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Abstract

Chronic Obstructive Pulmonary Disease (COPD) is a complex disease. Genetic, epigenetic, and environmental factors are
known to contribute to COPD risk and disease progression. Therefore we developed a systematic approach to identify key
regulators of COPD that integrates genome-wide DNA methylation, gene expression, and phenotype data in lung tissue
from COPD and control samples. Our integrative analysis identified 126 key regulators of COPD. We identified EPAS1 as the
only key regulator whose downstream genes significantly overlapped with multiple genes sets associated with COPD
disease severity. EPAS1 is distinct in comparison with other key regulators in terms of methylation profile and downstream
target genes. Genes predicted to be regulated by EPAS1 were enriched for biological processes including signaling, cell
communications, and system development. We confirmed that EPAS1 protein levels are lower in human COPD lung tissue
compared to non-disease controls and that Epas1 gene expression is reduced in mice chronically exposed to cigarette
smoke. As EPAS1 downstream genes were significantly enriched for hypoxia responsive genes in endothelial cells, we tested
EPAS1 function in human endothelial cells. EPAS1 knockdown by siRNA in endothelial cells impacted genes that significantly
overlapped with EPAS1 downstream genes in lung tissue including hypoxia responsive genes, and genes associated with
emphysema severity. Our first integrative analysis of genome-wide DNA methylation and gene expression profiles illustrates
that not only does DNA methylation play a ‘causal’ role in the molecular pathophysiology of COPD, but it can be leveraged
to directly identify novel key mediators of this pathophysiology.
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Introduction

Chronic Obstructive Pulmonary Disease (COPD) is a common

lung disease. It is the fourth leading cause of death in the world and

is expected to be the third by 2020 [1]. COPD is a heterogeneous

and complex disease consisting of obstruction in the small airways,

emphysema, and chronic bronchitis [2]. Patients with COPD

generally have an increased level of systemic inflammation and

progressive loss of lung function by irreversible airflow limitations

[3]. COPD is generally caused by exposure to noxious particles or

gases, most commonly from cigarette smoking [4–6]. However, only

20–25% of smokers develop clinically significant airflow obstruction

[7], which suggests that inter-individual differences related in part to

genetic susceptibility play an important role in modifying the risk of

disease in individuals [8].

Genome-wide association studies (GWAS) have recently iden-

tified several risk loci for COPD and/or smoking associated genes

[4,9–13]. While these studies have provided an initial look into the

genetic architecture of COPD, they have been limited by size, by

heterogeneity of disease phenotype, and by potential confounders

relating to the amount of cigarette smoking. The smaller genetic

variance component for COPD identified to date could be due to

environmental factors and/or epigenetic regulation. Indeed,

epigenetic changes are a factor in many diseases, including many

different types of cancer [14]. In the lung DNA methylation is an

important factor for normal lung function [15], and several studies

have recently confirmed that DNA methylation is significantly

associated with lung cancer [16–18]. Moreover, smoking, which is

one of the major risk factors of COPD, is considered as one of

important modifiers of DNA methylation [19,20] and it is also
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known to cause epigenetic changes in lung tissue [21,22].

Therefore, understanding the transcriptional regulation by epige-

netic factors such as DNA methylation may shed light on

understanding the biological processes associated with COPD

susceptibility, severity, and COPD comorbidities such as lung

cancer. Recently, DNA methylation is shown to be associated with

COPD and lung function, suggesting that genetic and epigenetic

pathways may contribute to COPD [23,24]. While previous

studies have provided potentially important CpG loci associated

with COPD, they have not yet clarified the role variations in

methylation play in regulating global gene expression and the

biological consequences of such regulation.

In this study we present a novel systematic approach for

identifying key regulators in COPD by integrating functional

genomic, epigenetic data, and higher order phenotypic data. We

studied 100 COPD and 52 control (CTRL) lung samples to

investigate the relationship between methylation status of DNA and

expression level of a gene either in close (cis) or far (trans) proximity

to the methylated site. The primary focus of this study is not only to

identify those regions that are differentially methylated between

COPD cases and controls, but to resolve the gene expression

changes that follow as a result of these differentially methylated

regions and the biological consequences that these regulatory

changes induce with respect to disease development or progression.

Our integrative analysis of DNA methylation and gene expression

validates the importance of DNA methylation in COPD and

enables the direct identification of novel key regulators modulated

by epigenetic changes in this multifactorial, systematic disease.

When comparing downstream genes controlled by the key

regulators with gene sets related to COPD disease severity, we

identified EPAS1 as the only key regulator whose downstream

genes significantly overlapped with multiple gene sets related to

COPD. We further show that EPAS1 protein levels are lower in

lung tissues of COPD patients. Epas1 is down-regulated transcrip-

tionally by chronic smoke exposure in mice, and the EPAS1
knockdown signature in human endothelial cells significantly

overlaps with our predicted EPAS1 downstream genes. These data

combined suggest that our systematic approach can provide

important insights into understanding the mechanisms underlying

epigenetic regulation, via DNA methylation, that in turn alters

transcriptional programs that lead to COPD pathogenesis and

progression.

Results

Both genome-wide DNA methylation and gene expression profiles

of 62 non-COPD controls (CTRL) and 148 COPD lung samples were

obtained from the collaborative project, Lung Genomics Research

Consortium (LGRC). To carry out an integrative analysis, we required

that methylation and gene expression data were properly aligned.

Therefore, we developed a multi-omic data alignment procedure to

iteratively match methylation and gene expression profiles within each

individual in the study [25]. Samples that could not be ambiguously

matched were filtered out, leaving a final dataset for analysis consisting

of 52 CTRL and 100 COPD sample pairs. Demographic character-

istics of these samples are listed in S1 Table. After quality checks of

methylation intensity, 1.7 M and 1.78 M methyl probes for CTRL

and COPD samples, respectively, were retained for further analysis (S2

Table). We further selected common methyl probes in the CTRL and

COPD groups within promoter regions and/or CpG islands. The

expression data for these groups was comprised of 15,261 mRNA

probes (see Methods for details), with each methyl probe mapped to the

closest genes corresponding to the mRNA probes (described in

Methods). A total of 658,108 methyl probes were located in promoter

regions of these mRNA probes and were considered in all future

analyses.

Differentially methylated CpG islands and differentially
expressed genes are associated

Prior to integrating the molecular traits, we first characterized the

differentially expressed and methylated genes between the COPD

and CTRL groups. We identified 1,594 genes as differentially

expressed between the COPD and CTRL groups (t-test p-value,

0.01, corresponding to a false discovery rate, or FDR, of 0.09 based

on permutation tests). We also identified 92,606 methylation probes

corresponding to 8,848 genes that were differentially methylated

between the COPD and CTRL groups (t-test p-value,0.01,

FDR = 0.06 based on permutation tests). There are 990 genes

overlapping the set of differentially methylated and expressed genes

(Fisher’s exact test p-value = 0.009). Given methylation data are

known to be noisy [26,27], we focused on methyl probes located in

CpG island defined by a hierarchical hidden Markov model [28],

resulting in 26,143 differentially methylated probes corresponding

to 6,416 genes for further analyses. Among them, 704 genes

overlapped with differentially expressed genes (Fisher’s exact test p-

value = 6.661026). Additional constraints could be applied to

further enrich for biologically relevant methylation, such as 1) self-

consistent methyl probes (at least two methyl probes differentially

methylated for a single gene), and 2) methyl probes close to

transcription start sites (,1 kb). These filters were potentially useful

for enriching for genes that are both differentially methylated and

expressed (S3 Table), but were not used in the analysis because they

were too stringent, resulting in smaller signature sizes.

In general, when DNA methylation levels of methyl probes in

CpG islands for COPD were compared with those of CTRL

samples, the COPD samples were predominantly hypermethylated

(S1A Fig.). Results based on probe-by-probe comparison also

showed that CpG islands were more likely to be hypermethylated

than hypomethylated in lung tissues of COPD patients (S4 Table).

However, when comparing non-CpG island methyl probes, the

pattern was very different and the numbers of hyper- and hypo-

methylated probes were evenly distributed (S1B Fig. and S4

Author Summary

Chronic Obstructive Pulmonary Disease (COPD) is a com-
mon lung disease. It is the fourth leading cause of death in
the world and is expected to be the third by 2020. COPD is a
heterogeneous and complex disease consisting of obstruc-
tion in the small airways, emphysema, and chronic
bronchitis. COPD is generally caused by exposure to
noxious particles or gases, most commonly from cigarette
smoking. However, only 20–25% of smokers develop
clinically significant airflow obstruction. Smoking is known
to cause epigenetic changes in lung tissues. Thus, genetics,
epigenetic, and their interaction with environmental factors
play an important role in COPD pathogenesis and progres-
sion. Currently, there are no therapeutics that can reverse
COPD progression. In order to identify new targets that may
lead to the development of therapeutics for curing COPD,
we developed a systematic approach to identify key
regulators of COPD that integrates genome-wide DNA
methylation, gene expression, and phenotype data in lung
tissue from COPD and control samples. Our integrative
analysis identified 126 key regulators of COPD. We identified
EPAS1 as the only key regulator whose downstream genes
significantly overlapped with multiple genes sets associated
with COPD disease severity.

Integrative Analysis of DNA Methylation and Gene Expression Data
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Table). This different pattern suggested there was no global

methylation level difference between COPD and CTRL samples.

The main difference between them was methylation levels of CpG

islands, suggesting biological importance of methylation of CpG

islands in transcription regulation. The hypermethylation pattern

in CpG islands was observed in a lung cancer study [16]. Recently,

Vucic et al. reported that DNA methylation levels in COPD were

different from ones in CTRL samples and 90% of differentially

methylated CpG island probes were hypermethylated in small

airways epithelium cells from COPD patients [24]. The differen-

tially methylated or differentially expressed genes were not

associated with potential biological subtypes in the samples (S1

Text). These results suggest that there were significant differences

in methylation levels between the CTRL and COPD groups and,

hence, these differences may be involved in epigenetic regulations

causing pathogenesis and progression of COPD.

Both differentially methylated and expressed genes are
related to lung function

Of the 704 differentially methylated genes within CpG islands

that are also differentially expressed between the CTRL and COPD

groups, most (696 out of 704) were hypermethylated in COPD,

whereas only about half of the corresponding gene expression levels

(for 378 genes) were downregulated (S5 Table). The remaining 318

genes were upregulated even when their promoter regions were

hypermethylated. While this pattern does not match the expected

classical inverse relationship between DNA methylation and gene

expression levels, a number of studies have shown that the DNA

methylation – gene expression relationship may be more compli-

cated [29–31]. While promoter methylation most often leads to

gene silencing, DNA methylation of promoter regions, in some

cases, can be associated with transcription activation; for example

through blocking repressor proteins binding to the promoter region

[32,33]. Vucic et al. also shows that methylation levels of many

genes were positively associated with gene expression levels when

comparing small airways epithelium cells of non-COPD controls

and COPD patients [24].

Genes that are hypermethylated and downregulated in COPD,

including genes related to lung function, such as EP300, EPAS1,
FOXF1, FOXA2, KDR, LAMA5, SHH, NKX2-1, VEGFA, FZD1,
NUMB, and PKDCC [34–37], are enriched for GO biological

processes (S6 Table) such as regulation of cell communication (p-

value = 1.9861028), regulation of multicellular organismal develop-

ment (p-value = 2.1361027), and tissue morphogenesis (p-val-

ue = 4.4361027). The other set of genes that are hypermethylated

and upregulated in COPD are enriched for a number of GO

categories as well, including co-translational protein targeting to

membrane (p-value = 2.27610213), protein targeting to ER (p-

value = 3.07610212), translational initiation (p-value = 5.3461029),

translational termination (p-value = 1.2361028), and cellular protein

complex disassembly (p-value = 1.0661026) (S7 Table). These results

indicate that both epigenetic and transcriptional regulations contribute

to COPD pathogenesis. Hence, knowing the causal relationship

between DNA methylation and gene expression is critical to

understand the complex and systematic molecular underpinnings of

COPD.

The relationships between gene expression and DNA
methylation levels are different in the COPD and CTRL
groups

While CpG islands in COPD are hypermethylated in general,

variations in the expression levels of individual genes are mainly

influenced by cis-acting methylation levels in a given gene’s

promoter region [38,39]. The association of DNA methylation

and gene expression was computed in a non-parametric fashion

using Spearman correlation statistics [40]. Cis regulation was

defined as significant correlation between the expression levels of a

gene and methylation levels in the promoter region of the gene

(Fig. 1A). DNA methylation levels in the promoter region of a

gene may also influence the expression of genes that are distal to

the given promoter region (trans regulation described in Fig. 1B)

[41,42]. At Spearman correlation p-value,0.01, we identified

7,353 and 2,825 cis regulated methylation-mRNA probe pairs for

COPD and CTRL, respectively. The corresponding cis regulated

genes significantly overlapped with the 704 differentially methyl-

ated and differentially expressed gene set above (Fisher Exact Test

p-values = 3:8|10{17 and 2:9|10{13 for COPD and CTRL,

respectively). We also identified 8,335,177 and 1,338,232 trans
methylation-mRNA probe pairs at p-value ,10{4 (FDRs = 0.04

and 0.2) for COPD and CTRL, respectively. There were 859,430

and 52,033 trans methyl-mRNA probes pairs in COPD and

CTRL where a genes’s methylation cis regulates its own

expression and trans regulates other genes’ expression. These

pairs were subjected to the causality test below. While the

differences in the numbers of cis and trans pairs in the CTRL and

COPD groups may be at least partially due to power differences

(52 versus 100 sample pairs in CTRL and COPD, respectively),

we observed similar differences after constraining each group to

have the same number of samples (S2 Fig.). There are 218 cis pairs

in common between the CTRL and COPD groups, a statistically

significant enrichment (Fisher’s exact test p-value = 1.661027).

However, there are only 171 trans pairs shared between the

CTRL and COPD groups (Fisher’s exact test p-value = 1).

Therefore, the relationships between gene expression and DNA

methylation are likely different between the COPD and non-

disease CTRL groups.

Methylation variation is generally causal for trans gene
expression

While it is reasonable to assume that methylation variation in

the promoter region of a gene is causal for changes in the gene’s

expression (cis regulation), changes in gene expression may also be

causal for methylation changes via trans regulations that can affect

processes such as the transfer of methyl groups [43,44]. These can

be represented as two possible causal models of cis and trans
regulation (shown in Fig. 1C): in model I, the expression of a trans
gene is regulated by gene expression that is cis modulated by

variations of the methylation levels in the corresponding gene’s

promoter region; and model II, the methylation levels for a gene in

cis is regulated by the expression level of a gene in trans. In

addition to these causal relationships, the cis and trans regulation

can be independent, regulated by an unknown factor X (model

III). To infer the causal relationship between gene expression and

methylation variations, we developed a causality test similar to

previously developed causality tests [45–47] (see Methods for

details). By applying the causality test, we identified 30,177 trans
pairs in the CTRL group (FDR = 0.03) and 362,095 trans pairs in

the COPD group (FDR = 0.0014) whose methylation levels likely

regulated the expression of trans genes (Fig. 2A and 2B). For all of

these trans pairs, the strong correlation between methylation and

trans gene expression was predicted by our modeling to be

mediated by the expression levels of the cis gene (Model I in

Fig. 1C). Of the putative causal relationships identified by our

approach, only 1,241 and 19,173 trans gene-methylation pairs

identified in the CTRL and COPD groups, respectively, were of

the Model II type (Fig. 1C) in which trans gene’s expression R
methylation in cis gene R cis gene’s expression (Fig. 2C and 2D).

Integrative Analysis of DNA Methylation and Gene Expression Data
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Fig. 1. Relationships between DNA methylation and gene expression. A) Cis regulation was defined by the correlation of the methylation
level at the promoter region of a gene with expression level of the gene. B) Trans regulation was defined by the correlation of a methylation level at
the promoter region of a gene with expression level of other genes. C) Potential relationships between cis and trans regulations. There are two
potential causal mechanisms of cis and trans connections: Model I, where the methylation level regulates trans gene expression via the cis gene
expression, and Model II, where Trans gene expression regulates the cis gene via controlling its methylation level. It is also possible that cis and trans
connections are independently regulated by a factor X.
doi:10.1371/journal.pgen.1004898.g001
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Fig. 2. The causality test of trans methyl-mRNA pairs. A) and B) are causality test results for the causal model whereby methylation regulates
trans gene expression (methylation mjR cis gene expression gjRtrans gene expressiongi) in control and COPD data sets, respectively. The Y-axis is
the –log10 of the p-values for the Spearman correlation between mj and gi and the X-axis is –log10 of the p-values for the Spearman correlation
between mj and gi Dgj . A causal relationship (methylationmj R cis gene expression gjRtrans gene expressiongi) was defined if the p-value of
corr(mj ,gi) was ,0.0001 and the p-value of corr(mj ,gi Dgj)was.0.01 (see Methods for details). A total of 30,177 and 362,095 causal pairs were inferred
in control and COPD samples, respectively. C) and D) are the causality test results for the causal model whereby trans gene expression regulates
methylation variation (trans gene expressiongjRmethylationmi R cis gene expressiongi) in control and COPD data sets, respectively. The Y-axis is the
–log10 of the p-values for the Spearman correlation corr(gi ,gj)and the X-axis is –log10 of the p-values for the Spearman correlation corr(gj ,gi Dmj). A
causal relationship (trans gene expressiongjRmethylationmiR cis gene expressiongi) was defined if the p-value of corr(gi ,gj)was ,0.0001 and the p-
value of corr(gj ,gi Dmj) was.0.01 (see Methods for details). A total of 1,241 and 19,173 causal pairs were inferred in control and COPD, respectively.
doi:10.1371/journal.pgen.1004898.g002
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These results indicate that the association between trans gene

expression and methylation in a cis gene, is overwhelmingly driven

by changes in cis gene expression which is regulated by

methylation changes in the cis gene.

Key regulators in CTRL and COPD lung
We next assessed whether there were any epigenetic hotspots in

which the expression levels of many genes in trans varied as a

consequence of a single cis gene whose expression levels were

altered by methylation events in cis. Such cis genes can be

considered as key regulator genes. Towards this end we

characterized the number of trans genes causally associated with

cis genes as determined by the causality test above and found that

the numbers of cis genes and their causally regulated trans genes

follow a scale-free distribution (Fig. 3; linear in the log-log plot).

That is, most cis genes regulate a small number of trans genes, but

there are a few cis genes that regulate a large number of trans
genes as downstream targets. We defined key regulators as genes

whose number of downstream targets is larger than the mean plus

two standard deviations across all cis genes. Given this definition,

we identified 67 genes as key regulators in the CTRL group and

126 in the COPD group (S8–S9 Tables). These key regulators

influence a significant number of downstream genes. There are 6

regulators in common between the CTRL and COPD groups:

FOXK2, HEATR2, EPAS1, PLXNB2, GAK, and YOD1.

However, only a small portion of their downstream target genes

is shared, with the biological enrichments revealed by these

downstream targets are different between the CTRL and COPD

groups. These results suggest that epigenetic regulation of gene

expression mediated by DNA methylation has different biological

consequences between the COPD and CTRL groups. More

detailed analyses of these key regulators in terms of methylation

patterns, downstream targets, and their regulated biological

processes are presented in the S1 Text. In summary, we reveal

that multiple key regulators target similar sets of genes indicating

that the epigenetic control of gene expression by methylation is

seemingly complex (S3–S4 Fig.). The patterns were similar if more

stringent definition (the number of downstream targets. the mean

plus 3 standard deviations) of key regulator was used (S5 Fig.).

There were multiple key regulators in COPD regulating genes

involved in metabolic processes and immune response, which are

processes known to be involved in COPD pathogenesis and

progression.

EPAS1 is the only key regulator consistently associated
with multiple COPD disease severity traits

To further investigate key regulators in COPD development

and progression we compared the expression levels of the key

regulators and their downstream genes with genes associated with

COPD disease severity related clinical features. Five COPD

related severity measures were available in the LGRC data set,

including DLCO (Diffusing capacity of the Lung for Carbon

Monoxide) [48], BODE (Body mass index, airflow Obstruction,

Dyspnea and Exercise capacity) index [49], FEV1 (Forced

Expiratory Volume) percentage predicted [50], FEV1/FVC

(Forced Vital Capacity) ratio, and emphysema percentage.

DLCO, FEV1 percentage predicted, and FEV1/FVC ratio

decrease as COPD severity increases, while BODE index and

emphysema percentage increase with disease severity.

At p-value,0.05, methylation levels of the promoter regions of

3 of the 126 key regulators in COPD groups, ACSF3, SELO, and

EPAS1, significantly correlated with all 5 disease severity

phenotypes (Fig. 4A; S10 Table). At p-value,0.01, we identified

572 expression traits in the COPD group as significantly

correlated with DLCO (FDR = 0.24), 1164 genes with BODE

(FDR = 0.12), 545 genes with FEV1 percentage predicted

(FDR = 0.27), 333 genes with FEV1/FVC (FDR = 0.40), and

1702 genes with emphysema percentage (FDR = 0.09). There was

no key regulator gene whose expression levels consistently

correlated with all 5 COPD severity phenotypes. Therefore, to

strengthen the association between key regulators and COPD, we

compared the disease phenotype gene expression signature sets

with each of the key regulator’s downstream targets (Fig. 4B; S11

Table). Of the 126 key regulator genes, EPAS1 was the only gene

whose downstream genes were significantly overlapping with all

disease phenotype gene expression signature sets (Fig. 4B).

We further compared the downstream genes of key regulators in

COPD with known COPD signatures. Recently, Campbell et al.
reported a set of 127 genes whose expression levels were

significantly associated with regional emphysema severity in a

mouse model [51]. Our human mRNA dataset includes 104

orthologous genes out of these 127 mouse emphysema severity

associated genes. When directly comparing the emphysema

associated genes in mouse and our emphysema percentage related

genes in human, only 10 of them overlap (Fisher’s exact test p-

value = 0.76). When comparing these 104 genes to the down-

stream target genes of all key regulators in COPD, only the

downstream genes of EPAS1 significantly overlap with this

emphysema severity associated gene set (S12 Table); EPAS1 itself

is one of the emphysema severity associated genes in mouse.

Among the 104 emphysema severity associated genes in mouse, 30

of them overlap with the downstream genes regulated by EPAS1
(p-value = 5.1610215). Expression levels of 4 of the 30 overlapping

genes are positively correlated with EPAS1 methylation levels

indicating that their expression levels increase as emphysema

severity increases. One of the four genes, CD79B, was positively

correlated with EPAS1 methylation levels, which is consistent with

previous reports that B cell abundance increases as emphysema

severity increases [51,52]. Expression levels of the remaining 26

genes are anti-correlated with EPAS1 methylation levels; their

expression levels are expected to decrease as emphysema severity

increases. For example, gene expression levels of members of the

TGF-beta pathway such as ACVRL1 are inversely correlated with

EPAS1 methylation levels. This observation agrees with previous

reports in which TGFBR2 was shown to be down regulated in

regions of severe emphysema [53].

EPAS1 regulates a unique and significant set of
downstream genes in COPD

EPAS1’s methylation profile and its downstream genes are

distinct from ones of other regulators (S4 Fig.). Only 6% of

downstream targets of the key regulator GAK, which regulated the

largest number of downstream target genes, overlapped with the

EPAS1 downstream target genes (Fisher’s exact test p-value = 1).

EPAS1 downstream target genes are enriched for multiple GO

biological processes (S13 Fig.) including anatomical structure

formation involved in morphogenesis (p-value = 1.1761026),

adherens junction assembly (p-value = 3.5361026), locomotion

(p-value = 5.9261026), angiogenesis (p-value = 1.2261025), and

cell division (p-value = 1.5261025). EPAS1 is differentially

expressed and methylated between the CTRL and COPD groups

(S6 Fig.). The putative causal relationships identified between

EPAS1 and trans genes associated with methylation changes in

the EPAS1 promoter region, the association of EPAS1 with

COPD severity measures, and its differences between the CTRL

and COPD groups indicate that EPAS1 is a putative key causal

regulator of multiple COPD severity phenotypes in human and

emphysema severity associated genes in mouse.

Integrative Analysis of DNA Methylation and Gene Expression Data
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Fig. 3. The numbers of downstream genes regulated by DNA methylation level variation follow a scale-free distribution (a linear
relationship in log-log plots). A) The numbers in control; B) The numbers in COPD.
doi:10.1371/journal.pgen.1004898.g003

Fig. 4. Comparing characteristics of key regulators with 5 COPD severity related traits in LGRC. A) Comparing lung DNA methylation
profiles of key regulators with 5 COPD severity related traits by Spearman correlation. At the Fisher’s exact test p-value ,0.05, the DNA methylation
level variations of 3 key regulators, ACSF3, SELO, and EPAS1, were correlated with all 5 COPD severity related traits. B) Comparing downstream genes
of key regulators with gene signature sets for 5 COPD severity related traits by the hypergeometric test. At the Fisher’s exact test p-value,0.05, only
the key regulator EPAS1’s downstream genes significantly overlapped with gene signature sets for all 5 COPD severity related traits.
doi:10.1371/journal.pgen.1004898.g004

Integrative Analysis of DNA Methylation and Gene Expression Data
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EPAS1 downstream genes overlap with hypoxia
responsive genes in pulmonary artery endothelial cells

EPAS1 is a hypoxia-responsive transcription factor and is also

known as Hypoxia-inducible Factor 2 alpha (HIF2a) [54,55]. It is

regulated by oxygen through enzymatic post-translational hydrox-

ylation of the a subunit [56]. With a sufficient supply of oxygen,

HIF genes are degraded. But under hypoxic conditions, HIF genes

bind directly to DNA and enhance transcription of target genes

[57,58]. While several studies have revealed that HIF2a has been

implicated in cancer [59–62], the specific physiological functions

of EPAS1 are not yet fully understood. There have been several

studies regarding hypoxic response genes in different tissues

including breast, kidney, head and neck, and lung [63–67]. From

these data we found that our predicted EPAS1 downstream target

genes significantly overlapped with HIF regulated genes only in

primary human pulmonary artery endothelial cells (Fisher’s exact

test p-value = 0.004) [63], but not with the other hypoxia

signatures defined in other tissues such as breast cancer, head

and neck cancer, and normal kidney (p-values = 0.74, 0.24, and

0.15, respectively). These results suggest that the regulation of

hypoxia responsive genes by EPAS1 may be a unique character-

istic of COPD lung samples. In addition to directly binding to HIF

response elements, EPAS1 may regulate downstream gene

expression by regulating or interacting with other transcription

factors such as AREB6/ZEB1 or miRNAs (see S1 Text).

EPAS1 protein abundance is lower in lung tissues of
COPD patients

EPAS1 expression levels are lower in COPD lung tissue

compared to CTRL lung (S6A Fig.). To test whether EPAS1

protein abundance concordantly changes with EPAS1 gene

expression levels in lung tissues of COPD patients, we stained

lung tissue blocks from 5 COPD patients and 4 non-COPD

patients using a polyclonal anti-EPAS1 antibody (NB10-122;

Novus Biologicals, CO, USA) and categorized EPAS1 abundance.

All 4 slides from non-COPD patients contained high levels of

EPAS1, and 3 of 5 slides from the COPD patients contained low

levels of EPAS1 as shown in S7 Fig., so that a statistically

significant difference in EPAS1 protein levels was observed

between the two groups (p-value = 0.03). The difference was

similar for endothelial cells (EPAS1 high in 4 of 4 non-COPD

samples and low in 3 of 5 COPD samples) and alveolar (EPAS1

high in 4 of 4 non-COPD samples and low in 3 of 5 COPD

samples) cells.

EPAS1 expression levels are lower in lung tissue of mice
chronically exposed to smoking

The EPAS1 target genes we predicted significantly overlap with

genes associated with emphysema caused by smoking in mouse, as

indicated above. To investigate whether EPAS1 expression levels

change when mice start to develop emphysema after chronic

smoking exposure, we checked Epas1 expression levels in two

different chronic smoking mouse models using C57BL/6J and A/J

mice. C57BL/6J mice start to develop emphysema after 6 month

exposure to chronic smoking [68] while A/J mice start to develop

emphysema after only 2 months of exposure to chronic smoking

[69]. Epas1 expression levels in smoking mice (6 months of

smoking for C57BL/6J and 2 month for A/J) are significantly

lower than levels in corresponding age-matched non-smoking mice

(Fig. 5, p-value of the t-test = 0.009 and 0.007 for the C57BL/6J

and A/J models, respectively). We also checked the Epas1
downstream target gene vascular endothelial growth factor

(Vegfa), given it is also a hypoxia responsive gene. Smoke exposed

mice had lower amount of Vegfa expression as well (Fig. 5, p-value

of the t-test = 4.061027 and 0.01 for the C57BL/6J and A/J

smoking models, respectively), which suggests that Epas1 down-

stream target genes were down regulated in the smoke exposed

mice at the time when emphysema develops in these models.

These results are consistent with our causal predictions relating to

EPAS1.

The EPAS1 knockdown signatures in human and mouse
endothelial cell lines match the predicted EPAS1
downstream target genes

To test whether EPAS1 causally regulates the downstream

target genes we predicted, we knocked down EPAS1 expression

via siRNA in human umbilical vein endothelial cells (HUVEC)

and mouse endothelial cell line C166 (see Methods for details) and

then performed RNASeq analysis to quantify genome wide gene

expression changes. When comparing endothelial cells treated

with EPAS1 siRNAs and scrambled siRNAs, we identified an

EPAS1 siRNA signature consisting of 2796 and 3730 genes in

human and mouse endothelial cell lines, respectively, whose

expression levels significantly changed (t-test p-value,0.05),

including EPAS1 itself (p-value = 0.002 and 0.02) and the EPAS1
downstream target gene VEGFA (p-value = 0.03 and 0.01). The

EPAS1 siRNA signatures derived from human and mouse cell

lines were highly consistent, with 695 genes in common to both

signatures (p-value = 7.2610265). Both signatures not only signif-

icantly overlapped with EPAS1 downstream genes (p-val-

ue = 7.361027 and 1.5610212), but also with hypoxia response

genes in endothelial cells (Fisher’s Exact Test p-value = 5.861028

and 1.2610212 in the human and mouse signatures, respectively).

Moreover, the EPAS1 siRNA signatures consistently overlapped

genes associated with the COPD severity phenotypes (Table 1).

These results together validate that EPAS1 causally regulates the

downstream target genes we predicted, and that these genes in

turn affect COPD development and progression.

Discussion

Genetic, epigenetic, and environmental factors are known to

contribute to COPD risk and disease progression. Therefore to

elucidate more comprehensive molecular regulations of COPD

disease, we developed a novel systematic approach to identify key

regulators in COPD and CTRL lung tissue by integrating

genome-wide DNA methylation and gene expression patterns.

Using our causality test, we link the variation of the expression of

numerous genes to only a few key regulators that are

systematically regulated by variations in DNA methylation

including 126 for COPD and 67 for non-disease lung. These

key regulators such as EPAS1 can be targets of potential

therapeutic intervention.

We also highlighted important biological pathways associated

with these key regulators in normal and diseased lung by

hierarchical clustering of their common downstream genes. We

observed common epigenetic regulations in both CTRL and

COPD samples in expression of genes involved in metabolic- and

cilium related- biological processes. Although cilium-related genes

display the most varying expression levels both in CTRL and

COPD samples they are not associated with disease phenotypes.

This is an interesting observation as in the lung ciliary-related

proteins keep the airways clear of mucus and dirt, allowing one to

breathe easily and without irritation. Key regulators of these genes

are WDR90 in CTRL and PAX9 in COPD. Since mRNA levels

of PAX9 are associated with WDR90 methylation in CTRL, this

suggests the wide variance of expression of the cilium related genes

Integrative Analysis of DNA Methylation and Gene Expression Data

PLOS Genetics | www.plosgenetics.org 8 January 2015 | Volume 11 | Issue 1 | e1004898



are explained by epigenetic regulations via methylation level of the

regulators in the same pathway.

Similarly, we observed common epigenetic regulations with

metabolic processes, including RNA processing and chromatin

modifications, by key regulators both in CTRL and COPD.

However, unlike the ciliary-related pathway; the key regulators

are not exactly the same for COPD and CTRL. These

observations highlight in part potential mediators of COPD

pathophysiology. In COPD, there are three groups of key

regulators obtained based on their shared downstream genes (S4B

Fig.). The key regulators in the two large clusters control similar

downstream genes involved in metabolic processes, RNA

processing, chromatin modification, immune response and cell

cycle. This type of coordinated yet diverse pathway regulation

seems fitting with the current view of COPD, in that the disease

pathologically is not limited to the lungs, but rather a disorder

with systemic features. This view is driven in part by the strong

associations of COPD with increased CVD risk, anemia,

musculoskeletal diseases as well as the metabolic syndrome and

Type 2 diabetes mellitus [70]. While the underlying molecular

basis linking COPD with these comorbidities is still not fully

understood, alterations in several pathophysiological features

have been considered important such as systemic inflammation,

oxidative stress, adipokine metabolism, insulin resistance and

obesity.

Importantly, beyond the pathway level, we were able to identify

genes of importance through looking at the key regulators

associated with these cluster. One interesting gene was GAK, as

it was predicted to regulate the largest number of downstream

genes. GAK is a cyclin G associated kinase, and is known to

regulate clathrin-mediated membrane trafficking [71]. Recently, it

has also been shown that the disruption of the kinase domain of

GAK, in mice, causes embryonic lethality due to pulmonary

dysfunction including notable alterations in the distribution of lung

surfactant protein A [72], a known biomarker of COPD disease

severity [73]. These studies in mice were prompted by the fact that

gefitinib, which is an inhibitor of the epidermal growth factor

receptor and used to treat non-small cell lung cancer in humans,

has significant adverse side effects in therapy, such as respiratory

dysfunction, which in part has been attributed to the fact the

gefitinib also inhibits GAK [72]. While a role for GAK in COPD

has not been previously linked, our observations would suggest

further investigation is warranted. Importantly, about 87% of key

regulators in COPD (111/126) share similar downstream genes

with GAK. In addition, some of their methylation levels are highly

correlated each other, indicating overall that regulation of

Fig. 5. Gene expression levels of Epas1 and Vegfa were lower in chronic smoking mice than non-smoking age-matched mice at the
time when COPD develops in different mouse models. A) Gene expression levels of Epas1 and Vegfa in C57BL/6J mice that develop COPD
after 6 months chronic exposure to cigarette smoke. B) Gene expression levels of Epas1 and Vegfa in A/J mice that develop COPD after 2 months
chronic exposure to cigarette smoke. The t-test was used to compare Epas1 or Vegfa expression levels in mice with or without chronic smoke
exposure.
doi:10.1371/journal.pgen.1004898.g005

Table 1. EPAS1 siRNA signatures in human and mouse endothelial cells overlap with multiple COPD disease severity related
signature sets.

BODE DLCO FEV1
FEV1/FVC
RATIO

RCL Emphysema
Percentage

Emphysema
signatures (mouse)

Human siRNA (2796) 179 (p = 6.7e-8) 85 (p = 0.001) 73 (p = 0.02) 44 (p = 0.11) 291 (p = 4.2e-20) 29 (p = 4.4e-5)

C166 siRNA (3730) 235 (p = 6.9e-13) 115 (p = 5.5e-6) 86 (p = 0.038) 58 (p = 0.027) 318 (p = 7.4e-16) 28 (p = 0.004)

doi:10.1371/journal.pgen.1004898.t001
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downstream genes may be mediated by multiple key regulators in

a systematic way rather than by single master controllers.

Other potentially relevant mediators of COPD pathophysiology

are those key regulators that showed a different methylation profile

and different downstream target gene set as compared to all other

regulators, such as was the case with EPAS1. To our knowledge

EPAS1 has not been previously linked with COPD pathophys-

iology. This is despite the fact that EPAS1 is one of the major

mediators of the transcriptional response to physiological hypoxia,

an environment typical of lung alveolar as progressive airflow

limitation increases with COPD severity. EPAS1 is a hypoxia-

responsive transcription factor and is also known as hypoxia-

inducible factor 2 alpha (HIF-2a) [54,55]. Interestingly, compared

to the ubiquitous expression of HIF1a, another key mediator of

hypoxic responses, EPAS1 has relatively high levels of expression

in the placenta, heart, lung and endothelial cells. Importantly, a

previous study reported alveolar hypoxia increases in prevalence

as disease severity increases [74] and mounting evidence suggests,

hypoxia is more than a signifier of advanced COPD but rather a

key player in many of the maladaptive processes as well as the

systemic comorbidities associated with COPD. Since sustained

exposure of cultured lung alveolar epithelial cells to hypoxia

maintained the induction of EPAS1 expression as induced by

short-term hypoxic exposure, the decreased EPAS1 expression

observed in COPD may in fact result in maladaptive hypoxia

responses [75]. Thus understanding the contribution of EPAS1 to

disease and its mechanisms in it would be very promising for

treatment of disease.

In this study we demonstrate that EPAS1 methylation level is

significantly associated with disease severity and that an increase in

methylation decreases EPAS1 gene expression. Thus we hypoth-

esize that disease severity may be systematically controlled by

altered regulation of a large set of EPAS1 downstream genes.

Several observations in humans and mouse have demonstrated

that altered EPAS1 expression can affect lung physiology.

Specifically gain-of-function mutations in humans were associated

with pulmonary hypertension, increased cardiac output and heart

rate as well as increased pulmonary ventilation relative to

metabolism [76]. However, in a heterozygous EPAS1 mutant

mouse, haploinsufficiency for the oxygen-sensing factor resulted in

augmented carotid body sensitivity to hypoxia, including irregular

breathing, apneas, hypertension and elevated norephinephrine

levels on one mouse strain background, but protection against

pulmonary hypertension on a different strain [77,78]. There are

several consequences of hypoxia in COPD which may contribute

to disease severity, with pulmonary hypertension in part due to

hypoxic pulmonary vasoconstriction driven by alveolar hypoxia,

being one of them.

Another possible link between hypoxia mediated COPD disease

severity and EPAS1 may be the fact that EPAS1 is a known

transcriptional activator of the VEGF [55], which was shown in

our study to be one of EPAS1 downstream genes and one of

EPAS1 siRNA signature genes. VEGF expression level is

associated with COPD phenotypes and downregulated in COPD

samples in the LGRC dataset. VEGF is involved both in the

regulation of the bronchial microvascular changes as well as in the

inflammatory airway changes in COPD. In patients with

emphysema, low levels of VEGF are thought to promote the

destruction of alveoli, since VEGF normally acts to induce the

expression of anti-apoptotic proteins and acts as a survival factor

for endothelial cells. The importance of VEGF in survival signals

necessary for the maintenance of normal lung structure and

consequences characteristics of emphysema has also been

confirmed in animal studies disrupting VEGF signaling either

through genetic deletion of lung VEGF or through VEGF receptor

blockage. VEGF is also thought to play a dual role in the lung by

regulating not only apoptosis but also efferocytosis, which is the

process involved in phagocytosis of apoptotic cells. The net effect

of efferocytosis is anti-inflammatory because dying cells are

removed before they undergo postapoptotic necrosis and anti-

inflammatory mediators are released thereby suppressing further

adaptive immune responses. Therefore, dysregulation of VEGF
via altered EPAS1 regulation could link hypoxia to mechanisms of

COPD severity [79].

One other point of interest is the fact that neonatal mice

lacking complete EPAS1 expression have deficient lung surfac-

tant, such as surfactant D (SP-D), in addition to other lung

abnormalities and die of respiratory failure [80]. This deficiency

has been attributed to reduced expression of VEGF as VEGF

rescue therapy resulted in restoration of surfactant production

and less respiratory distress in the EPAS1 null mice compared to

wildtype. Surfactants, such as SP-D have many functional

properties including anti-inflammatory and anti-oxidant capaci-

ties, and protection against respiratory infections. In various

mouse models, SP-D appears to play a distinct role in protecting

murine lungs from the development of emphysematous changes

possibly by reducing inflammation and oxidative stress in the

lungs. While in humans, elevated serum SP-D level is an apparent

biomarker of COPD, there is a reported inverse relationship with

bronchoalveolar lavage fluid levels, whether elevated or de-

creased levels of SP-D are important in pathogenesis are still

unclear [81]. Nonetheless, this is another clear example of how

EPAS1, through modulation of VEGF, may contribute to the

chronic inflammatory response and tissue destruction in COPD

through augmented apoptosis, impaired efferocytosis, and

abnormal tissue remodeling.

Many studies focus on genetic contribution to COPD develop-

ment and phenotypes [82–84] and a recent review paper provides

an updated list of COPD associated genes [85]. There are 140

COPD susceptible genes identified in at least one of COPD

GWAS studies. When we overlapped these CODP susceptible

genes with EPAS1 downstream genes, the overlap is marginal

significant (Fisher’s exact test p-value = 0.053), but it is the best

overlap comparing with other regulator’s downstream genes (the

second best p-value is above 0.1). This enrichment of COPD

GWAS genes in EPAS1 downstream further substantiates critical

role of EPAS1 in the disease.

At present it is still unclear how the methylation level of key

regulators, in particular the predominant hypermethylation seen

in COPD is regulated upstream. A recent study has also

demonstrated that DNA methylation is widely disrupted and

predominantly hypermethylated in small airway epithelia of

COPD patients [86]. In addition to cigarette smoking, evidence

has shown that hypoxia is also an important regulator of a cell’s

global epigenetic profile. For an example, chronic hypoxia induces

a significant increase in global DNA methylation such as in human

pulmonary fibroblasts [87]. Some of the underlying mechanisms

that may account for global epigenetic alterations in DNA

methylation include changes in the activity of epigenetic modifying

enzymes such as DNA methyltransferases (DNMT) or in levels of

the methyl-donor S-adenosylmethionine (SAM). DNA hyper-

methylation has also been demonstrated in PwR-1E prostate cell

cultures in response to chronic hypoxia, a consequence linked to

increased de novo DNMT activity due to elevated expression of

DNMT3B as well as a hypoxia-induced decrease in levels of SAM

suggesting an increase in SAM usage in hypoxic cells [88].

Interestingly, low circulating levels of folate and increased

homocysteine levels, which are involved in the generation of
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SAM via the one-carbon cycle, have been associated with COPD

patients [89].

Compared with the number of inferred relationships that

methylation variations causally regulate gene expression (methyl-

ation R gene expression) in trans, the number of inferred

relationships that gene expression variations causally regulate

methylation variations (gene expression Rmethylation) in COPD

is small (362,095 vs. 19,173). Similar to the methylation R gene

expression relationships, the numbers of genes’ methylation levels

regulated by a gene’s expression level in trans follow a scale-free

distribution (S8 Fig.). The top putative causal regulator

CDK5RAP1 controls methylation levels of 152 genes in COPD.

CDK5RAP1 is a RNA methyltransferase [90]. Both DNA and

RNA transmethylations are affected by the availability of the

universal methyl donor substrate S-adenosylmethionine (SAM).

Interesting, 44 of 126 key methylation R gene expression

regulators overlap with CDK5RAP1 downstream genes (p-

value = 4.9610257). And among the 44 genes in the overlap, 32

genes methylation levels negatively correlate with CDK5RAP1
expression level and 12 of them positively correlate. This result

suggests that one possible mechanism CDK5RAP1 regulating

methylation levels of key COPD regulators is through affecting

availability of SAM.

It is worth to note that there are differences between statistical

causal and biological causal relationships. Similar to other causal

inference studies [45–47,91], all causal relationships inferred from

the causality test in this study imply statistical causal relationships.

Perspective validations are needed to convert statistical relation-

ships into biological causal relationships [92]. It is also worth to

note that the causal relationship gA?gB does not imply geneA
regulates geneB by direct physically interact even the causal

relationship is biologically validated. GeneA might regulate geneB
through geneC.

There are some limitations in the array-based technologies used

for measuring gene expression and methylation profiles. Tran-

script levels of different splicing isoforms were not uniquely

measured in the Agilent arrays. Different splicing isoforms of

genes, such as NOD2 [93] and RAGE [94], associate with COPD

severity and progression. Differential splicing is as prevalent as

differential gene expression based on RNAseq analysis of other

complex lung diseases such as idiopathic pulmonary fibrosis [95].

Similarly, methylation arrays can’t differentiate methylation forms

of cytosine, 5-methylcytosine (mC) and 5-hydroxymethylcytosine

(hmC). DNA demethylation in mammals involves oxidizing mC to

hmC followed by deamination or oxidation steps [96]. It was

shown that hmC can offset mC’s repression on gene expression

[97] and hmC plays an important role in embryogenesis and brain

development [98]. However, hmC level in lung tissues is low [99]

so that we can assume that the DNA methylation level measured

by arrays was mainly due to mC level. RNA sequencing

technologies are needed to precisely quantify contributions of

transcript splicing isoforms or hmC levels in COPD pathogenesis

or progress.

In summary, we propose a potential epigenetic mechanism of

COPD using a novel systematic approach integrating cis and trans
regulation between DNA methylation and gene expression. This

approach provides mechanisms of how variation of the expression

of genes is systematically regulated by DNA methylation level of

key regulators in COPD. The severity of COPD can be regulated

by methylation level of EPAS1 and, in turn, it regulates large

numbers of gene expression variations. Therefore, if lowering

methylation level of EPAS1 or increasing EPAS1 expression level

might be very useful to treat patients with this irreversible disease.

This approach can be applied to other diseases where DNA

methylation can contribute to disease development such as lung

cancer to find key epigenetic contribution to the diseases.

Methods

Samples, gene expression and DNA methylation data in
the LGRC

The LTRC is a resource program of the NHLBI that provides

human lung tissues to qualified investigators for use in their

research. The program enrolls donor subjects who are antici-

pating lung surgery, collects blood and extensive phenotypic

data from the prospective donors, and then processes their

surgical tissues for research use. The diagnoses of COPD are

based on clinical, imaging and pathological data including chest

CT images, pulmonary function tests, exposure and symptom

questionnaires, and exercise tests. The COPD class in this study

was based on having a FEV1/FVC,.7 on pulmonary function

testing. The ‘‘control’’ lungs consist of adjacent histologically

normal lung tissues obtained at time of nodule resection from

patients with normal lung function testing parameters. In terms

of tissue collection procedure, all lung tissue cores were collected

at the time of surgical resection, surgical biopsy or transplan-

tation and flash frozen in liquid nitrogen prior to being stored at

280.

Data used in the study were obtained from the publicly available

LGRC data portal (http://www.lung-genomics.org). All LGRC

lung mRNA data were generated using Agilent V2 human whole

genome arrays and were deposited into GEO database as

GSE47460 by LGRC consortium. All RNA samples subjected to

gene expression profiling were with RIN.7.0. Due to the number

of samples, multiple batches of arrays were necessary, so 10% of

the arrays were picked at random to have replicates throughout

each batch to account for possible batch effects. The feature

extracted data was normalized using a pairwise cyclic loess

approach, and the probes were collapsed to one probe per gene by

selecting the probe with the highest average signal. The processed

mRNA arrays data were directly downloaded from the LGRC

data portal.

DNA methylation data were generated using Nimblegen 2.1 M

Whole-Genome Tiling array. The quality of each probe was

compared with the background probe signals and probes with low

quality were removed from the dataset. The DNA methylation level

(b value) of each tiling probe was estimated using the CHARM

method [27,100]. The estimated methylation level for each sample

from the raw data was almost identical with the processed

methylation level downloaded from the LGRC data portal. For

COPD and controls there are 218 and 94 gene expression arrays,

respectively. There are 179 and 76 methylation arrays for COPD and

controls, respectively. To check for potential errors in labeling of the

sample name, we applied the MODMatcher (Multi-Omics Data

Matcher) procedure to identify matched methylation and gene

expression samples based on the assumption that the correlation of

methylation mRNA profiles from the same individual was signifi-

cantly higher than ones from randomly paired samples [25]. The

matching result was stable after 25 iterations of sample alignments

with 100 COPD sample pairs and 52 control sample pairs selected for

further analysis (S14 Table). The demographic characteristics of these

samples are listed in S1 Table. Both gene expression and methylation

profiling data were adjusted for covariates as yi*genderz
agezsmoking statuszpackage per year where yi is genei’s expres-

sion or methylation level. Means plus residuals were used for further

analysis.

Potential biological subtypes in the samples were compared with

disease status S9 Fig., S15–S19 Tables, detailed in S1 Text).
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Disease phenotypic information in LGRC
There are 5 different measurements of lung function for patients

in the LGRC cohort: 1) DLCO (Diffusing capacity of the Lung for

Carbon Monoxide) [48], 2) BODE (Body mass index, airflow

Obstruction, Dyspnea and Exercise capacity) index [49], 3) FEV1

(Forced Expiratory Volume) percentage predicted [50], 4) FEV1/

FVC (Forced Vital Capacity) ratio, and 5) emphysema percentage.

For each clinical phenotype, only a part of COPD patients were

measured: 85 for DLCO, 98 for BODE, 81 for FEV1 and FEV1/

FVC ratio, and 62 for the emphysema percentage.

Mapping of methyl probes to corresponding genes
Each methyl probe was mapped to the nearest transcript

starting site. Transcription information of hg18 was fetched from

UCSC Genome browser database and further processed using the

Bioconductor GenomicFeature package. A probe was mapped to

the nearest gene if the distance between the probe and the nearest

gene’s transcription starting site in was less than 10 kilobases.

Estimating False Discovery Rates (FDRs) based on
permutation tests

FDRs were estimated in multiple statistic tests based on

permutation tests. For differential gene expression analysis

between COPD and control samples, we permuted sample labels

(COPD or CTRL), then applied the t-test to the permuted data to

identify significant differentially expressed genes. We performed

the permutation test 100 times to estimate FDRs. Similarly, for

differentially methylation analysis between COPD and control

samples, we permuted sample labels, and applied the permutation

scheme 100 times to estimate FDRs for differentially methylated

genes at each p-value of the t-test.

For estimating FDRs of cis or trans acting methylation-mRNA

probe pairs in COPD or control samples we permuted genome-

wide gene expression data 5 times, calculated pairwise correlation

between methylation and permuted gene expression profiles for all

possible pairs, and then counted cis or trans acting pairs in

permuted data at each p-value cutoff. Similarly, for association

analysis between gene expression and phenotypical data we

permuted genome-wide gene expression data 5 times, calculated

pairwise correlation between gene expression and phenotypical

data for all possible pairs, and then counted significant pairs in

permuted data at each p-value cutoff.

Gene Ontology (GO) analysis
To identify potential functions of selected gene sets, we

compared these gene sets with each GO biological process [101]

and computed functional enrichment using the hypergeometric

test. For the annotation, Agilent hgug4845a annotation data

corresponding to the mRNA microarray was used in the

Bioconductor GOstats package [102]. The embedded function

called ‘‘geneIdsByCategory’’ was used to fetch the list of genes

overlapping with each GO term. Any GO biological process

consisting of more than 1500 genes was considered non-specific

and was removed from the analysis.

The causality test for determining the relationship
between methylation and gene expression

For simplification purposes, we describe the causality test using the

COPD dataset, the corresponding values for the control dataset were

generated in a similar fashion. Given a significant cis methylation-

mRNA relationship for gene j (empirical probability estimate

P(mj ,gj DData)w1{pcutoffcis) and a significant trans methylation-

mRNA relationship between genes i and j (empirical probability

estimate P(mj ,gi DData)w1{pcutofftrans), where mj is the methyla-

tion level of CpG islands within genej’s promoter region, and gi and gj

are mRNA expression levels of genes i and j, there are multiple causal

reactive relationships among mj , gj , and gi (Fig. 1C). We focused on

two possible causal/reactive models: model I (mj?gj?gi), where the

methylation level of gene j causally regulates trans gene expression of

gene i through cis regulation on genej’s expression level; and model II

(gi?mj?gj ), where the expression level of gene i trans regulates the

methylation level of genej. As there are many potential models with

hidden regulators [47] we can’t enumerate all possible causal reactive

models, therefore, we modeled the causality test as an empirical

Bayesian estimation of the significance of each causal relationship

[46,47] instead of a model selection problem [45]. As shown by Chen

et al [46] and Millstein et al [47], the probability ofP(mj?gj?gi) can

be decomposed as a product of probabilities of a chain of statistic tests

P (mj ?gj ?gi )~P (mj?gj)P (mj ?gi Dmj ?gj )P (mj \gi Dgj Dmj?
gj ,mj?gi). Instead of calculating P(mj?gj?gi) for all possible

trios (171,750*15,260& 2:6|109), we required each association

test (p-values,0.01 and 10{4 for cis and trans regulations

determined above) to be significant so that only a small fraction

of all possible trios were subjected to the causality test.

If assuming that all methylation levels and gene expression levels

are normally distributed and that all causal relationships are linear,

the probability ofP(mj?gj?gi)can be estimated analytically.

However, the empirical data never perfectly fit to the underlying

model assumption. Thus, we applied a permutation approach to

estimate a null distribution at each step similar to Chen et al [46]. In

all permutation tests, we permuted only the gene expression data.

Note that all our tests are non-parametric. The p-values based on

permutation tests were similar to the nominal p-values. For

example, given a cis associationP(mj ,gj DData)w1{0:01,

P(mj?gj DData).0.99 based on permutation tests. The two models

mj?gi and gi?mjare equally possible given that mj and gi are

associated. Given a significant cis regulation and a trans association

P(mj ,gi DData)w1{1|10{4 and a non-informative prior

ofp(mj?gi)~0:5, we got P(mj?gi Dmj?gj)~P(mj ,gi Dmj?gj)

p(mj?gi)w0:9999 � 0:5. Thus, P(mj?gj?gi)was mainly deter-

mined byP(mj\gi Dgj Dmj?gj ,mj?gi).

gi Dgj was calculated as residuals from the linear regression of trans
gene expression gion cis gene expression gj . At Spearman correlation

p-value.0.01, 42.1% of tested pairs were independent. When

checking pairs selected from permuted data sets, only 21.4% of

tested pairs were independent. To estimate the FDR of the causality

test, # Causal Relationships permuted data g # Causalf=f
R elationships in real datag, we permuted the whole gene expres-

sion data 5 times. At the cutoff values noted above, we identified

362,095 pairs of causal relationships in COPD and 518 pairs in the

permuted data on average, with the corresponding FDR 1:4|10{3.

It is possible to set more stringent p-value cutoffs for the conditional

independent test mj\gi Dgj . At p-value.0.05 and 0.1, the corre-

sponding FDRs were 0.001 and7:6|10{4, respectively. As at the

independent test p-value.0.01, the corresponding FDR for the

causality test was far less than 0.05, so that we chose this set of causal

relationships for further analyses. Similarly, to test causality in the

opposite direction, gi?mj?gj , where trans gene expression

giregulates gene j’s DNA methylation level, we decomposed

P(gi?mj?gj) as P(gi?mj?gj)~P(mj?gj)P(gi?mj Dmj?gj)

P(gi\gj Dmj Dgi?mj ,mj?gj). At the same cutoff values noted above,

we identified 19,173 pairs of causal relationships gi?mj?gj in

COPD and 2 pairs in the permuted data, corresponding to an FDR

10{4. In the CTRL data set, we identified 30,177 causal

relationships as mj?gj?gi (FDR = 0.03) and 1, 241 causal

relationships as gi?mj?gj (FDR = 0.006).
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A similar causality test mj?gj?DiseaseStatus can be applied

to infer genes that are potentially causal to COPD (see S1 Text for

details).

Ethics statement
Immunohistochemistry staining of paraffin embedded human

lung tissue of de-identified patients was carried out with the IRB

approval (HS#12-00171) from Mount Sinai Hospital. Institutional

Animal Care and Use Committee (IACUC) approval (FO0501)

was obtained for the chronic smoke exposure mouse model

systems at St. Lukes Roosevelt Hospital.

Chronic smoking mouse models
C57Bl/6J and A/J mice (Jackson Labs, Bar Harbor, ME) were

exposed to cigarette smoke for 6 or 2 months respectively in a

specially designed chamber (Teague Enterprises, Davis, CA) for

4 hours a day, 5 days per week at a total particulate matter

concentration of 80 mg/m3. Animals were sacrificed 12 hours

after the last smoke exposure. Comparative analyses were made

with age-matched air-exposed C57Bl/6J and A/J mice that were

treated in an identical manner.

Quantifying Epas1 and Vegfa expression levels in mouse
lung tissues by qPCR

The total RNA from mouse lung tissues was extracted using RNeasy

Mini Kit (QIAGEN, Germany). Then cDNA was synthesized with

SuperScript III (Life Technologies, CA, USA). For quantitative PCR,

we utilized TaqMan gene expression assays (Applied Biosystems,

Canada), which contain prevalidated primers and TaqMan probe for

the individual genes. TaqMan Gene Expression Assay IDs are

Mm01236112_m1 and Mm01281449_m1 for mouse Epas1 and

Vegfa, respectively. The real-time PCR reactions were carried out

following the manufacturer’s protocol, and the gene expressions were

normalized to Rn18s (Mm03928990_g1).

IHC staining of human lung tissues of COPD and non-
COPD patients

The paraffin sections of human lung tissues were provided by

Histology Shared Resource Facility of Mount Sinai Hospital with

the IRB approval. The immunostaining was performed using

Vectastain ABC Elite Kit (Vector Laboratories, CA, USA) with

polyclonal anti-EPAS1 antibody (NB10-122; Novus Biologicals,

CO, USA). Following deparaffinization and hydration of sections,

antigen retrieval with 10 mM citrate buffer and blocking of

endogenous peroxidase with 0.3% H2O2-methanol were per-

formed. The tissue sections were blocked with 5% goat serum

diluted in 0.1% Tween-20 in phosphate buffered saline (PBS-T)

for 30 minutes, and then incubated in anti-EPAS1 (1:100) at room

temperature for 1 hour. The tissue sections were washed and

incubated with the secondary antibody anti-rabbit-HRP. After

washing, DAB substrate (3, 39-diaminobenzidine) was utilized to

obtain positive reactions.

EPAS1 siRNA in human and mouse endothelial cell lines
The cell lines of HUVEC (Lonza, MD, USA) and C166

(American Type Culture Collection, VA, USA) were cultured in

the appropriate media at 37uC with 5% CO2. The cells were

transfected with EPAS1 siRNA and non-targeting negative

control siRNA (Life Technologies, CA, USA) using Lipofectamine

RNAiMAX as recommended transfection protocols by the

manufacturer. After the treatments with 5 nM Silencer Select

siRNA (s4700 for EPAS1, s65525 for Epas1; Life Technologies,

USA) for 48 hours, the total RNA was purified with RNeasy Mini

Kit (QIAGEN, Germany). The efficiencies of knocked down the

EPAS1 expression were assessed by qPCR with 1.4% for

HUVEC, 3.2% for C166.

Approximately 250 ng of total RNA per sample were used for

library construction by the TruSeq RNA Sample Prep Kit

(Illumina) and sequenced using the Illumina HiSeq 2500

instrument with 100 nt single read setting according to the

manufacturer’s instructions. The RNAseq data set was deposited

in GEO as GSE62974. Sequence reads were aligned to human

genome assembly hg19 and mouse genome assembly mm10,

respectively, using Tophat [103]. Total 23,228 human and 22,609

mouse genes were quantified using Cufflinks [103]. siRNA

signatures were derived by comparing expression profiles of

EPAS1 or Epas1 siRNAs with non-targeting siRNAs at paired t-

test p-value cutoff 0.05 with resulting signature sizes of 2,796 and

3,730, and corresponding q-values [104] 0.11 and 0.07 for

HUVEC and C166, respectively.

Supporting Information

S1 Fig Comparison of DNA methylation profiles between

COPD and CTRL samples. DNA methylation level was measure

by b value and the mean of b value of methyl probes of CpG

islands within 1 million bases is shown for all chromosomes.

Global methylation levels were compared between CTRL (red)

and COPD (blue) (the upper panel) and most regions were

hypermethylated in COPD comparing with CTRL across whole

genomes (the lower panel). A) CpG island probes; B) non-CpG

island probes.

(TIF)

S2 Fig The numbers of cis and trans pairs derived using the

same number of samples in CTRL and COPD. A) The numbers

of cis pairs; B) The numbers of trans pairs.

(TIF)

S3 Fig Clustering results of 67 CTRL key regulators A) The

clustering result based on the methylation levels of key regulators.

The distance was measured as (1-Spearman correlation coeffi-

cient). There were two large clusters of key regulators (shown in

red boxes). B) The clustering result based on topological overlaps

of key regulators’ downstream genes. The distance was measured

as 1{OT (i,j). Key regulators were grouped into two clusters

similar as shown in S3A Fig.

(TIF)

S4 Fig Clustering results of 126 COPD key regulators. A) The

clustering result based on similarity of key regulators’ methylation

levels. The distance between methylation levels of COPD key

regulators was measured in the same way as in S3 Fig. Key

regulators were grouped into three clusters. The key regulators in

the blue dashed box were enriched for the GO biological processes

metabolic process, RNA processing, cell cycle, chromatin

modification. Genes in the cluster in the middle were enriched

for genes involved in the GO biological process immune response

and T-cell activation. EPAS1 was not included in any cluster. B)

The clustering result based on the topological overlaps of COPD

key regulators’ downstream genes. There were three distinct

clusters of COPD key regulators. The first and second cluster, C1

and C2, shared some common downstream genes but key

regulators in the C2 cluster regulated genes involved in immune

response and other defense processes specifically. The C3 cluster

consisted of regulators involved in ciliary related function. EPAS1
downstream genes were also unique compared to others, and

EPAS1 was not included in the three clusters.

(TIF)
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S5 Fig The clustering results of key regulators with higher

number of downstream genes.mean+3SD. There were 33 and 60

key regulators for CTRL and COPD set, respectively. Key

regulators were clustered based on their methylation profiles or

overlaps of their downstream genes. The clustering patterns were

similar to the corresponding ones based on key regulators of the

number of downstream genes.mean+2SD in S3–S4 Fig. EPAS1
(marked with the red arrow) was not included in these clusters in

COPD.

(TIF)

S6 Fig EPAS1 methylation and gene expression levels in CTRL

and COPD lung tissues. A) EPAS1 gene expression level was

lower in lung tissues of COPD patients; B) Methylation level of

EPAS1 promoter region was higher in lung tissues of COPD

patients; C) Methylation and gene expression levels of EPAS1
were anti-correlated in lung tissues of COPD patients.

(TIF)

S7 Fig An example of immunohistochemistry staining of lung

tissues from COPD (A) and non-COPD (B) patients using EPAS1

antibody.

(TIF)

S8 Fig Numbers of downstream genes’ methylation levels trans
regulated a key regulator gene in lung tissues of COPD patients

followed a scale-free distribution.

(TIF)

S9 Fig Heterogeneities of molecular traits in CTRL and COPD

lung samples. A) The clustering result of COPD samples by gene

expression levels of 1000 genes with largest variances in COPD.

COPD samples can be partitioned into two groups based on

expression levels of 306 cilium related genes (marked by a red box

in the top-left corner). B) The clustering result of CTRL samples

based on gene expression levels of 1000 genes with largest

variances in CTRL samples. A set of 339 genes classified CTRL

samples into two subgroups. 250 of these genes overlap with

COPD classifier genes in S9A Fig. C) The clustering result of

COPD samples based on methylation profiles of 1000 methylation

probes with largest variances in COPD. A set of 447 genes (in the

red box) classified COPD samples into two groups. D) The

clustering result of CTRL samples based on methylation profiles of

1000 methylation probes with largest variances in CTRL. A set of

391 genes (in the red box) clustered CTRL samples into two

groups. Among them, 95 out of 391 genes overlap with the COPD

classifier genes in S9C Fig. For figures, rows are molecular traits

(mRNA expression or methylation probes) and columns are

samples.

(TIF)

S1 Table Demographic characteristics of samples in LGRC

cohort.

(PDF)

S2 Table Characteristics of data used in the analysis.

(PDF)

S3 Table Significance of overlaps between differentially meth-

ylated and expressed genes.

(PDF)

S4 Table The distribution of probes differentially methylated

between controls and COPD samples.

(PDF)

S5 Table Gene expression levels and DNA methylation levels of

704 genes in S3 Table.

(PDF)

S6 Table GO enrichment analysis of the 378 genes that were

hypermethylated and downregulated in COPD.

(PDF)

S7 Table GO enrichment analysis of the 318 genes that were

hypermethylated and upregulated in COPD.

(PDF)

S8 Table 67 key regulators in CTRL lung tissues that regulated

a large number of downstream genes.

(PDF)

S9 Table 126 key regulators in COPD lung tissues that

regulated a large number of downstream genes.

(PDF)

S10 Table Correlation between key regulators’ methylation

levels in promoter regions in COPD lung tissues and COPD

severity Traits.

(PDF)

S11 Table Overlap between downstream genes of key regulators

in COPD lung tissues and COPD severity signatures in Human.

(PDF)

S12 Table Overlap between downstream genes of key regulators

in COPD lung tissues and COPD emphysema signature in mouse.

(PDF)

S13 Table GO enrichment analysis of EPAS1 downstream

genes in COPD.

(PDF)

S14 Table Matched methylation and gene expression profile

pairs identified by MODMatcher.

(PDF)

S15 Table GO enrichment analysis of the 306 genes in the

upper left corner of S9A Fig.

(PDF)

S16 Table GO enrichment analysis of GAK downstream genes

in COPD.

(PDF)

S17 Table GO enrichment analysis of ETF1 downstream genes

in COPD.

(PDF)

S18 Table GO enrichment analysis of PAX9 downstream genes

in COPD.

(PDF)

S19 Table Motif enrichment analysis of downstream genes of

key regulator EPAS1 in COPD.

(PDF)

S1 Text Supplementary results and methods.

(DOCX)
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