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Abstract

Medical image processing has become a major player in the world of automatic tumour

region detection and is tantamount to the incipient stages of computer aided design.

Saliency detection is a crucial application of medical image processing, and serves in its

potential aid to medical practitioners by making the affected area stand out in the foreground

from the rest of the background image. The algorithm developed here is a new approach to

the detection of saliency in a three dimensional multi channel MR image sequence for the

glioblastoma multiforme (a form of malignant brain tumour). First we enhance the three

channels, FLAIR (Fluid Attenuated Inversion Recovery), T2 and T1C (contrast enhanced

with gadolinium) to generate a pseudo coloured RGB image. This is then converted to the

CIE L*a*b* color space. Processing on cubes of sizes k = 4, 8, 16, the L*a*b* 3D image is

then compressed into volumetric units; each representing the neighbourhood information of

the surrounding 64 voxels for k = 4, 512 voxels for k = 8 and 4096 voxels for k = 16, respec-

tively. The spatial distance of these voxels are then compared along the three major axes to

generate the novel 3D saliency map of a 3D image, which unambiguously highlights the

tumour region. The algorithm operates along the three major axes to maximise the computa-

tion efficiency while minimising loss of valuable 3D information. Thus the 3D multichannel

MR image saliency detection algorithm is useful in generating a uniform and logistically cor-

rect 3D saliency map with pragmatic applicability in Computer Aided Detection (CADe).

Assignment of uniform importance to all three axes proves to be an important factor in volu-

metric processing, which helps in noise reduction and reduces the possibility of compromis-

ing essential information. The effectiveness of the algorithm was evaluated over the BRATS

MICCAI 2015 dataset having 274 glioma cases, consisting both of high grade and low grade

GBM. The results were compared with that of the 2D saliency detection algorithm taken

over the entire sequence of brain data. For all comparisons, the Area Under the receiver

operator characteristic (ROC) Curve (AUC) has been found to be more than 0.99 ± 0.01

over various tumour types, structures and locations.
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Introduction

The large size of medical image data, the complexity of Features Of Interest (FOIs), and the

necessity to process these on time, both accurately and efficiently, are making the job of doc-

tors and radiologists increasingly difficult. Therefore, it has became essential to develop auto-

mated delineation of Regions Of Interest (ROIs) and Volumes Of Interest (VOIs) to assist and

speedup medical image understanding. Over the last decade cancer has become the deadliest

killer worldwide [1]. By the time physical manifestations become evident, often metastasis has

set in. This results in failure of local tumor control and poor patient prognosis. Radio-imaging,

like magnetic resonance imaging (MRI), computed tomography (CT), positron emission

tomography (PET), etc., constitutes one of the best noninvasive approaches for detection, diag-

nosis, treatment and prognosis of cancer. Particularly, the integration of diverse multimodal

information in a quantitative manner provides specific clinical solutions for accurately esti-

mating patient outcome [2].

Among different cancerous tumours of the brain, Glioblastoma multiforme (GBM) remains

the most common and lethal form of primary tumor in adults and has poor prognosis. The

treatment and diagnosis of GBM is guided by histopathology and imaging findings [3].

Repeated tumor biopsies in the brain is a very challenging problem. Therefore, noninvasive

methods like imaging hold immense promise for assessing the state of the tumor. The high

spatial resolution of MRI provides minute details of abnormalities, in terms of both shape and

volume, in brain tumors. Due to its superior contrast in soft tissue structures, MRIs are rou-

tinely used for the diagnosis and characterization of such tumors for disease management. Par-

ticularly, MR imaging is very safe becasue it does not involve any exposure to radiation [1].

Medical experts manually segment different volumes of interest (VOIs) for detection, diag-

nosis and prognosis of tumors. Automated medical image analysis, on the other hand, over-

comes human bias and can handle large volumes of data. Variation in blood flow (perfusion)

within a tumor causes variation in imaging features like necrosis and contrast. Regions of

tumor that are poorly perfused on contrast-enhanced T1C-weighted images may exhibit areas

of low (or high) water content on T2-weighted images and low (or high) diffusion on diffu-

sion-weighted FLAIR (Fluid-Attenuated Inversion Recovery) images [4]. Regions having poor

perfusion and high cell density are of particular clinical interest, because they contain cells

which are likely to be resistant to therapy. This highlights the utility of superimposing multiple

channels of MR imaging, like FLAIR, T2, and contrast enhanced T1C components, in identify-

ing and extracting heterogeneous tumor region(s) [Fig 1] [5].

Humans can easily identify the salient (or relevant) parts of an image mainly due to the

attention mechanism of the human visual system. “Visual saliency”, coined by Ullman and

Sha’ashua [6] was extended by Itti et al. [7] towards the development of a computational archi-

tecture. Computational models of saliency take images as input and generate a topographical

map of how salient or attention grabbing each area of the image can be to a human observer.

Such models seem to predict based on certain aspects of human eye movement [8].

Visual saliency can be defined as the outcome of comparing a region with its surrounding,

with respect to unpredictability, contrast and rarity [9, 10]. Saliency detection methods can be

broadly classified into (i) biological [7, 11], (ii) fully computational [12, 13] and (iii) hybrid

[14, 15]. Algorithms employing the bottom-up strategy detect saliency by using low-level fea-

tures, like color, intensity, orientation. Those using the top-down strategy include some learn-

ing from the training data involving the position or shape of a salient object. It has been

observed that often attention is immediately drawn to a salient item, in spite of the existence of

many other items (or distracters), without any need to scan the entire image. A visually salient

region is typically rare in an image, and contains highly discriminating information. This
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concept is, therefore, expected to have a major bearing towards the fast identification of tumor

from a medical image.

Computer-Aided Detection (CADe) can be of help to doctors and radiologists in identifying

abnormalities, which are comparatively rare, in a medical image. The objective of this research

is to improve the present CADe systems by minimizing user interactions, thereby saving pre-

cious time of doctors while reducing possibility of human error. Application of visual saliency

to medical images is being studied in literature. Jampani et al. [16] investigated the usefulness of

three popular computational saliency models, extended from the natural scene framework, to

detect abnormalities in chest X-ray and color retinal images. Visual saliency was also applied

for automated lesions detection [17, 18] from retinal images. Alpert et al. [19] developed a med-

ical saliency model for detecting lesions and microcalcifications in mammograms, MRIs of

brain, and stenoses of angiographic images. However sufficient validation study, with respect to

ground truth, was not provided. Erihov et al. [20] designed a shape asymmetry-based saliency

model for detection of tumors from brain MRI and breast mammograms.

Banerjee et al. [5] designed an algorithm, based on the concept of visual saliency, for localiz-

ing and segmenting 2D GBM tumor regions from multi-sequence MRI. A region was consid-

ered as visually salient (or attention grabbing) depending on its rarity in the image, thereby

signifying the content of some discriminating information (like abnormalities, in the context

of medical imaging). Multi-sequence MR images were integrated to generate pseudo-colored

MRI for efficiently detecting the whole tumor region in 2D. A bottom-up saliency detection

strategy, incorporating spatial distance between image patches, was used to highlight the

salient region(s) in the image. It was established [5] that the performance was better than

related state-of-the-art 2D methodologies in medical imaging. However the applicability of

this model BA being constrained to 2D MR images, one fails to generate accurate and uniform

volumetric saliency for 3D MR images.

Contribution

Multi-level MR images constitute vast 3D data, with each voxel representing distinct physical

measurements of a tissue-dependent characteristic. In the present era of precision medicine,

Fig 1. Four primary MR sequences of a 2D GBM slice highlighting different intra-tumoral structures over (a) T1, (b) T1C, (c) T2, and

(d) FLAIR, along with (e) composite label map. The bottom row depicts the delineated (a) solid core of the tumor (maroon), (b) enhancing

core (green) and necrotic core (yellow), (c-d) whole tumor (blue).

https://doi.org/10.1371/journal.pone.0187209.g001
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where even slight differences in disease manifestation are seen as potential areas for new inter-

vention strategies, one cannot afford to forego any part of this valuable information. Therefore

precise volumetric analysis assumes prime importance; so that accuracy of subsequent seg-

mentation of VOI, extraction of radiomic features, and finally decision-making, get the least

compromised.

Although an extension of BA [5] to 3D may be envisaged by applying the algorithm over a

stack of 2D MR slices, its utility becomes doubtful—particularly, in the case of those slices

towards the outer portion of the VOI. It is because the foreground (ROI) in such slices, encom-

passing the three MR sequences, may be too small as compared to the background region;

with the algorithm generating false positive results. This is evident from the MR images consti-

tuting the starting and ending slices of the 3D stack of brain images, as depicted by the leftmost

and rightmost slices (columns) in Fig 2(a)–2(d). As the saliency is computed based on the

mean color difference between patches, the algorithm erroneously highlights the entire small

foreground region in such 2D slices as tumour [Fig 2(d)].

In order to circumvent such problem of losing valuable information, we propose the novel

3D volumetric approach to saliency detection PR. Working with a single plane, as in the case

of 2D saliency computation, and then juxtaposing them can result in an uneven outline of the

tumour region—due to insufficient utilization of available information. Therefore, by the ter-

minology 3D we intend better usage of available data along all three basic dimensions, viz.

length, breadth and height, corresponding to the major axes. This helps in making a precise

volumetric analysis and generates accurate incorporation of the MR channel information.

The saliency of a region in an image can be defined by how starkly different it is from its

surrounding area. When a 3D image is decomposed to a series of 2D slices, we observe that

employing a single dimensionality of comparison results in the top and bottom portions of the

brain (in slices at either end) to be standing out as salient. This is because, being a small

Fig 2. Saliency maps for High-grade glioma samples. MR slice numbers: 13, 19, 35, 46, 67, 81, 100, 121 (left to right)

by (a) FLAIR, (b) T2, and (c) T1C sequences. (d) Saliency maps generated in 2D [5].

https://doi.org/10.1371/journal.pone.0187209.g002
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portion of the image, it stands out from the rest of the dark background. On the contrary, if we

were to apply a tri (xy, yz, xz) plane comparison on the same 3D image then even if the begin-

ning or ending slices occupied a smaller area of the brain on (say) the xy plane, yet the yz and

xz planes would impart a weighted contribution towards restoring the resultant saliency com-

ponent of the image.

The proposed algorithm PR thus effectively minimizes any incorrect classification of

regions, and prevents erroneous highlighting of small foreground regions. This is illustrated in

Fig 3. Moreover, in order to maximise the accuracy of the salient region, each MR sequence

fed into its respective channel is normalized by its maximum value such that associated hidden

features are made prominent and the boundaries get clarified. Then it is converted into a chan-

nel of bit depth 8, thereby catering to 256 possible thresholds of singular intensity. This helps

in maintaining a common ground for comparison and analysis, while catering to the discern-

ibility between various regions of the tumour along each MR channel by minimizing misclassi-

fication during saliency detection.

The remainder of the article is organized as follows. We describe the data used and the

methodology, while outlining the contribution of the proposed volumetric algorithm for

tumour detection using visual saliency. This is followed by a presentation and analysis of the

experimental results, both qualitatively and quantitatively, to illustrate the improvement of the

3D algorithm with reference to its earlier 2D version.

Materials and methods

Ethics statement

“Brain tumor image data used in this work were obtained from the MICCAI 2015 Challenge

on Multimodal Brain Tumor Segmentation (http://www.imm.dtu.dk/projects/BRATS2015)

organized by B. Menze, A. Jakab, S. Bauer, M. Reyes, M. Prastawa, and K. Van Leemput. The

challenge database contains fully anonymized images from the following institutions: ETH

Zurich, University of Bern, University of Debrecen, and University of Utah. All human sub-

jects data was publicly available de-identified data. Therefore, no Institutional Review Board

approval was required” [21, 22].

Data used

Brain tumor image data used in this work was obtained from the MICCAI 2015 Challenge on

Multimodal Brain Tumor Segmentation organized by B. Menze, A. Jakab, S. Bauer, M. Reyes,

M. Prastawa, and K. Van Leemput. There are 274 glioma cases, of which 220 are of High-grade

Fig 3. 3D saliency maps. (a) Ground truth, with saliency map generated (b) using Ref. [5] and (c) the proposed method

PR.

https://doi.org/10.1371/journal.pone.0187209.g003
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(HG) and 54 of Low-grade (LG), with four MR sequences T1, T1C, T2, and FLAIR being avail-

able for each patient. The challenge database contains fully anonymized images collected from

ETH Zurich, University of Bern, University of Debrecen, and University of Utah. All images

are linearly co-registered and skull stripped. Since all data on human subjects is publicly avail-

able and de-identified, therefore no Institutional Review Board approval was required. Utiliz-

ing the three MRI sequences, viz. FLAIR, T1C and T2, the individual portions of the glioma

have been highlighted to generate a 3D saliency map. It preserves the innate characteristics of

the region in each sequence, while accentuating the entirety of the area affected.

Pseudo-colouring

Colour images in the digital spectrum usually encompass three colour channels of red, green

and blue (RGB). Each of these channels can be broken down to individually represent gray

scale images of 16 bits each, and subsequently recombined in 3! ways to reproduce the original

colour image. Utilizing an analogous methodology, we generate a semblance of a colour image

(pseudo coloured) using the three gray scale images from sequences FLAIR, T1C and T2 [5].

This engenders a 48 bit RGB colour image, containing more information than any of the three

channels individually.

Methodology

Considering the three RGB channels in order, FLAIR MRI sequence was loaded into the R

channel, the T1C sequence was mapped into the G channel and T2 into the B channel. The

resulting 48 bit colour image is utilised for all future processing.

One of the major bottlenecks of this approach is the resultant pixel values, which are indi-

vidually difficult for the machine to interpret and display. This hampers the prominence of the

end result and berates the validity of the algorithm. Saliency with respect to brain tumours

being essentially described by how prominently the glioma region can stand out from the rest

of the brain matter, it requires human comprehension. Without the distinctions being discern-

ible to the human eye, it is impossible to assess the pragmatism of this algorithm; especially as

an aid to medical practitioners. Therefore we enhance each channel by uniformly distributing

the 8 bits of each singular RGB channel to the spectrum of intensities upto the existential maxi-

mum intensity value. This increases the understandability, and generates a more visually

apparent and highly accentuated saliency map.

In order to maximise the accuracy of the salient region, each MRI sequence is normalized

to enhance hidden characteristics and boundaries. Then the processed image is converted to

its corresponding L�a�b� format, which is useful in increasing the perceivability of the various

colour components associated. It helps enhance the luminosity and chromaticity of an image

with respect to each other as given in Ref. [5].

Another issue which cropped up during the development of this procedure was the vol-

ume-wise voxel saliency generation. While it is relatively easier to generate the saliency map

for a 2D image, the complexity increases in the 3D space. This is because in 3D the computa-

tion of the degree of saliency depends not only on the neighbourhood voxels of the same

plane, but also on those of all other intersecting planes. Hence those slices containing insignifi-

cant portions of the tumor may adversely affect the degree of saliency of the VOI. Moreover

brain MRI sequences are not always perfect, with many images in the database having unwar-

ranted intrusion of light along one or more axes [21].

To overcome this difficulty we used all three major planes, viz. xy, yz, and xz planes, to

calculate the average saliency. Using a cubic scaling factor k = 4, 8, and 16, each 3D image

space was broken down into cubes of its respective sizes. For example, size 4 cubes had the

Volumetric brain tumour detection from MRI using visual saliency

PLOS ONE | https://doi.org/10.1371/journal.pone.0187209 November 2, 2017 6 / 14

https://doi.org/10.1371/journal.pone.0187209


information of its 64 neighbours imbibed into one single voxel. Thereby we could successfully

achieve our objective using only the three major axes, with the neighbourhood information

getting extracted from the voxel intensity.

At the same time it is important to generate a uniform breaking down mechanism to serve

as a viable decomposition tool for all images. Since the 3D images in the sourced database are

of varied sizes, we transmute it into a dimensional scope of M × M × N, where M and N are

divisible by k (k = 4, 8, 16). Thereby, the entire 3D image volume is broken down into three

separate groups representing volumes of size 4 (64 pixels), 8 (512 pixels) and 16 (4096 pixels)

respectively. Each non-overlapping cube is represented by its mean L�a�b� values, thus decom-

posing it into a single unit with the values from its surrounding pixels stored as its integral

property. The number of cubes correspond to the number of pixels in the saliency map, which

would be of dimension (M/k × M/k × N/k) with each cube being of size (k × k × k). Therefore,

the ith cube of the image I(Vi), 1� i� (M/k × M/k × N/k), can be represented by its mean

L�a�b� value as

V �L�
i;j;l ¼

P
IðVL�

i;j;lÞ

k� k� k
;V �a�

i;j;l ¼

P
IðVa�

i;j;lÞ

k� k� k
;V �b�

i;j;l �¼

P
IðVb�

i;j;lÞ

k� k� k
: ð1Þ

The ability to effectively discern the glioma from the rest of the brain matter is an essential

parameter to be considered in this algorithm. The salient features of the image are ascribed to

the superimposition of the three MRI channels which accentuate the region of the tumour.

Therefore the saliency of each cube is compared with the variegation of colours with respect to

all other cubes along the major planes (xy, yz, xz) of the image. Utilizing the simplest of all

approaches, the basic difference between the mean L�a�b� colour values of each such cube pair

is represented using the Euclidean norm. This allows mapping the pseudo-colored cube pairs,

graded on a normalized scale of 0–255 shades, to enhance the colour difference over each

individual channel. Generating a basis for colour difference also helps in finding a common

ground for perpetuating and representing any visually apparent change in the composition of

each cube.

Consider Fig 4. Since the evaluation of saliency Sc for each k × k × k voxel Vi,j,l is performed

only along either of the three major axes (at a time), while excluding Vi,j,l itself during distance

computation, therefore we formulate the expression as

ScðVi;j;lÞ ¼

X

ði¼x_j¼y_l¼zÞ^:ði¼x^j¼y^l¼zÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðV �L�
i;j;l � V �L�

x;y;zÞ
2
þ ðV �a�

i;j;l � V �a�
x;y;zÞ

2
þ ðV �b�

i;j;l � V �b�
x;y;zÞ

2
q

8ði; j; x; yÞ 2 f1; . . . ;M=kg; 8ðl; zÞ 2 f1; . . . ;N=kg:

ð2Þ

Thereafter, the colour variation of a cube with that of the rest of the cubes along the major

axes of the image are summed. If the value of this sum is sizeable then it is considered to be a

salient cube.

It is often observed that the salient regions are congregated over adjacent spaces, with the

non-salient regions being present anywhere in the image. Thus we can surmise that the proba-

bility of a region being salient is higher if it is nearer to a pre-established salient cube; while

those that are located farther away have a lower probability of being salient. Based on this

assumption we incorporate the distance of the cube from the other cubes under consideration,
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along with their difference in color, to reformulate the volumetric saliency expression as

SðVi;j;lÞ ¼
X

ði¼x_j¼y_l¼zÞ^:ði¼x^j¼y^l¼zÞ

1

1þ dðVi;j;l;Vx;y;zÞ
� ScðVi;j;lÞ: ð3Þ

Since neighboring regions of a salient one are also likely to be salient, therefore a lower

d(Vi,j,l,Vx,y,z) contributes towards a higher effective value of S(Vi,j,l).

When an observer views a far-off scene, the focus lies on the entire salient region(s). Again

when the same scene is viewed at a closer range, the observer tends to pay greater attention to

the details within the salient region. This property of the human visual attention mechanism

was adopted in 2D through the evaluation of saliency maps at multiple scales [5].

Extending this concept to the 3D scenario in our volumetric algorithm PR by considering

volume sizes k × k × k, k = 4, 8, 16. We were able to clearly highlight the salient object, at a

higher resolution, by partitioning the image into smaller sized volumes. A volumetric saliency

map can be considered to be a probability map, with the intensity of a voxel indicating its

chance of belonging to the tumor region in the original image. Although the saliency map for

a larger patch can help in accurately locating a salient object, its resultant blurring causes dis-

appearance of most details.

Re-scaling is performed to bring back the saliency maps to the original image size (M × M ×
N) using Bilinear interpolation [23]. Let Ŝk denote the interpolated image at its original size, as

generated from the saliency map Sk at scale k. Since the properties of a region depend on the

voxels within it, saliency prediction is governed by both its size and scale. Thus our algorithm

is simultaneously employed over multiple scales for capturing the salient region(s) in the MR

image at different levels of resolution. Those region(s) consistently highlighted over different

resolutions are deemed to be the ones most likely to be salient. Therefore we superimpose

Fig 4. Schematic illustrating voxel-level computation in algorithm PR.

https://doi.org/10.1371/journal.pone.0187209.g004
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these saliency maps, corresponding to the different scales, for computing the final map

S ¼
X

k¼4;8;16

rk � Ŝk; ð4Þ

where rk ¼ 1

3
is the weight of the saliency map Ŝk. This helps in detecting the tumour region.

Algorithm PR

Assuming the 3D image to be of dimension M × M × N, the rubric of the proposed volumetric

algorithm is explicated as follows.

1. Initialize FLAIR sequence to R channel, T1C sequence to G channel and T2 sequence to B

channel.

2. Normalize each channel by its maximum intensity pixel, to highlight regions and clarify

boundaries, followed by scaling to uniform bit depth.

3. Convert the RGB channel to its L�a�b� counterpart.

4. Repeat Steps 5-8 for dimension size k = 4, 8, 16

5. Generate a map of dimension M/k × M/k × N/k

6. Calculate the mean of k × k × k pixels and store it as the voxel value for i, i 2M/k × M/k ×
N/k, using Eq (1).

7. Compute the saliency S(Vi), 8i 2M/k × M/k × N/k, by Eqs (2) and (3) along the three major

axes.

8. Combine the saliency map at resolution k, with 1/3 weight, to generate the final volumetric

saliency map S by Eq (4).

9. Apply median filter on the final saliency map for smoothening. This helps the algorithm

focus on the core region of the VOI in the resized image.

10. Display the final saliency map.

Results

The performance of the proposed volumetric saliency-based algorithm PR, incorporated

directly at the voxel level, was compared to that of its 2D predecessor BA [5] (working at pixel

level, and extended to the 3D domain for comparison). The 2D saliency model BA needed to

be applied to individual 2D slices of an MRI volume, with their juxtaposition resulting in a

simulated 3D saliency map. Results are evaluated in terms of the match with the ground truth

involving the whole tumor region, encompassing the intra-tumoral structures, namely

“edema”, “nonenhancing (solid) core”, “necrotic (or fluid-filled) core”, and “non-enhancing

core”. Tumour structure definitions often have certain ambiguities, especially when clear

boundaries are hard to define. As a method of standardization all subjects, annotated by sev-

eral experts, have the results subsequently fused to obtain a single consensus segmentation for

each subject. The MICCAI BRATS 2015 database, used for the evaluation of the algorithm, uti-

lizes this as the ground truth for effectiveness detection in our algorithm.

A saliency map is portrayed as a gray scale image of similar dimensions as that of the origi-

nal image, where the intensity of a pixel signifies its significance for belonging to the glioma

region in the original image. While an intensity 0 (pure black) implies least importance, an
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intensity of 255 (pure white) corresponds to being of utmost significance. We thresholded the

3D saliency maps in the range of 0–255 to generate binary masks, which are then evaluated

against different metrics of comparison.

Precision refers to the percentage of correctly classified salient voxels over the whole image,

whereas recall corresponds to the portion of voxels from the ground truth which get detected

correctly. Although recall and precision are inversely proportional to each other, we cannot do

without either. Therefore we have maximized both of these. The entire range of gray levels in

the image is explored, for exhaustive thresholding, in order to generate two classes; with the

positive class representing the VOI and the negative class being treated as the background.

Area Under the Curve (AUC) is estimated by analyzing the Receiver Operator Characteristic

(ROC) from these thresholded images. While the true positive rate (TPR) is the proportion of

saliency values at actual locations above a threshold, the proportion of voxels corresponding to

the non-tumor regions of the ground truth (but wrongly classified as tumor regions) contrib-

ute towards the false positive rate (FPR).

The quantitative performance of our 3D algorithm PR is evaluated by computing the preci-

sion and recall, along with the TPR and FPR over these thresholded saliency maps. The preci-

sion-recall and ROC curves are plotted in Fig 5 by averaging over the set of images from each

of the two data groups (HG, LG). The corresponding Area Under Curve (AUC) values for

ROC in case of algorithm PR are 0.992 ± 0.01 (HG) and 0.998 ± 0.01 (LG). The values are

indicative of a close match to the manual detection. On the other hand, for algorithm BA the

AUC values are 0.96 ± 0.1 (HG) and 0.95 ± 0.2 (LG). Therefore, it is evident that our 3D algo-

rithm PR generates statistically better precision-recall and ROC curves as compared to that of

the earlier 2D saliency approach BA, in both groups.

The axial, sagittal and coronal views of the brain are used to represent the saliency mapped

cube generated as a result of our algorithm PR. When we compare this to the result obtained

by BA, we notice a few distinct differences. As discussed earlier, the main utility of PR lies in

accurately modeling the tumour in the uppermost and lowermost regions of the MR image.

This is clearly evident in case of both HG and LG brain images, from the inaccuracy observable

from the volumetric saliency maps of Figs 6(b) and 7(b) by BA [5], as compared to the corre-

sponding ground truth in Figs 6(a) and 7(a).

Fig 5. Comparative study over varying thresholds [0-255] on saliency map for HG and LG tumour images. (a)

Precision-Recall, and (b) ROC curves.

https://doi.org/10.1371/journal.pone.0187209.g005
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Discussion

In our proposed algorithm PR, instead of considering each slice of the 3D image as a 2D

component, we broke down the entire image region into ordered cubes of uniform dimen-

sions. From this it becomes apparent that for a cubic image dimensionality of M × M ×
N = 240 × 240 × 240, we would have a 13,82,400 pixel arrangement. Reducing this to the cubic

classification spectrum, for dimension side k = 4, there are M/k × M/k × N/k = 60 × 60 × 60

pixels in the image; which is equivalent to n = 2,16,000 non-overlapping cubes. Analogously

for dimension side k = 8, there are 30 × 30 × 30 pixels in the 3D image arrangement which is

Fig 6. 3D saliency maps for four HG glioma patients. (a) Ground truth, with 3D saliency map generated by (b) BA [5],

and (c) algorithm PR.

https://doi.org/10.1371/journal.pone.0187209.g006

Fig 7. 3D saliency maps for four LG glioma patients. (a) Ground truth, with 3D saliency map generated by (b) BA [5],

and (c) algorithm PR.

https://doi.org/10.1371/journal.pone.0187209.g007
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equal to n = 27,000 non-overlapping cubic partitions. To calculate the relative mean L�a�b�

values for each individual cubic representation would require (n−1) comparisons each, and

therefore n × (n−1) total comparisons, where n indicates the number of averaged voxels.

Hence for dimension side k = 4, with number of cubes being 2,16,000, the calculation of the

relative mean L�a�b� would require n�(n−1) = 2,16,000�2,15,999 = 466557,84,000 compari-

sons. Similarly for side dimension k = 8, there is the need for 27,000�26,999 = 7289,73,000

comparisons. This results in a higher time complexity and makes the algorithm very slow.

On the other hand, if we were to look at the initial criterion for k = 4, where each 4 × 4 × 4

voxel was used to calculate the mean L�a�b� value, then we observe that the neighbourhood

values are already present in the averaged voxel. Thus comparison along all pixels of the

decomposed 3D image becomes unnecessary.

In algorithm PR we use only the three major axes for a 3D co-ordinate system, as seen in

Fig 4.

Therefore for a cube side dimension of k = 4, the cubic non-overlapping arrangement has

dimension M/k × M/k × M/k = 60 × 60 × 60 with the number of comparisons getting reduced

to 60 × 60 along each axis; resulting in a total of 2,16,000 × 3 × 60 × 60 (# averaged voxels of

interest × # axes × area dimension along each axis), which is 23328,00,000 comparisons by Eq

(2). We can observe how the number of comparisons has reduced from 466557,84,000 to

23328,00,000, which is 1/20 times the original value. On repeating the same with cube side

dimension k = 8, we get 27,000 × 3 × 30 × 30 or 729,00,000, which is approximately 1/10 times

the value of 7289,73,000. Thus there is reduction in comparison time, as a measure of

improved computational complexity. The result produced using the three major axes is suffi-

cient to generate coherent tumour regions, and prevents damage from distortions produced

by external light sources entering the source image or from partially derived source images.

This is because here equal weightage is not provided to the extremities of the image slices,

where distortions typically occur.

With the advent of modern day technology the MR images assume varied resolutions, with

each having a different bit/pixel depth. Previously MR channel images had the pixel depth set

to 8, while now some machines use 16. To establish a common ground and a uniform compar-

ison basis, we had to scale down each image to its 8 bit form. While working with MR images,

it has been observed that sometimes the minute details get lost due to smaller difference in

intensity values alongside each pixel. To overcome this problem, we scale each individual

channel to its 8 bit counterpart and at the same time normalize using the maximum intensity

value of the image. Thereby the highest intensity value is treated as 1, with a range of intensities

from 0 to 1. Scaling it to an 8 bit form involves multiplication by 255, resulting in a 0-255

threshold image channel. This helps in developing the final image where each point is

highlighted and appropriately attenuated to correspond to each region of the glioma. Such

pre-processing of the image helps with the correct classification of the final result, and gener-

ates a more accurate and uniform output form.

Conclusion

Computer-Aided Detection (CADe) focuses on an automated and fast detection, localization

and segmentation of the VOI. Here we developed a novel volumetric saliency-based algorithm

for the efficient detection of GBM tumor(s) from multi-channel MRI. The formation of a 3D

view representing the saliency of the tumour region in the entire brain is useful to generate a

proper outline of the tumour area. When the boundaries are well defined then the malignancy

of the tumour can be properly estimated by the medical practitioners. This will help in uphold-

ing the integrity of the term CADe, as the entirety of the tumour region can be detected.
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While saliency detection in the 2D version of the algorithm (BA) was used to estimate only

on a single cross sectional view of the tumour, the new 3D volumetric saliency detection algo-

rithm (PR) enabled a more complete detection of the existing tumour(s) as estimated over the

3D image of the human brain. This contribution is of utmost significance due to its pragmatic

usability and potential applicability in real time saliency detection for patients suffering from

GBM. Use of the 3D approach is shown to elicit more accurate VOIs (as compared to the

ground truth), both on qualitative and quantitative terms, by minimizing loss of valuable

information with respect to the 3D extrapolation of the previous 2D version [5]. This is

expected to lead to improved segmentation and extraction of radiomic features, for subsequent

decision-making.
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9. Achanta R, Estrada F, Wils P, Süsstrunk S. Salient region detection and segmentation. In: Computer

Vision Systems. Springer; 2008. p. 66–75.

Volumetric brain tumour detection from MRI using visual saliency

PLOS ONE | https://doi.org/10.1371/journal.pone.0187209 November 2, 2017 13 / 14

https://doi.org/10.1016/j.ins.2015.02.015
https://doi.org/10.1148/radiol.13122697
http://www.ncbi.nlm.nih.gov/pubmed/24062559
https://doi.org/10.1073/pnas.97.12.6242
https://doi.org/10.1371/journal.pone.0041522
http://www.ncbi.nlm.nih.gov/pubmed/22870228
https://doi.org/10.1371/journal.pone.0146388
https://doi.org/10.1109/34.730558
https://doi.org/10.1109/34.730558
https://doi.org/10.1167/8.2.6
https://doi.org/10.1167/8.2.6
http://www.ncbi.nlm.nih.gov/pubmed/18318632
https://doi.org/10.1371/journal.pone.0187209


10. Ma YF, Zhang HJ. Contrast-based image attention analysis by using fuzzy growing. In: Proceedings of

the Eleventh ACM International Conference on Multimedia. ACM; 2003. p. 374–381.

11. Walther D, Koch C. Modeling attention to salient proto-objects. Neural Networks. 2006; 19:1395–1407.

https://doi.org/10.1016/j.neunet.2006.10.001 PMID: 17098563

12. Rosin PL. A simple method for detecting salient regions. Pattern Recognition. 2009; 42:2363–2371.

https://doi.org/10.1016/j.patcog.2009.04.021

13. Zhang L, Tong MH, Marks TK, Shan H, Cottrell GW. SUN: A Bayesian framework for saliency using nat-

ural statistics. Journal of Vision. 2008; 8:32. https://doi.org/10.1167/8.7.32 PMID: 19146264

14. Bian P, Zhang L. Biological plausibility of spectral domain approach for spatiotemporal visual saliency.

In: Advances in Neuro-Information Processing. Springer; 2009. p. 251–258.

15. Harel J, Koch C, Perona P. Graph-based visual saliency. In: Advances in Neural Information Processing

Systems; 2006. p. 545–552.

16. Jampani V, Sivaswamy J, Vaidya V, et al. Assessment of computational visual attention models on

medical images. In: Proceedings of the Eighth Indian Conference on Computer Vision, Graphics and

Image Processing. ACM; 2012. p. 80.

17. Deepak KS, Chakravarty A, Sivaswamy J, et al. Visual saliency based bright lesion detection and dis-

crimination in retinal images. In: 10th IEEE International Symposium on Biomedical Imaging. IEEE;

2013. p. 1436–1439.

18. Quellec G, Russell SR, Abramoff MD. Optimal filter framework for automated, instantaneous detection

of lesions in retinal images. IEEE Transactions on Medical Imaging. 2011; 30:523–533. https://doi.org/

10.1109/TMI.2010.2089383 PMID: 21292586

19. Alpert S, Kisilev P. Unsupervised detection of abnormalities in medical images using salient features.

In: SPIE Medical Imaging. International Society for Optics and Photonics; 2014. p. 903416–903421.

20. Erihov M, Alpert S, Kisilev P, Hashoul S. A Cross Saliency Approach to Asymmetry-Based Tumor

Detection. In: Medical Image Computing and Computer-Assisted Intervention â€“ MICCAI 2015. vol.
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