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Abstract Ocular melanocytosis is the most important predisposing condition for the eye
cancer uveal melanoma (UM). Here, we present a patient who developed UM arising within
ocular melanocytosis whowas treatedwith enucleation (eye removal), which provided an in-
valuable opportunity to interrogate both the UM and adjacent uveal tissue containing the
melanocytosis using whole-exome and deep-targeted sequencing. This analysis revealed
a clonal PLCB4 mutation in the melanocytosis, confirming that this is indeed a neoplastic
condition and explaining why it predisposes to UM. This mutation was present in 100% of
analyzed UM cells, indicating that a PLCB4-mutant cell gave rise to the UM. The earliest ab-
errations specific to the tumor were loss of Chromosomes 1p, 3, and 9p, which were present
in virtually all tumor cells. Amutation inBAP1 arose later on the other copyof Chromosome3
in a tumor subclone, followed by a gain of Chromosome 8q. These findings provide amech-
anistic explanation for thewell-known clinical association between ocularmelanocytosis and
UM by showing that this predisposing condition introduces the first “hit” and thereby in-
creases the stochastic likelihood of acquiring further aberrations leading to UM.

INTRODUCTION

Ocular melanocytosis is characterized by an excess of melanocytes in the uveal tract, com-
prising the choroid, ciliary body, and iris, and it has been speculated to represent a congen-
ital nevus (Yanoff and Zimmerman 1967). This condition is usually nonhereditary and
unilateral andmanifests with brown–gray episcleral patches and dark pigmentation of the oc-
ular fundus, sometimes accompanied by iris heterochromia. When associated with periocu-
lar cutaneous hyperpigmentation, it is referred to as nevus of Ota (Teekhasaenee et al. 1990).
Ocular melanocytosis is the strongest predisposing factor for uveal melanoma (UM), increas-
ing its risk from ∼1 in 230,000 to ∼1 in 400 (Singh et al. 1998), and its presence doubles the
risk of metastasis from UM (Shields et al. 2013).

UM is the most common primary eye cancer and frequently results in metastatic death
(Harbour and Shih 2018). UM exhibits a distinctive molecular landscape consisting of two
mutational “nodes.” The first is characterized by mutually exclusive gain-of-function point
mutations in members of the Gq signaling pathway (GNAQ, GNA11, CYSLTR2, and
PLCB4), which trigger constitutive activation of proliferative and survival signals (Van
Raamsdonk et al. 2009, 2010; Johansson et al. 2016; Moore et al. 2016). The second
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mutational node consists of near–mutually exclusive mutations in the tumor suppressor
BAP1, the splicing factors SF3B1, SF3A1, SRSF2, SRSF7, and RBM10, and the translational
initiation factor EIF1AX (Harbour et al. 2010, 2013; Martin et al. 2013; Robertson et al.
2017; Field et al. 2018). These “BSE”mutations are prognostically significant and associated
with specific chromosomal copy-number aberrations (CNAs) (Field et al. 2018). Notably, mu-
tations in BAP1, located onChromosome 3p21, are associatedwith loss of heterozygosity for
Chromosome 3 (LOH3), leading to biallelic inactivation of BAP1 and poor prognosis
(Harbour et al. 2010).

By the time UMs are detected, the most recent common ancestral tumor clone usually
contains a full complement of mutations and CNAs, indicating that these canonical aberra-
tions occur early during tumor evolution (Field et al. 2018). To determine the order in which
these events arise would require an analysis of early precursor lesions, but tissue samples
from premalignant uveal nevi are rarely available owing to the delicate location of these le-
sions within the eye. Here, we describe a patient with ocular melanocytosis who developed
UM and was treated by enucleation (eye removal), which provided an invaluable opportunity
to interrogate both the tumor and precursormelanocytosis. Next-generation sequencing fol-
lowed by bioinformatic analysis allowed us to elucidate the early genomic evolutionary
events leading to UM.

RESULTS

A 56-yr-old white female presented with pain and blurred vision in her left eye, in which the
best-corrected visual acuity had dropped to 20/800. External examination revealed diffuse
episcleral pigmentation of the left eye (Fig. 1A), consistent with ocular melanocytosis.
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Figure 1. Clinical and pathologic findings in uveal melanoma (UM) associated with ocular melanocytosis.
(A) Episcleral brown pigmented patches in the left eye, consistent with ocular melanocytosis. (B) Color fundus
photograph of the normal right eye, (C ) in contrast to the darkly pigmented fundus (asterisk) and associated
UM (arrows) in the left eye. (D) B-scan ultrasonography of the UM with associated exudative retinal detach-
ment. (E) Enucleated left eye, with dark pigmentation and thickening of the choroid and ciliary body. The re-
gion of ocular melanocytosis within the choroid that was sampled for genomic analysis is indicated by the
yellow box. (F ) Histopathologic examination reveals the choroid filled with heavily pigmentedmelanocytes (ar-
row) is typical for ocular melanocytosis (hematoxylin & eosin, original magnification 20×). (C) Choroid, (CB) cil-
iary body, (L) lens, (R) retina, (S) sclera, (T) tumor.
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Fundus ophthalmoscopic examination showed normal fundus pigmentation in the right eye
(Fig. 1B), in contrast to diffuse fundus hyperpigmentation in the left eye accompanied by a
darkly pigmented choroidal tumor (Fig. 1C). Ultrasonographic examination of the left eye
revealed a pedunculated choroidal tumor measuring 14.6×14.4× 7.9 mm, with low internal
reflectivity, spontaneous vascular pulsations, and a surrounding exudative retinal detach-
ment, which are typical for UM (Fig. 1D). Following enucleation, the eyewas immediately dis-
sected in the operating room to obtain and snap-freeze samples from the tumor and
nontumorous melanocytosis. Histopathological evaluation revealed a marked overabun-
dance of heavily pigmented melanocytes throughout the uveal tract, along with the UM aris-
ing from the choroid (Fig. 1E,F).

Molecular prognostic testing of the tumor revealed a class 2 GEP, associated with high
metastatic risk (Onken et al. 2012). Whole-exome sequencing (WES) followed by mutational
analysis revealed a deleterious somatic single-nucleotide alteration (p.D630Y) in PLCB4 in
both the tumor and melanocytosis but not in the blood (Fig. 2A). An in-frame deletion
(p.C320_D311del) that extended into the intronic region was detected in BAP1 in the tumor
but not in the melanocytosis or blood (Table 1; Fig. 2A). Analysis of CNAs using WES data
revealed loss of Chromosomes 1p, 3, and 9p and gain of Chromosome 8 (Fig. 2C), all of
which were present in the tumor but not the melanocytosis.

The PLCB4mutation was present in slightly less than one-quarter of cells comprising the
melanocytosis and in ∼100% of analyzed tumor cells (Fig. 2B), indicating that it arose within
the melanocytosis and that a PLCB4-mutant cell gave rise to the UM. LOH3 was absent from
themelanocytosis but present in∼100% of analyzed tumor cells, indicating that it arose early
during clonal tumor expansion. By comparison, the BAP1 mutation was present in about
three-quarters and the 8q gain in about one-quarter of the tumor cells. Although limitations
in methodology did not allow detailed conclusions regarding genomic evolution, these find-
ings imply that the BAP1mutation and 8q gain occurred after LOH3, which is consistent with
previous reports (Robertson et al. 2017; Field et al. 2018).

DISCUSSION

Gq pathway mutations have been reported in UM, cutaneous blue nevi, and central nervous
systemmelanocytic neoplasms (Küsters-Vandevelde et al. 2010; Van Raamsdonk et al. 2010;
Vivancos et al. 2016). However, this is the first direct demonstration of a Gq pathway muta-
tion in the nonmalignant uveal tissue giving rise to melanoma in an eye with ocular melano-
cytosis. Further, it is the first report of a PLCB4mutation in any form of ocular or oculodermal
melanocytosis. As such, this case is quite distinct from a recent report of cutaneous melano-
ma arising within nevus of Ota (Vivancos et al. 2016), which has different demographics and
clinical features than ocular melanocytosis. Recently, we identified a second case of ocular
melanocytosis in which the nonmalignant uveal tissue harbored a somatic GNA11mutation
(data not shown), suggesting that Gq pathway mutations may be characteristic of this condi-
tion. This oncogenic “first hit” mutation could explain the increased risk of UM associated
with ocular melanocytosis and confirms that this condition represents a congenital nevus
rather than simply an excess of normal melanocytes. The absence of a germline mutation
is consistent with the lack of hereditary transmission in most patients with this condition.

We recently analyzed 151 primary UMs and showed that all of the canonical mutations
and CNAs usually arose early in tumor evolution, making it difficult to discriminate the rela-
tive order in which these aberrations accrued (Field et al. 2018). This case allowed a more
detailed exploration into the evolutionary dynamics of UM (Fig. 3). The PLCB4 mutation in
the precursor melanocytosis was clearly the initiating event but could not effectuate malig-
nant transformation without additional aberrations. This finding is particularly interesting
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Figure 2. Genomic evolutionary analysis of ocularmelanocytosis and associated uvealmelanoma. (A) Lollipop
plots that depict the amino acid changes resulting from the PLCB4 (p.D630Y) and BAP1 (p.C320_D311del)
mutations in the tumor. (EF) Phosphoinositide-specific phospholipase C domain, (PI-PLC-X) phosphatidylino-
sitol-specific phospholipase C, X domain, (PI-PLC-Y) phosphatidylinositol-specific phospholipase C-Y domain,
(C2) C2 domain, (CH) ubiquitin carboxy-terminal hydrolase catalytic domain, (BARD) BRCA1-associated RING
domain, (H) HCF1-binding motif, (B) BRCA1-binding domain, (N) nuclear localization sequences. (B)
Percentage of cells carrying a driver mutation or chromosomal aberration in the ocular melanocytosis versus
the tumor. (M)Melanocytosis, (T) tumor. (C ) Copy-number plots for melanocytosis and tumor samples, respec-
tively, as determined by THetA2. Whereas the melanocytosis showed no copy-number alterations, the tumor
showed loss of Chromosomes 1p, 3, and 9p (blue arrowheads) and a smaller subclone with gain of
Chromosome 8 (red arrowhead).
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because mutant GNAQ signals to PKC through PLCβ and thereby activates the MAPK path-
way (Chen et al. 2017). The earliest events specific to the tumor were loss of Chromosomes
1p, 3, and 9p, which were present in virtually all tumor cells. Additionally, by producing hap-
loinsufficiency for BAP1, LOH3 may have created a selective pressure to inactivate the other
BAP1 allele, a requisite event for conversion to the highly metastatic class 2 GEP (Harbour
et al. 2010; Onken et al. 2012). Thus, LOH3 could represent a “threshold” event in malignant
transformation. Gain of 8q was a late event and, hence, apparently not required for malig-
nant transformation but likely providing a selective advantage during tumor progression.

These insights may help to address persistent challenges in the field. For example, the
failure of targeted therapies aimed at inhibiting the Gq pathway (Carvajal et al. 2018) might
be explained by the inability of thesemutations to drivemalignant tumor growth without ad-
ditional genomic aberrations. Further, some UMs with good prognosis exhibit LOH3 yet re-
tain a wild-type BAP1 allele and class 1 GEP (Onken et al. 2012; Field et al. 2018), suggesting
that biallelic loss of BAP1 is required for conversion to the class 2 GEP and that LOH3 alone is
insufficient to confer high metastatic risk.

METHODS

Sample Collection
Tissue samples were subjected to DNA extraction using the Wizard Genomic DNA
Purification kit (Promega) and RNA extraction using the PicoPure RNA Isolation kit (Thermo

Table 1. Genomic findings

Gene Genomic location HGVS cDNA HGVS protein Variant type Variant interpretation COSMIC ID Zygosity

PLCB4 Chromosome 20,
NC_000020.10

c.1888G>T p.D630Y Substitution Pathogenic COSM1666823 Heterozygous

BAP1 Chromosome 3,
NC_000003.11

c.932-8_960
delTGTCTCAGATGGTGCAGA
GGAGGCGGCTGGTTCATGC

p.D311_C320del Deletion Pathogenic None Hemizygous

Figure 3. Qualitative tumor evolution diagramof ocular melanocytosis giving risk to UM. The proposed geno-
mic evolution frommelanocytosis to UM, in this case, is presented. The Gq pathway mutation (PLCB4) was the
earliest event, arising in the ocular melanocytosis and present in all tumor cells. Loss of heterozygosity for
Chromosome 3 (LOH3) was absent from the melanocytosis but present in all tumor cells, and it was followed
by mutation of BAP1 on the other copy of Chromosome 3. These events resulting in biallelic BAP1 deficiency
occurredclose inevolutionary timeandmay representa thresholdevent inmalignant transformationbyconvert-
ing the tumor to thehighmetastatic risk class 2geneexpressionprofile (GEP). A small subcloneofChromosome
8 gain is also observed and depicted as arising from the BAP1 subclone, although it could also have arisen in a
separate subclone. For clarity, the loss of Chromosomes 1p and 9p is not included in the diagram.
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Fisher Scientific). DNA fromperipheral blood leukocytes was extracted using theQuickGene
DNA whole blood kit S (Fujifilm).

Whole-Exome Sequencing and Validation
WES was performed as previously described (Field et al. 2018), using the Agilent SureSelect
XT Human All Exon V5 kit with 100-bp paired-end sequencing on the Illumina HiSeq 2500
sequencer (Table 2). WES mutation results were validated using the DecisionDx-UMseq tar-
geted next-generation sequencing panel (Castle Biosciences, Inc.). Molecular prognostic
classification of the tumor was performed by GEP as part of routine clinical management us-
ing the DecisionDx-UM test (Castle Biosciences, Inc.). The GEP test uses a 15-gene PCR as-
say comprising of 12 discriminating genes, two control genes, and expression of PRAME, a
gene that provides independent prognostic information. This test can be performed on fine-
needle aspirate biopsy samples and stratifies UM patients in the low-, intermediate-, and
high-risk groups (Onken et al. 2010).

Bioinformatic Analysis
FASTQ files containing WES data were subjected to quality control using FASTQC (v0.11.3),
trimmed and aligned to the humangenomebuild hg19/GRCH37 usingNovoalign (v3.04.06),
marked for duplicates using Picard (v1.128), realigned around small and large indels using
ABRA (v0.94c) (Mose et al. 2014), and then read mate fixed and analyzed for coverage statis-
tics using Picard. Variant calling for SNPs and indels was performed using MuTect2 (GATK
2016-01-25 nightly build) (Cibulskis et al. 2013) comparing the tumor and melanocytosis re-
gions to matched blood. Lollipop plots were generated using MutationMapper (http://www
.cbioportal.org/mutation_mapper.jsp), and domain information was annotated from a previ-
ous publication (Field et al. 2018). CNAs were assessed fromWES data using CNVKit (v0.7.5,
v0.7.10.dev0) (Talevich et al. 2016) and b-allele frequency plots were assessed fromWES us-
ing THetA2 (v0.7) (Oesper et al. 2014). Clonality of CNAs was assessed using cgpBattenberg,
as previously described (Nik-Zainal et al. 2012; Field et al. 2018), and depicted using a qual-
itative tumor clone evolution diagram (Krzywinski 2016).

ADDITIONAL INFORMATION

Data Deposition and Access
All sequencing data generated have been deposited in dbGaP (https://www.ncbi.nlm.nih
.gov/gap) under accession code phs001835.v1.p1. The reported variants were submitted
to ClinVar (https://ncbi.nlm.nih.gov/clinvar/) and can be found under accession numbers
SCV000920585 and SCV000920586.

Table 2. Whole-exome sequencing metrics

Blood Melanocytosis Tumor

Mean depth of coverage 78× 56× 56×

Percentage of exome with at least 1× coverage 100% 99% 99%

Depth of coverage at reported PLCB4 variant N/A 83× 178×

Depth of coverage at reported BAP1 variant N/A N/A 30×

Total reads 100,666,026 80,33,8148 164,244,502

Total mapped reads 97,070,265 77,365,636 156,225,641

(N/A) Not applicable.
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