2). Here the family where the largest number of compounds were
removed was also the *Coronaviridae* which was less than 1% of all compounds (n=13).
Interestingly, our annotation efforts followed a similar pattern, where the target-based data were
deposited with more annotations, therefore requiring less curation than the phenotypic data.

	Coronaviridae	Orthomyxoviridae	Paramyxoviridae	Hantaviridae	Flaviviridae	
	SARS-CoV-2, MERS-CoV, HCoV-229E	H7N7	RSV HPIV-3	Sin Nombre	Dengue Zika West Nile	Total
INITIAL COMPOUND LIST	8,883	26	150	130	1,949	11,138
Removal of inconsistent data <u>Removal of</u> mixtures/inorganics Cleaning/removal of salts	8,870	26	150	130	1,947	11,123
Normalization of	8,870	26	150	130	1,947	11,123

242

Figure 2. The effect of target-based assay data curation on reducing the resulting dataset sizes.

Note that at this step of data curation we intentionally kept duplicative compound records reflecting our objective to check whether the same compound showed similar activity against different viruses (i.e., had a potential to be a broad-spectrum agent). However, such chemically duplicative entries have been annotated in SMACC to facilitate their removal prior to the development of assay-specific QSAR models by the users of SMACC.

249

250 Curated Phenotypic Data

251

Curated phenotypic testing entries in our database included assay data for 13 viruses in 5
viral families: *Coronaviridae* (SARS-CoV-2, MERS-CoV, HCoV-229E), *Orthomyxoviridae*(H1N2, H7N7), *Paramyxoviridae* (RSV, HPIV-3), *Phenuiviridae* (Sandfly Fever), and *Flaviviridae* (Dengue, Zika, Yellow Fever, Powassan, West Nile).

256

Distribution of compound activity

The heatmap presented in **Figure 3** depicts the activity spectrum of all compounds tested in phenotypic assays for the viruses in our database. It is evident that many compounds were either

inactive (80.6%) or untested. In contrast, the number of actives constituted 15.6% of the total
number of entries, and the fraction of "true actives" with no conflicting assay results was just
6.48% (1,387 compounds). Unsurprisingly, the virus with the largest number of tested compounds
was SARS-CoV-2 due to the many studies caused by the current pandemic, encompassing 61.6%
of our phenotypic assay entries. Despite the enormous testing efforts, 94.76% of compounds were
reported as inactive. Each virus had more inactive compounds in the dataset except Dengue
(Figure 3).

Figure 3. Activity heat map for 21,392 compounds tested in phenotypic assays for the 13 viruses

270 Analysis of Cell Types

- The 21,392 compounds integrated into our database were tested in 53 unique cell types.
- 272 The most common cell types were Vero C1008 (37.6% of entries), Caco-2 (24.2%), Vero (9.1%),
- Huh-7 (4.6%), and Hep-2 (3.8%). The high propensity of testing in VeroC1008 cells is explained
- by a single assay screening against SARS-CoV-2 (8043 entries). Other cell types, such as Caco-2,
- 275 were used for testing in multiple viruses and amongst various assays. Interestingly, Dengue virus
- had the greatest number of cell types tested (26), followed by RSV (17), and Zika virus (10)
- 277 (Figure 4). Conversely, Vero cells were tested in the largest number of viruses (9) across 1,956
- entries, followed by A549 (7 viruses), and Huh-7 cells (6 viruses).

279

- 281
- 282

Stratifying compounds by assay type 283

284 We identified 27 compounds tested in the largest number of phenotypic assays in our 285 database and further examined the effect of cell type on the resulting activity determination (Table

286 S2). As expected, there were some inconsistencies in the activities determined when stratifying 287 compounds by the virus they were tested against and the cell type for that virus and then comparing 288 their activities. The data for these 27 compounds have been recorded in a matrix with 27 respective 289 columns and 146 rows (Table S2). Unknown cell types and inconclusive activity results were 290 ignored. We identified 26 assay results when a compound was tested in the same virus and cell 291 line but showed conflicting results. In another 19 cases a compound was tested against the same 292 virus but in different cell lines, and had different results. In contrast, for 10 cases, we observed 293 completely consistent activity testing results (in 2+ entries) for a compound assayed in the same 294 virus in the same cell line. We also observed 22 cases of consistent activity when compounds were 295 tested for the same virus but in multiple cell lines. There were also many cases reporting a 296 compound tested for a single virus and multiple cell types. In this case, we only analyzed whether 297 or not the activities reported for each cell line were consistent. In summary, we observe that the choice of cell type can influence the outcome of the assay, an observation reported previously ¹⁷ 298 299 and thus, the annotation of a compound as active or inactive against any virus should be always 300 reported strictly in the context of the specific underlying assay. Consequently, integration of data 301 across multiple cell line, for instance, to increase the size of the data for QSAR model 302 development, should be done with care, i.e., only when the evidence exists that compounds show 303 similar activities when tested in different cell lines.

- 304
- 305

Identifying compounds active in multiple assays.

306 Our efforts to extract and consolidate data on compounds tested in antiviral assays, as 307 reported in ChEMBL, revealed that identifying truly active compounds is complex and requires 308 careful curation of the available assay results. We first selected a subset of compounds from our

309 database that were tested in assays against two or more viruses. As we described in Methods, to 310 analyze the multi-viral activity we annotated each compound with one of three possible activity 311 calls. A compound was considered active if it was recorded as active when tested in all assays, 312 inactive if it was inactive in all assays, and considered inconclusive if it was active in some assays 313 and inactive in others (Table 1), if the assay result was reported with an ambiguous operator (>or 314 <), or if the compounds activity was not successfully determined by the assay. From this, we 315 created an intermediate table where each compound occupied one row, and the columns contained 316 concatenated lists of every virus the compound was reported active or inactive against. We 317 systematically analyzed this matrix to identify compounds that we considered to be true actives, 318 i.e., the compound was reported active in all assays in which it was tested.

319 We report the eight most promising compounds resulting from this analysis in **Table 3**. 320 Here our top compound is CHEMBL4437334 with activity against Dengue, West Nile, Yellow 321 Fever, and Zika. It is a research compound not yet progressed into any clinical trial, which is true 322 for many compounds of this list including CHEMBL4454780 (active against RSV, MERS-CoV, 323 Dengue, and Zika), CHEMBL2016757 (active against RSV, HPIV-3, and Dengue), 324 CHEMBL4544911 and CHEMBL4562509 (active against Dengue, West Nile, and Yellow Fever). 325 Three named compounds were identified from our search: 6-azauridine (active against RSV, West 326 Nile, Dengue); amodiaquine (active against SARS-CoV-2, Dengue, Zika), which is an approved 327 drug for malaria; and brequinar (active against Dengue, West Nile, and Yellow Fever), which is currently in Phase I clinical trials for treatment of acute myeloid leukemia.¹⁸⁻²⁰ 328

Interestingly, brequinar also recently underwent phase II clinical trials against SARS-CoV-2.²¹ While the clinical trial was not successful using brequinar alone, research on brequinar drug combinations have found this drug highly effective in combination with remdesivir or

molnupiravir.²² Research suggests that brequinar's antiviral activity against SARS-CoV-2 is 332 333 through inhibition of the host cell dihydroorotate dehydrogenase (DHODH) rather than being a 334 direct acting antiviral. The combination of a nucleobase antiviral and DHODH, or other compound 335 that impacts de novo nucleotide synthesis would in effect increase the nucleobase antiviral cellular 336 concentration thereby increasing the rate of incorporation into the viral synthesized RNA, in 337 theory. This approach has been shown to be effective against multiple viruses in vitro, for 338 example, brequinar has been shown to inhibit dengue, enterovirus, and Ebola viruses through this same, host-targeted mechanism.^{23–25} Given the reported activity of brequinar against three 339 340 *flaviviruses* (Dengue, West Nile, Yellow Fever) in phenotypic assays, we hypothesize the assays were detecting the human dihydroorotate dehydrogenase inhibition, rather than inhibition of a viral 341 342 target. As such, a future release of SMACC will include an analysis of all phenotypic assays, host-343 target assays, and the overlap between the phenotypic assays and the host-target assays. It is our 344 hope this analysis will help develop hypotheses for, and identify, potential host-targeting broad-345 spectrum antiviral drugs.

Table 3. Example of compounds active in multiple viruses.

ChEMBL ID	Structure	Active against	Inactive against
CHEMBL4437334		Dengue, West Nile, Yellow Fever, Zika	
CHEMBL4454780	H ₃ C	RSV, MERS-CoV, Dengue, Zika	

There were 55 more compounds active against at least two viruses (**Table S3**). Of these, seven compounds were active against different viral families: three were active against *Paramyxoviridae* (RSV, HPIV-3); two were active against *Coronaviridae* (MERS-CoV, HCoV-229E); and 43 against any two of our *Flaviviridae* viruses (Dengue, Zika, Yellow Fever, Powassan, and West Nile). We also identified 1,324 compounds active against one virus.

354

Cluster analysis of active compounds

355 The structural clustering of all compounds tested in phenotypic cell-based assays revealed ten 356 clusters (Figure 6). The top BSA compounds, CHEMBL4437334 and CHEMBL4454780, active 357 against four different viruses, are in clusters #7 and #5, respectively. The subcluster containing 358 CHEMBL4437334 (cluster #7) has 847 compounds. Among them, some nearest neighbors of 359 CHEMBL4437334 (Figure 7) were active against SARS-CoV-2 and could be further tested 360 against a panel of flaviviruses (Dengue, West Nile, Yellow Fever, and Zika). The subcluster of 361 1,406 CHEMBL4454780 (cluster #5) contains compounds; nearest neighbors of 362 CHEMBL4454780 are presented in Figure 7. Compounds CHEMBL1197690, 363 CHEMBL3581155, and CHEMBL7568 were active against one or two flaviviruses and could be further tested against additional flaviviruses and viruses from other families like RSV and MERS-364 365 CoV. Likewise, CHEMBL4303559 was only tested and active against SARS-CoV-2 and could be 366 tested against members of *Flaviviridae* and other coronaviruses such as MERS-CoV.

369 The colors from the heatmap are based on the Euclidean distances between compounds. Colors

are nearer to dark red indicate a shorter distance between molecules.

374	further tested	against	multiple	viruses	of interest.
		()			

378 Target-Based Data

379 Curated target-based testing entries (11,123) in our database include assay data for ten
380 viruses in five viral families: *Coronaviridae* (SARS-CoV-2, MERS-CoV, HCoV-229E),
381 *Orthomyxoviridae* (H7N7), *Paramyxoviridae* (RSV, HPIV-3), *Phenuiviridae* (Sin Nombre), and
382 *Flaviviridae* (Dengue, Zika, West Nile).

383

384 Activity of Compounds

Using the activity calls based on the assay results as defined in Methods, most compounds (89.8%) 385 386 were inactive (Figure 8). Many compounds inactive against SARS-CoV-2 were tested because of 387 the recent multiple testing campaigns including drug repurposing screenings due to current 388 pandemic. While SARS-CoV-2 was the most tested virus, three flaviviruses were also well 389 represented in the database (Dengue, West Nile, and Zika); however, as the number of compounds 390 tested increased there was a decrease in the fraction of the active compounds for these viruses. 391 Overall, active compounds represented only ~9.9% of our total dataset where 5.78% (644 392 compounds) were "true actives".

393

394

395

Figure 8. Activity heat map for 11,123 compounds tested in target-based assays for the 10 virusesselected for the SMACC database.

400

397

401 Analysis of Targets

The Main Protease (3CLpro) of *Coronaviridae* was, unsurprisingly, the most studied target
(78.8% of the entries), followed by NS2B-NS3 Protease of *Flaviviridae* (16.2%), NS5 of *Flaviviridae* (1.26%), Integrin alpha-V/beta-3 of *Hantaviridae* (1.17%), and Fusion glycoprotein
F0 of *Paramixoviridae* (1.1%). Interestingly, the virus with the greatest number of targets tested
(five) was MERS-CoV and was tested against the spike protein, RDRP, Nucleocapsid protein,
M^{pro}, and PL^{pro}.

408

410 Analysis of Compounds

411 We followed the same approach for analyzing the target-based dataset for BSA activity, as was 412 taken for the phenotypic dataset. In this case, the intermediate table included a row for each 413 compound, and the columns were concatenated lists of every virus and target the compound was 414 reported active or inactive against. Our analysis identified 16 compounds active against two 415 viruses at the protein target level (Table 4). Two of these compounds (CHEMBL4544781 and 416 CHEMBL4522602) were active against targets from two different viral families (Zika's NS5 and 417 MERS-CoV's RDRP), whereas the others were active against two flaviviruses NS2B-NS3 418 Protease. We also identified 628 compounds active against one virus.

419

420 **Table 4.** Compounds active against different viruses in target-based assays.

Compound Name	Structure	Target	Virus
CHEMBL1214186 ^a		NS5	Dengue, Zika
CHEMBL3740277		NS2B-NS3 Protease	Dengue, West Nile
CHEMBL3741422		NS2B-NS3 Protease	Dengue, West Nile
CHEMBL4437334		NS2B-NS3 Protease	Dengue, Zika
CHEMBL4440832		NS2B-NS3 Protease	Dengue, Zika

CHEMBL4474101		NS2B-NS3 Protease	Dengue, West Nile
CHEMBL4522602		NS5, RDRP	Zika, MERS-CoV
CHEMBL4531546		NS2B-NS3 Protease	Dengue, West Nile
CHEMBL4536920		NS2B-NS3 Protease	Dengue, West Nile
CHEMBL4537775		NS5, RDRP	Zika, MERS-CoV
CHEMBL4544781	HO HO HO HO	NS2B-NS3 Protease	Dengue, West Nile
CHEMBL4545026		NS2B-NS3 Protease	Dengue, West Nile
CHEMBL4563372		NS2B-NS3 Protease	Dengue, West Nile
CHEMBL4568434		NS2B-NS3 Protease	Dengue, West Nile
CHEMBL4576745		NS2B-NS3 Protease	Dengue, West Nile

421 ^a Inactive against SARS-CoV-2422

423 Structural clustering of all compounds revealed 11 clusters (Figure 9). 424 CHEMBL4544781 was active against targets from different viral families (NS5 of Zika 425 Virus and RDRP of MERS-CoV) and is in cluster #7 along with 867 other compounds; 426 nearest neighbors of CHEMBL4544781 are presented in Figure 10. CHEMBL1630221 427 was only tested (and active) against the NS5 Polymerase of Zika Virus and could be further tested against other polymerases from other flaviviruses and the RNA-Dependent RNA 428 429 Polymerase (RdRP) of MERS-CoV. Three other nearest neighbors of CHEMBL4544781 were only tested (and active) against SARS-CoV-2 Main Protease (M^{pro}). These 430 431 compounds could be further tested against polymerases of Zika and MERS-CoV.

Figure 9. Clustering analysis of compounds from the target-based assays. The colors from the
heatmap are based on the Euclidean distances between compounds. Colors nearer to dark red
indicate a shorter distance between molecules.

Figure 10. Examples of compounds that could be further tested against different viral targets ofinterest due to their chemical similarity to an active molecule with multiple antiviral activity.

440

441 Concordance between the phenotypic and target-based data

We analyzed the concordance between the 5,934 compounds tested in both phenotypic and 442 443 target-based assays to: (i) expand our list of hits by identifying potentially promising compounds 444 that may not have been tested yet, and (ii) hypothesize the mechanism of actions of compounds 445 active in a virus in a live cell and a complementary viral target. Our systematic analysis of the 446 assay results indicated that 35 compounds were active in at least one phenotypic and one targetbased assay (Table S4, Supplementary Material). In many cases, the active calls were within the 447 448 same viral family. For example, CHEMBL4522006 was active against Dengue Virus in a 449 phenotypic assay, and active against the Dengue NS2B-NS3 Protease in a target-based assay. Our data strongly supports the hypothesis that CHEMBL4522006 is active against Dengue virus in the
live cell assay by inhibiting its NS2B-NS3 Protease, which supports the use of the protease assays
for future experimental and computational structure-activity relationship studies. Promising
potential BSA compounds, including CHEMBL4522006, are summarized in Table 5.

In other cases, as we observed for CHEMBL4437334, a compound was active against several viruses of the same family in phenotypic assays (Dengue Virus, West Nile Virus, Yellow Fever Virus, Zika Virus) and only tested and active against a subset of those viruses in the targetbased assays (NS2B-NS3 Protease of Dengue and Zika). In these cases, we could suggest the compound be tested against the same target in the untested yet highly homologous viruses from the same family, using the principle of viral protein conservation.³

There were also instances of compounds, such as CHEMBL267099 (tubercidin), reported active in a phenotypic assay for a virus in one family (HPIV-3) and active in a target-based assay of another (Zika NS5 protein). Cases like these are particularly interesting, because after making this connection one can suggest testing this compound in various HPIV-3 targets, live cell Zika virus, as well as the other highly homologous *Flaviviridae* members (West Nile, Yellow Fever, Dengue) in live cell assay and against the NS5 protein.

466 Our concordance analysis also revealed 52 compounds active in at least one phenotypic 467 assay and inactive in a (supposedly, relevant) target-based assay (**Table S5**, Supplementary 468 Material). In this case, we recommend compounds be tested in additional target-based assays of 469 the same viral family; it is also possible that the activity of such compounds inactive in viral 470 targeting assays but active in phenotypic assays is actually due to their host-directed mechanism 471 of action. There were also 191 compounds inactive in a phenotypic assay and active in at least one 472 target-based assay (**Table S6**, Supplementary Material). Mapping the virus and viral family of the

473 phenotypic result to the active result of the target helped identify potential new viral families for 474 phenotypic testing, as well as highlighted the importance whether the cell type used in the 475 phenotypic assay appropriately represented the virus and the antiviral result. Of course, due to the 476 proportion of inactive compounds in our dataset, most compounds (5,656) were concordantly 477 reported as inactive in both phenotypic and target-based assays.

479	Table 5.	Selection o	f compour	nds nominate	d for exp	perimental	testing as	potential l	BSA agents

CHEMBL ID	Structure	Target active against	Virus(es) active against in cell- based assays	Suggested target-virus combination for testing	Reasoning for testing
CHEMBL267099	HO. NH2	NS5 (Zika)	HPIV-3	Zika and other flaviviruses (cell-based assays)	Cell-based assays against Zika and other flaviviruses to confirm NS5 inhibition as a possible mechanism of action
	ностон			NS5 homologs in other flaviviruses (target- based)	Active against NS5 of Zika that could be tested against NS5 homologs from other flaviviruses

				A panel of HPIV-3 targets	Explore possible mechanism of action for HPIV-3 inhibition observed in a cell- based assay
CHEMBL4437334		NS2B-NS3 Protease (Dengue, Zika)	Dengue Virus, West Nile Virus, Yellow Fever Virus, Zika Virus	NS2B-NS3 homologs from other flaviviruses (West Nile, Yellow Fever)	Cell-based and target- based assays support the hypothesis of activity against flaviviruses by targeting NS2B-NS3
CHEMBL4522006	F F F F F F F F F F F F F F F F F F F	NS2B-NS3 Protease (Dengue)	Dengue Virus	NS2B-NS3 homologs from other flaviviruses Other flaviviruses in cell-based assays	Cell-based and target- based assays support the hypothesis of activity against flaviviruses by targeting NS2B-NS3
CHEMBL1324		NS2B-NS3 Protease (Dengue)	Dengue Virus	NS2B-NS3 homologs from other flaviviruses Other flaviviruses in cell-based assays	Cell-based and target- based assays support the hypothesis of activity against flaviviruses by targeting NS2B-NS3

CHEMBL3741713	$u_{i} = \begin{pmatrix} e_{i} \\ e_$	NS2B-NS3 Protease (Dengue)	Dengue Virus	NS2B-NS3 homologs from other flaviviruses Other flaviviruses in cell-based assays	Cell-based and target- based assays support the hypothesis of activity against flaviviruses by targeting NS2B-NS3
CHEMBL4440832		NS2B-NS3 Protease (Dengue, Zika)	Dengue Virus	NS2B-NS3 homologs from other flaviviruses Other flaviviruses in cell-based assays	Cell-based and target- based assays support the hypothesis of activity against flaviviruses by targeting NS2B-NS3
CHEMBL4462325		NS2B-NS3 Protease (Zika)	Dengue Virus	NS2B-NS3 homologs from other flaviviruses Other flaviviruses in cell-based assays	Cell-based and target- based assays support the hypothesis of activity against flaviviruses by targeting NS2B-NS3
CHEMBL4583315		NS2B-NS3 Protease (Zika)	Dengue Virus	NS2B-NS3 homologs from other flaviviruses Other flaviviruses in cell-based assays	Cell-based and target- based assays support the hypothesis of activity against flaviviruses by targeting NS2B-NS3

CHEMBL1370977		NS2B-NS3 Protease (Dengue)	Dengue Virus	NS2B-NS3 homologs from other flaviviruses in cell-based assays	Cell-based and target- based assays support the hypothesis of activity against flaviviruses by targeting NS2B-NS3
CHEMBL1458891	HO HO	NS2B-NS3 Protease (Dengue)	Dengue Virus	NS2B-NS3 homologs from other flaviviruses Other flaviviruses in cell-based assavs	Cell-based and target- based assays support the hypothesis of activity against flaviviruses by targeting NS2B-NS3
CHEMBL1980535	$\begin{array}{c} H_{1,C} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	NS2B-NS3 Protease (Dengue)	Dengue Virus	NS2B-NS3 homologs from other flaviviruses Other flaviviruses in cell-based assays	Cell-based and target- based assays support the hypothesis of activity against flaviviruses by targeting NS2B-NS3
CHEMBL3628278	$ \bigcirc \qquad $	NS2B-NS3 Protease (West Nile)	Dengue Virus	NS2B-NS3 homologs from other flaviviruses in cell-based assays	Cell-based and target- based assays support the hypothesis of activity against flaviviruses by targeting NS2B-NS3

CHEMBL3741422	$H_{N} = \int_{H_{N}}^{H_{N}} \int_$	NS2B-NS3 Protease (Dengue, West Nile)	Dengue Virus	NS2B-NS3 homologs from other flaviviruses Other flaviviruses in cell-based assays	Cell-based and target- based assays support the hypothesis of activity against flaviviruses by targeting NS2B-NS3
CHEMBL4446364		NS2B-NS3 Protease (Zika)	Zika Virus	NS2B-NS3 homologs from other flaviviruses Other flaviviruses in cell-based assays	Cell-based and target- based assays support the hypothesis of activity against flaviviruses by targeting NS2B-NS3
CHEMBL4447165	HN HN HN HN HN HN HN HN HN HN HN HN HN H	NS2B-NS3 Protease (Zika)	Zika Virus	NS2B-NS3 homologs from other flaviviruses Other flaviviruses in cell-based assays	Cell-based and target- based assays support the hypothesis of activity against flaviviruses by targeting NS2B-NS3
CHEMBL4447800		NS2B-NS3 Protease (Dengue)	Dengue Virus	NS2B-NS3 homologs from other flaviviruses Other flaviviruses in cell-based assays	Cell-based and target- based assays support the hypothesis of activity against flaviviruses by targeting NS2B-NS3

CHEMBL4448497	HN H ₂ N H ₃ N H ₃ N H ₁ N	NS2B-NS3 Protease (Zika)	Zika Virus	NS2B-NS3 homologs from other flaviviruses in cell-based assays	Cell-based and target- based assays support the hypothesis of activity against flaviviruses by targeting NS2B-NS3
CHEMBL4457232		NS2B-NS3 Protease (Zika)	Zika Virus	NS2B-NS3 homologs from other flaviviruses Other flaviviruses in cell-based assays	Cell-based and target- based assays support the hypothesis of activity against flaviviruses by targeting NS2B-NS3
CHEMBL4532866	HN H ₂ N H ₂ N HN H ₂ N H ₃ H ₃ H ₃ H ₃ H ₃ H ₃ H ₃ H ₃	NS2B-NS3 Protease (Zika)	Zika Virus	NS2B-NS3 homologs from other flaviviruses Other flaviviruses in cell-based assays	Cell-based and target- based assays support the hypothesis of activity against flaviviruses by targeting NS2B-NS3
CHEMBL4576745	() = ()	NS2B-NS3 Protease (Dengue, West Nile)	Dengue Virus	NS2B-NS3 homologs from other flaviviruses Other flaviviruses in cell-based assays	Cell-based and target- based assays support the hypothesis of activity against flaviviruses by targeting NS2B-NS3

CHEMBL522355		NS2B-NS3 Protease (West Nile)	West Nile Virus	NS2B-NS3 homologs from other flaviviruses in cell-based assays	Cell-based and target- based assays support the hypothesis of activity against flaviviruses by targeting NS2B-NS3
CHEMBL4454990		NS5 (Zika)	Dengue Virus, Zika Virus	NS5 homologs from other flaviviruses Other flaviviruses in cell-based assays	Cell-based and target- based assays support the hypothesis of activity against flaviviruses by targeting NS5
CHEMBL4439416		NS5 (Zika)	Zika Virus	NS5 homologs from other flaviviruses Other flaviviruses in cell-based assays	Cell-based and target- based assays support the hypothesis of activity against flaviviruses by targeting
CHEMBL82242	HO HO HO HO HO HO HO HO HO HO HO HO HO H	NS5 (Dengue)	Dengue Virus	NS5 homologs from other flaviviruses Other flaviviruses in cell-based assays	Cell-based and target- based assays support the hypothesis of activity against flaviviruses by targeting NS5
CHEMBL269277		NS5 (Dengue)	Dengue Virus	NS5 homologs from other flaviviruses	Cell-based and target- based assays support the hypothesis

				Other flaviviruses in cell-based assays	of activity against flaviviruses by targeting NS5
CHEMBL4449109		NS5 (Dengue)	Dengue Virus	NS5 homologs from other flaviviruses Other flaviviruses in cell-based assays	Cell-based and target- based assays support the hypothesis of activity against flaviviruses by targeting NS5
CHEMBL4526128	$H_{0} \xrightarrow{0} (f_{0} + f_{0}) \xrightarrow$	NS5 (Dengue)	Dengue Virus	NS5 homologs from other flaviviruses Other flaviviruses in cell-based assays	Cell-based and target- based assays support the hypothesis of activity against flaviviruses by targeting NS5
CHEMBL4587069		NS5 (Dengue)	Dengue Virus	NS5 homologs from other flaviviruses Other flaviviruses in cell-based assays	Cell-based and target- based assays support the hypothesis of activity against flaviviruses by targeting NS5

480

481

482 Integrated, searchable SMACC Database

We have described above various protocols for curating data of interest to the antiviral drug discovery from ChEMBL database. The resulting SMACC database currently exists as a searchable Excel spreadsheet that we include for public with this paper. This spreadsheet allows multiple approaches to identify compounds of interest. The approach described here in Methods, i.e., removing compounds with conflicting activity calls from our final BSA activity analysis, was stringent and resulted in a concise list of potential BSA compounds that we had the highest confidence in. While the filtering criteria described above was appropriate to achieve our project's objective, we acknowledge the value of extracting different subsets of the SMACC database using different criteria depending on the study objectives, and SMACC database (even in the form of an Excel spreadsheet) enables multiple analyses.

493 For instance, in contrast with the approach described above, another method for identifying 494 BSA compounds would be to consider all compounds with at least one active assay result against 495 two or more viruses. This would increase the number of compounds considered in the analysis 496 because inconclusive entries would not be removed as described above. To do this, we created a 497 subset of the SMACC database with all compound entries reported as active in phenotypic assays, 498 enumerated the number of viruses the compounds were reported active against, and removed all 499 compounds reported active against only one virus. This approach resulted in 21 new hit compounds 500 identified from phenotypic assays (**Table S7**) and 10 new hit compounds from target-target based 501 assays that were not identified in the previous approach (**Table S8**).

As mentioned above, there are currently only 90 antiviral drugs approved for treating nine human infectious diseases.⁴ We utilized SMACCs filtering tools to enumerate their presence in our database. Currently, SMACC includes chemogenomics data for RSV and two strains of human influenza virus (H1N2 and H7N7), which covers only two of nine diseases with approved drugs. Despite this, we identified 53 of 90 approved drugs in our phenotypic dataset and 57 of 90 in our target-based dataset (**Table S9**). The compounds with reported active assay results are summarized in **Table 6**. Clearly, these drugs have broader activity than they are approved for. Further

- 509 experimental testing based on hypotheses from this table will be extremely valuable to
- 510 understanding their broad-spectrum potential.
- 511
- **Table 6**. Approved drugs with active assay results found in SMACC.

		Compound In	formation		Active Assay Re	sults in SMACC
Drug name	Brand name	Approved clinical use	Inhibitory MOA	ChEMBL ID	Phenotypic Assay	Target-Based Assay
Simeprevir	Olysio®	HCV	NS3/NS4B Protease	CHEMBL501849		H7N7 Matrix Protein 2
Asunaprevir	Sunvepra®	HCV	Protease	CHEMBL2105735		H7N7 Matrix Protein 2
Sofosbuvir	Sovaldi®	HCV	NS5B	CHEMBL1259059	Dengue Virus	
Ribavirin	Copegus®	HCV, RSV, fever	RdRp	CHEMBL1643	HPIV-3, Sandfly Fever, Dengue Virus, Yellow Fever Virus, RSV	
Lopinavir	Kaletra®	HIV	Protease	CHEMBL729	SARS-CoV-2	
Nelfinavir	Viracept®	HIV	Protease	CHEMBL584	Dengue Virus	
Raltegravir	Isentress®	HIV	Integrase	CHEMBL254316		H7N7 Matrix Protein 2
Elvitegravir	Vitekta ®	HIV	Integrase	CHEMBL204656		SARS-CoV-2 3CLpro
Atazanavir	Reyataz®	HIV	Protease	CHEMBL1163		SARS-CoV-2 3CLpro
Rilpivirine	Edurant®	HIV-1	Nonnucleoside reverse transcriptase	CHEMBL175691	SARS-CoV-2	- · r
Podofilox	Condylox®	HPV- related diseases	Cytotoxicity/ cell division	CHEMBL61	SARS-CoV-2	
Trifluridine	Viroptic®	HSV	Viral and cellular DNA synthesis	CHEMBL1129	HPIV-3	
Idoxuridine	Dendrid®	HSV-1	Viral and cellular DNA synthesis	CHEMBL788		Zika NS5
Acyclovir	Zovirax ®	HSV, VZV	Viral DNA polymerase	CHEMBL184		H7N7 Neuraminidase
Zanamivir	Relenza®	Influenza A and B	Neuraminidase	CHEMBL222813	H7N7	

⁵¹³

514 Our pilot-SMACC database is currently available at <u>https://smacc.mml.unc.edu</u>. Users will 515 find freely downloadable excel sheets containing our phenotypic, target-based, and overlapping 516 datasets including tabs containing subsets of active compounds selected from the approach described in Methods. These excel sheets were designed so that users could easily extract subsets of the database using various filtering options. These filters include molecule (ChEMBL ID, smiles, InChiKey), virus, cell or target type, activity (activity call, raw assay result), and assay type. We acknowledge the widely varied objectives across antiviral research and emphasize the versatility of this database.

522 Discussion

523 We have collected, curated, and integrated all the chemogenomic data available for a subset 524 of viruses of interest in ChEMBL to identify BSA compounds. We created a pilot version of the 525 SMACC database based on ChEMBL data. This initial data collection and curation effort can guide 526 future data collection to increase the clarity and accessibility of relevant information to a broader 527 scientific community include additional data on other emerging viruses. SMACC database adds to 528 a variety of other important datasets and databases such as SARS-CoV-2 Data Resource by 529 PubMed (https://www.ncbi.nlm.nih.gov/sars-cov-2/), a comprehensive COVID-19 Data Portal by 530 European Bioinformatics Institute (EBI) (https://www.covid19dataportal.org), a collection of over 531 20,000 screening results for compounds tested against SARS-CoV-2 in a special release of the 532 ChEMBL database (https://www.ebi.ac.uk/chembl/), a portal of target specific and phenotypic screening results of chemical libraries in SARS-CoV-2 established by NCATS at the NIH²⁶ 533 534 (https://opendata.ncats.nih.gov/covid19/index.html), and COVID-specific tools and collections 535 like CORD-19 (https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge), COKE,²⁷ and COVID-KOP.²⁸ These collections along with several research initiatives such as the 536 Antiviral Program for Pandemics (https://www.niaid.nih.gov/research/antivirals) and the Rapidly 537 538 Emerging Antiviral Drug Development Initiative (READDI; https://www.readdi.org) pushed the 539 scientific community to work in an 'open science' format.

540 Efforts similar to ours have been made to collect antiviral data prior to the SARS-CoV-2 outbreak. There is a collection of antiviral activity data from ChEMBL with enhanced taxonomy 541 annotations as a tool for studying the antiviral chemical space that the authors dubbed "Viral 542 ChEMBL".² Viral ChEMBL was compiled using information collected on compounds related to 543 544 many virus types (human, animal, plant) and additional curation was performed to the data by 545 mapping lists for assay and target organism data and using a dictionary of virus-related terms. 546 While this collection is quite valuable to the field, it is based on an old version of ChEMBL20 547 (released 2015, current release is ChEMBL29) and some data are not relevant to human disease. 548 Thus, our database was collected and manually curated to provide a structured, annotated 549 repository of all data available in the most current version of ChEMBL for viruses that hold the 550 greatest risk for human contraction and pandemic potential.

The SMACC database also has the potential to guide more informed drug repurposing efforts, which was a popular strategy employed during the first year of the SARS-CoV-2 pandemic. Repurposing FDA approved drugs ²⁹ and their combinations ³⁰ quickly provided options for clinical use without the need to undergo extensive toxicological testing. For instance, we have identified anticancer drug brequinar as a potential antiviral agent (cf. Table 3), and the analysis of additional bioactivities, including those against host targets, may reveal novel interesting compounds.

Beyond drug repurposing, another intuitive approach used in the most recent SARS-CoV-2 pandemic to identify BSA drugs across the coronaviruses was through identifying proteome conservation, which was studied by Schapira et al.³¹ as well as our group.³ Schapira et al. analyzed the conservation of all available PDB structures of α- and β-coronaviruses, as well as samples from patients with SARS-CoV-2 by mapping druggable binding pockets onto experimental structures

of SARS-CoV-2 proteins. Our work complemented that of Schapira et al.,³¹ by exploring the idea 563 564 that similarities between homologous coronaviral proteins could be exploited for target selection 565 and the development of broad-spectrum anti-coronaviral compounds. Putting that idea into the 566 context of potential broad-spectrum inhibitors of conserved targets, we identified drugs from 567 existing literature that inhibit Mpro, RdRp, PLpro, and nsp10-nsp16, carefully collected and 568 analyzed all known experimental data on their antiviral activity and validated our hypothesis by 569 estimating their potential as broad-spectrum drugs. These compounds are discussed extensively 570 elsewhere and are naturally included in the SMACC database. Thus, we feel exploring the 571 conservation between homologous coronaviral proteins is an extremely valuable strategy for target 572 selection and could assist the development of BSA compounds.

573 With viral protein conservation as a tool for identifying BSAs, one wonders if there may 574 be a link between protein conservation and ligand promiscuity. While in theory the framework of 575 our database would easily allow for this analysis, the unfortunate truth is that the data are not 576 available, as our collection of target-based data was already far more limited than our phenotypic 577 set. Further, it is no secret that merely collecting such data from available data sources can be 578 misleading. Errors described above depict the challenges we faced in curation and collection; for 579 example, a user looking for compounds active against NS2B-NS2 Protease would not have found 580 results due to the target being annotated generally as "genome polyprotein." We hope that our 581 systematic analysis and enumeration of annotation deficiencies and bioactivity data curation 582 protocols could help other researchers interested in expanding our collection or creating their own 583 specialized collections. Most importantly, our efforts both identified several BSAs discovered by 584 chance without deliberate focused efforts (cf. Tables 3-4) as well as nominated several compounds 585 for additional testing (cf. Table 5). As discussed above, the SMACC database included with this

586 paper, enables user-defined filtering of the data to support the generation of specialized subsets. In 587 summary, we posit that this study provides strong motivation for continued investments into 588 research targeting the discovery and development of novel BSA agents.

589

590 Conclusions

591

We have developed a pilot version of the SMACC (Small Molecule Antiviral Compound 592 Collection) database containing over 32,500 entries for 13 emerging viruses. We followed the 593 594 following steps to create SMACC: (i) identification, collection, and curation of all chemical 595 bioactivity data available in ChEMBL for 13 emerging viruses holding the greatest potential threat 596 to global human health; (ii) identification and resolution of the data availability, reproducibility 597 and quality challenges; (iii) integration of curated and carefully annotated data on compounds 598 tested in both phenotypic (21,392 entries) and target-based (11,123 entries) assays for these 599 viruses; and (iv) identification of chemicals showing high potential for BSA activity. Specifically, 600 we identified eight compounds active against 3-4 viruses from the phenotypic data, 16 compounds 601 active against two viruses from the target-based data, and 35 compounds active in at least one 602 phenotypic and one target-based assay. Duplicates (phenotypic and overlap sets) and singletons 603 (all sets) were also identified and annotated. While the pilot version of SMACC has integrated all 604 chemogenomic data available in ChEMBL for these viruses, there was a large degree of sparsity 605 (93%) within the integrated data matrix. Many viruses were understudied and thus, important 606 results may be obtained by targeted testing of compounds included in SMACC against targets 607 other than those against which they were tested. In fact, we have suggested several such targeted 608 testing experiments in this paper (cf. Table 5).

609 Our analysis indicates that not many BSAs have emerged from previous disconcerted 610 studies and that special, focused efforts must be established going forward. The SMACC database

611	built in this study may serve as a reference for virologists and medicinal chemists working on the
612	development of BSA agents in preparation for future viral outbreaks. The SMACC database is
613	publicly available in the form of searchable Excel spreadsheet at <u>https://smacc.mml.unc.edu</u> .
614	
615	Conflict of interest
616	AT and ENM are co-founders of Predictive, LLC, which develops computational methodologies
617	and software for toxicity prediction. All other authors declare they have nothing to disclose.
618	
619	Acknowledgement
620	Authors from UNC-Chapel Hill were supported by National Institutes of Health (Grants
621	U19AI171292 and R01GM140154). This research was supported by the Intramural Research
622	Program of the National Center for Advancing Translational Sciences (NCATS), National
623	Institutes of Health (NIH).
624	
625 626 627	References
628	1. Bloom, D. E., Black, S. & Rappuoli, R. Emerging infectious diseases: A proactive
629	approach. Proc Natl Acad Sci U S A 114, 4055–4059 (2017).
630 621	2. Nikitina, A. A., Orlov, A. A., Kozlovskaya, L. I., Palyulin, V. A. & Osolodkin, D. I. Enhanced toxonomy ennotation of entiviral activity data from ChEMPL Database 2010
632	Eminanced taxonomy annotation of antivital activity data from Chewibe. Database 2019, $1-18$ (2019)
633	3. Melo-Filho, C. C. <i>et al.</i> Conserved coronavirus proteins as targets of broad-spectrum
634	antivirals. Antiviral Research 204, 105360 (2022).
635	4. Erik, D. C. & Guangdi, L. Approved Antiviral Drugs over the Past 50 Years. <i>Clinical</i>
636	Microbiology Reviews 29 , 695–747 (2016).
637	5. Bobrowski, T. <i>et al.</i> Learning from history: do not flatten the curve of antiviral research!
638	Drug Discovery Today 00 , 1–10 (2020).
639 640	o. Uwen, D. K. <i>et al.</i> An oral SAK5-COV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19 Science (1070) 374 1586 1593 (2021)
641	 Mokili, J. L., Rohwer, F. & Dutilh, B. E. Metagenomics and future perspectives in virus

642 discovery. Current Opinion in Virology 2, 63–77 (2012).

643 644	8.	Gaulton, A. <i>et al.</i> The ChEMBL database in 2017. <i>Nucleic Acids Res</i> 45 , D945–D954 (2017)
645	9	Fourches D. Muratov F & Tropsha A. Trust but verify: on the importance of chemical
646).	structure curation in cheminformatics and QSAR modeling research. J Chem Inf Model
647		50 , 1189–204 (2010).
648	10.	Fourches, D., Muratov, E. & Tropsha, A. Trust, but Verify II: A Practical Guide to
649		Chemogenomics Data Curation. Journal of Chemical Information and Modeling 56,
650		1243–1252 (2016).
651	11.	Fourches, D., Muratov, E. & Tropsha, A. Curation of chemogenomics data. <i>Nature</i>
652		Chemical Biology 11, 535–535 (2015).
653	12.	Berthold, M. R. <i>et al.</i> KNIME: The Konstanz Information Miner. in <i>Studies in</i>
654		Classification Data Analysis and Knowledge Organization (GfKL 2007) (Springer
655		2007)
656	13	The BioAssay Ontology (BAO) http://bioassayontology.org/ (2022)
657	1 <i>3</i> . 1 <i>4</i>	Panadatos G Gaulton A Hersey A & Overington I P Activity assay and target data
658	17,	curation and quality in the ChEMBI database Journal of Computer-Aided Molecular
650		Design 20, 885, 896 (2015)
660	15	ChEMBL Compound Curation Pipeline, http://chembl.blogspot.com/2020/02/chembl_
661	15.	compound curation nipeline html
662	16	Dependence G Gaulton A Herson A & Overington I D Activity assessed and target data
662	10.	apadatos, O., Odutton, A., Hersey, A. & Overnigton, J. T. Activity, assay and target data ourstion and quality in the ChEMPI database. <i>Journal of Computer Aided Molecular</i>
664		Design 20, 885, 806 (2015)
665	17	He X at al Generation of SARS-CoV-2 reporter replicon for high-throughput antiviral
666	17.	screening and testing Proceedings of the National Academy of Sciences 118
667		$_{\circ}$ 2025866118 (2021)
668	18	Park L-G <i>et al.</i> Identification and Characterization of Novel Compounds with Broad-
660	10.	Spectrum Antiviral Activity against Influenza A and P. Viruses, Journal of Viraleau 04
670		(2020)
671	10	(2020). Andersen P. I. at al. Novel Antiviral Activities of Obstoclay Emetine Niclosamide
672	17.	Brequinar and Homoharringtonine Viruses 2010 Vol 11 Page 064 11 064 (2010)
672	20	Li S fang at al. Antiviral activity of brequinar against foot and mouth disease virus
674	20.	infection in vitro and in vivo <i>Riomedicing & Pharmacotherany</i> 116 108082 (2010)
675	21	CRISIS2: A Phase 2 Study of the Safety and Antiviral Activity of Brequinar in Non-
676	21.	hospitalized Pts With COVID-19 - Study Results - Clinical Trials gov
677		https://www.alinicaltrials.gov/ct2/show/results/NCT045750389view_results (2022)
670	\mathbf{r}	Sobultz, D. C. et al. Durimiding inhibitors supergize with puglogside analogues to block
670	<i>LL</i> .	SADS CoV 2 Nature 2022 604.7004 604 124 140 (2022)
620	22	Wang O. V. at al. Inhibition of Dangua Virus through Suppression of Host Dyrimidina
000 601	23.	Piceunthesis Lournal of Vincloss 95 , 6549, 6556 (2011)
601	24	Eu H. Zhang, Z. Dai, V. Liu, S. & Eu E. Proquinar inhibits anterovirus rankiastion by
082	24.	Fu, H., Zhang, Z., Dai, T., Liu, S. & Fu, E. Diequinar initions enterovirus replication by
003 601		Possarch 12, 8247 (2020)
004	25	Research 12, 024/ (2020).
005 606	23.	Lumra, r. <i>et al.</i> Innibiting pyrimaine diosynthesis impairs Edola virus replication through depletion of publication and activation of innote impune responses. Auticity 1
		Dependent of nucleoside pools and activation of innate infimune responses. Antiviral
687		Kesearch 130, 288–302 (2018).

- Brimacombe, K. R. *et al.* An OpenData portal to share COVID-19 drug repurposing data
 in real time. *bioRxiv* (2020) doi:10.1101/2020.06.04.135046.
- Korn, D. *et al.* COVID-19 Knowledge Extractor (COKE): A Tool and a Web Portal to
 Extract Drug Target Protein Associations from the CORD-19 Corpus of Scientific
 Publications on COVID-19. (2020) doi:10.26434/CHEMRXIV.13289222.V1.
- Korn, D. *et al.* COVID-KOP: integrating emerging COVID-19 data with the ROBOKOP database. *Bioinformatics* 37, 586–587 (2021).
- Alves, V. M. *et al.* QSAR Modeling of SARS-CoV Mpro Inhibitors Identifies Sufugolix,
 Cenicriviroc, Proglumetacin, and other Drugs as Candidates for Repurposing against
 SARS-CoV-2. *Molecular Informatics* 40, 2000113 (2021).
- Bobrowski, T. *et al.* Synergistic and Antagonistic Drug Combinations against SARSCoV-2. *Molecular Therapy* 29, 873–885 (2021).
- Yazdani, S. *et al.* Genetic Variability of the SARS-CoV-2 Pocketome. *Journal of Proteome Research* 20, 4215 (2021).