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Gut microbiota affects the functions of brains. However, its mechanism in sepsis remains
unclear. This study evaluated the effect of metformin on ameliorating sepsis-related
neurodamage by regulating gut microbiota and metabolites in septic rats. Cecal ligation
and puncture (CLP) was used to establish the sepsis-related neurodamage animal
models. Metformin therapy by gavage at 1 h after CLP administration was followed by
fecal microbiota transplantation (FMT) to ensure the efficacy and safety of metformin on
the sepsis-related neurodamage by regulating gut microbiota. The gut microbiota and
metabolites were conducted by 16S rRNA sequencing and liquid chromatography-
tandem mass spectrometry metabolomic analysis. The brain tissue inflammation
response was analyzed by histopathology and reverse transcription-polymerase chain
reaction (RT-PCR). This study reported brain inflammatory response, hemorrhage in
sepsis-related neurodamage rats compared with the control group (C group).
Surprisingly, the abundance of gut microbiota slightly increased in sepsis-related
neurodamage rats than C group. The ratio of Firmicutes/Bacteroidetes was significantly
increased in the CLP group than the C group. However, no difference was observed
between the CLP and the metformin-treated rats (MET group). Interestingly, the
abundance of Escherichia_Shigella increased in the MET group than the C and CLP
groups, while Lactobacillaceae abundance decreased. Furthermore, Prevotella_9,
Muribaculaceae, and Alloprevotella related to short-chain fatty acids production
increased in the sepsis-related neurodamage of metformin-treated rats. Additionally,
Prevotella_9 and Muribaculaceae correlated positively to 29 metabolites that might
affect the inflammatory factors in the brain. The FMT assay showed that metformin
improved sepsis-related neurodamage by regulating the gut microbiota and metabolites
in septic rats. The findings suggest that metformin improves the sepsis-related
neurodamage through modulating the gut microbiota and metabolites in septic rats,
which may be an effective therapy for patients with sepsis-related neurodamage.
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INTRODUCTION

Sepsis, characterized by systematic inflammation and abnormal
immune response, leads to life-threatening organ dysfunction,
with a high incidence and mortality rate (1). More than 1.5
million patients suffer from sepsis every year, resulting in about
33% mortality in the United States (2). Sepsis activates the
host’s immune response, causing an inflammatory storm and
subsequent abnormal immune response (3). Sepsis-associated
encephalopathy (SAE) is a brain disease characterized by
cognitive dysfunction, secondary to extrabrain infection, with
an incidence rate of over 70% (4, 5). There are reports of
neuroinflammation in SAE pathogenesis (6–8) and activated
microglia during sepsis (9, 10). The brain endothelial cell
activation and increased neutrophil infiltration could promote
neuroinflammation in sepsis, inducing brain dysfunction (11).
These results suggest that anti-inflammation therapy may be a
potential method for attenuating SAE.

Gut microbiota plays a substantial role in cognitive function via
the gut–brain axis. The abnormal gut microbiota changes are
closely related to various brain diseases, especially cognitive
impairment (12–14). Therefore, the regulatory effect of
metformin on the gut microbiota might contribute to brain
function improvement (15). Metformin is considered a first-line
anti-diabetes agent, decreases insulin and insulin-associated
factors, inhibits mitochondrial function, improves the metabolic
and cellular processes (16), and cellular senescence (17). Orally
administered metformin remains concentrated primarily in the
gut (18), changing the main composition of gut microbiota (19).
Transferring the feces of metformin-treated patients to germ-free
mice ensures the efficacy of metformin on gut microbiota through
altering the homeostasis of metalloproteins or metal transporters
(20). Metformin increases short-chain fatty acid (SCFA)
production in gut microbiota, enhances intestinal barrier
function, and restores the gut microbial composition, thus
improving the host metabolism (21, 22). This study investigated
the regulatory effect of metformin on gut microbiota and its
metabolites in relieving neuroinflammation in septic rats to
provide an effective sepsis-related neuroinflammation method.
METHODS AND MATERIALS

Animal Experiment
Forty-eight adult male Sprague-Dawley rats were purchased
from Beijing Vital River Laboratory Animal Technology
(Beijing, China). All rats were kept in a specific pathogen free
(SPF) laboratory at 25 ± 2°C and in a 12/12 h light/dark cycle
with free access to food and water. The adult male rats were
randomly divided into 5 groups: sham-operated (C group, n =
10), cecal ligation and puncture induced sepsis-related
neurodamage (CLP group, n = 10), metformin treatment (100
mg/kg, dissolved in purified water) through gavage 1 h after CLP
administration (MET group, n = 10), the FMT-CLP group and
FMT-MET group were pseudo-germ free rats with stools
transplanted from the rats of CLP (n = 8) and MET (n = 10)
Frontiers in Immunology | www.frontiersin.org 2
groups for 5 days, inducing the sepsis-related neurodamage. The
CLP-induced sepsis-related neurodamage models were based on
the previous study (23). We injected pentobarbital (30 mg/kg)
intraperitoneally to anesthetize the rats, ligated half of the cecum,
and punctured the cecum twice using a 21-gauge needle. The
cecum contents were squeezed out, repositioned, and the incision
was closed using a two-layer suture (the muscle layer and skin).
Furthermore, the rats were injected subcutaneously with saline
(37°C; 1 mL/100 g) and rewarmed for 1 h before returning to the
cage. The rats were fed with food and water and kept in a 12/12 h
light/dark cycle. The C group rats had only an abdominal incision;
the ceca were neither ligated nor punctured. All animal experiments
were performed per the National Institutes of Health guidelines and
with permission from the local Animal Care and Use Committee of
Zhengzhou University (Henan, China).

FMT Experiments
The FMT experiments were conducted as described in earlier
papers (24–26). The antibiotics (vancomycin, 100 mg/kg;
neomycin sulfate, 200 mg/kg; metronidazole, 200 mg/kg; and
ampicillin, 200 mg/kg) were intragastrically injected into 16 adult
male SD rats once a day for 5 days to deplete the gut microbiota,
resulting in pseudo-germ free rats. We collected the donor rats’
(CLP and MET groups) feces and resuspended them in
phosphate buffer saline (PBS) at 0.125 g/mL; 0.15 mL of this
suspension was then given to rats by oral gavage once a day for 3
days. After 3 days, the tissues were collected at 24 h after CLP-
induced sepsis.
Histological Analysis
The hippocampus brain tissues were washed with sterile saline,
fixed in 4% paraformaldehyde, and embedded in paraffin for
hematoxylin and eosin (H&E) staining. The tissues were
sectioned at 3–5 µm and stained with H&E for light
microscopic analysis. Three sections and three regions of each
section of the hippocampus brain tissues were quantified for
edema and hemorrhage. Furthermore, the brain tissue paraffin
sections were used in immunofluorescence analysis to evaluate
the expression of iBA1 and GFAP. Briefly, the sections were
boiled in citric acid buffer (Beyotime, Shanghai, China) for
20 min. After washing with PBS (Beyotime) three times, the
brain sections were immersed in Triton X-100 (Beyotime) and
subsequently blocked in 5% serum. Afterwards, they were
incubated with primary antibodies at 4°C overnight. The brain
sections were rinsed and coincubated with corresponding
fluorescence-conjugated secondary antibodies in the dark,
followed by staining with DAPI (Beyotime). Finally, the images
of colon sections were captured under an epifluorescence
microscope (Olympus, U-RFL-T, Japan).

Reverse Transcription-Polymerase Chain
Reaction Expression
TRIzol reagent (Takara, Tokyo, Japan) was used to extract the
hippocampus from the brain tissue RNA following the
manufacturer’s instructions. The TaqMan reverse transcription kit
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhao et al. Metformin Mitigates Sepsis-Related Neuroinflammation
(UE, Suzhou, China) and a Gene Amp PCR system were used to
generate cDNA. The PCR was performed with the RT-PCR
superMIX (Yeasen, Shanghai, China). The GAPDH expression
was used for gene expression normalization. The genes primers
were: tumor necrosis factor-alpha (TNF-a) forward primer: CGTC
AGCCGATTTGCCATTT, reverse primer: CTCCCTCAGGGG
TGTCCTTA; IL-6 forward primer: AGAGACTTCCAGCCA
GTTGC, reverse primer: AGTCTCCTCTCCGGACTTGT; C
XCL1 forward primer: CGCTCGCTTCTCTGTGCA, reverse
primer: TTCTGAACCATGGGGGCTTC; GAPDH forward
primer: TGTGAACGGATTTGGCCGTA, reverse primer:
GATGGTGATGGGTTTCCCGT.

16S rRNA Gene Sequencing
We used the cetyl trimethyl ammonium bromide/sodium
dodecyl sulfate (CTAB/SDS) method and 1% agarose gels to
extract and purify DNA, and sterile water to dilute the DNA
concentration to 1 ng/mL. A specific primer (341F:CCTAYG
GGRBGCASCAG; 806R:GGACTACNNGGGTATCTAAT)
with the barcode was used to amplify the 16S rRNA genes of
distinct regions (V3-V4). The PCR experiments were conducted
using the Phusion® High-Fidelity PCR Master Mix (New
England Biolabs); the PCR samples were mixed with the same
volume of 1X loading buffer and subjected to electrophoresis on
2% agarose gel for detection. Then, the Qiagen Gel Extraction kit
(Qiagen, Germany) was used to purify the PCR product mixture.
Additionally, the TruSeq® DNA PCR-Free Sample Preparation
kit (Illumina, USA) was used to generate the sequencing libraries
following the manufacturer’s recommendations. The Qubit® 2.0
Fluorometer (ThermoScientific) and Agilent Bioanalyzer 2100
system were used to evaluate the library quality. Finally, the
Illumina NovaSeq 6000 platform was used to sequence the
library and generate the 250 bp paired-end reads. The raw tags
were double-ended reads, which could be accessed through fastq
join (version: 1.3.1) (https://code.google.com/p/ea-utils/). A
quality Phred score ≥ Q20 or ≥ Q30 was used to assess the
DNA quality, and the USEARCH (version 11.0.667) (http://
www.drive5.com/usearch/) program was used to cluster the
ambiguous bases according to 97% similarity sequence.
Additionally, Mothur v.1.42.1, the vegan package of R software
and PICRUSt2 software package (https://github.com/picrust/
picrust2) (27), was used to calculate the alpha and beta
diversity and PICRUSt2.

Ultra-High Performance Liquid
Chromatography-Tandem
Mass Spectrometry
Ultra-performance liquid chromatography-tandem mass
spectrometry (UPLC-MS/MS) was used for fecal metabolomic
profiling analysis. Fecal samples were prepared with the help of Q
Exactive mass spectrometer (Thermo Scientific, MA, USA). A
small amount (1/10m/vol) of ice-cold 80%methanol (vol/vol) was
added to each fecal product, vortexed for 10 min at room
temperature, and incubated for 30 min at –20°C. Furthermore,
the fecal samples were centrifuged at 14000g, 4°C for 15 min, and
the supernatant was transferred to a fresh microcentrifuge tube.
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The QC sample preparation method involved extracting the same
volume of supernatant from each sample, mixing and
centrifuging, and then transferring it to a mass spectrometry
bottle. The LC-MS/MS analysis was conducted in the data
correlation acquisition (DCA) mode using vanquish UHPLC
system (Thermo Fisher) and Orbitrap Q active hf-x mass
spectrometer (Thermo Fisher). The sample was injected into an
Accucore HILIC column (100 mL) at a flow rate of 0.3 mL/min in
a linear gradient of 20 min × 2.1 mm (2.6 µm). The eluents in the
positive polarity mode were eluent A (0.1% FA, 10 mM
ammonium acetate in 95% ACN) and eluent B (0.1% FA, 10
mM ammonium acetate in 95% ACN). The solvent gradient was
set as follows: 2% B, 1 min; 2–50% B, 16.5 minutes; 50–2% boron,
2.5 min. The Q-Exactive HF-X mass spectrometer operated under
the positive and negative polarity modes, the spray voltage was 3.2
kV, the capillary temperature was 320°C, the sheath gas flow rate
was 35 Arb, and the auxiliary gas flow rate was 10 Arb. Compound
Discover v3.1 (CD) software was used for data extraction and
processing. Compound identification included online search
through mzcloud and chemspider, in addition to the built-in
search database of the software with an endogenous metabolite
database of 4400 compounds. It included the high-resolution mass
spectrometry database Orbitrap traditional Chinese medicine
library (otcml) of traditional Chinese medicine components in
mzVault library. Specific metabolites were identified through
differential metabolite screening, multivariate statistical analysis
(OPLS-DS, threshold P<0.05, VIP>1), and univariate statistical
analysis (t-test, only P<0.05 screening). If specific metabolites were
discussed with the help of path information, the Kyoto
Encyclopedia of Genes and Genomes (KEGG) path screening
was added. The constant sum algorithm was used to realize sample
standardization. After log2 logarithmic conversion, we used the
automatic scaling algorithm to complete normalization.
Statistical Analyses
The R-package (https://www.r-project.org/) and GraphPad
Prism version 5.0 (GraphPad Software, La Jolla, CA, USA)
software were used for statistical analyses. Mean ± standard
deviation was used to assess the quantitative data, and the
variance was used to analyze the comparison among more
than three groups (C vs CLP vs MET vs FMT-CLP vs FMT-
MET). We used the t-test or two-way analysis of variance
(ANOVA) and Bonferroni post-test instead of individual
comparisons to statistically analyze the data. Alpha diversity
was calculated using Mothur v1.42.1, beta diversity was
calculated using permutational ANOVA to compare groups
(vegan package in R-package), and the pathway enrichment
was calculated using PICRUSt2 software package (https://
github.com/picrust/picrust2). Furthermore, the Spearman’s
rank correlation coefficients were calculated for correlation
analysis, and the R-package Corrplot, ggcorplot, and pheatmap
were used for the correlation matrix visualization. All results
among the groups were analyzed with a statistical significance
level set at P<0.05.
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RESULTS

Metformin Mitigates Sepsis-Related
Neuroinflammation and Injury in
Septic Rats
The histological and RT-RNA analyses of brain tissues were
conducted 24 h post-CLP to detect neuroinflammation and
injury in CLP-induced septic rats. The results showed a large
number of nerve cells with nuclear pyknosis, disordered structural
arrangement, edema of nerve cells, and serious injury in CLP-
induced septic rats compared with the C group; metformin
administration reversed the CLP-induced nerve cells with
nuclear pyknosis, disordered structural arrangement, edema of
nerve cells, and serious brain injury compared to the septic rats.
Furthermore, the results of FMT-CLP and FMT-MET groups
were similar to those of CLP and MET groups (Figure 1A). We
tested the effect of metformin on the expression of neuro microglia
of brain tissue in septic rats. The immunofluorescence
experiments indicated that the iBA1 and GFAP expression
increased significantly in septic rats compared to the C group
rats, whereas metformin administration and metformin-treated
FMT assay showed substantially decreased iBA1 and GFAP
expression (P<0.05; Figures 1B–E). Furthermore, we checked
the mRNA expressions of TNF-a, chemokine [C-C motif]
ligand 1 (CXCL1), interleukin-6 (IL-6) of the septic rats’ brain
tissue to assess the effect of metformin on the inflammatory
response of brain tissue. The results showed that the expression
of TNF-a, IL-6, and CXCL1 increased drastically in the CLP group
than theMET group. These inflammatory factors in the FMT-CLP
group increased compared to the FMT-MET group, but there were
no significance (P>0.05; Figures 1F–H). Together, these results
revealed that metformin could relieve neuroinflammation and
injury in septic rats.

Effect of Metformin on Gut Microbiota in
Septic Rats
Gut analysis was performed to assess the composition of gut
microbiota and the impact of metformin on the gut microbiota of
septic rats. Our results revealed that the alpha diversity of gut
microbiota (Ace, Chao, Shannon) was slightly reduced in the septic
rats compared to the C group. However, metformin treatment
slightly reversed the alpha-diversity reduction caused by sepsis
(Figures 2A–D), suggesting that metformin increased the alpha
diversity of gut microbiota induced by sepsis. Additionally, we
tested the gut microbiota beta diversity of all rats. The results
showed that the gut microbial composition of metformin-treated
septic rats was more similar to the C group rats than the septic rats
(Figure 2E). Comparatively, the Firmicutes/Bacteroidetes ratio and
the relativeabundanceofLactobacillaceae increased in theCLPgroup
compared to the C group. However, metformin administration
slightly reduced the Firmicutes/Bacteroidetes ratio and the relative
abundance of Lactobacillaceae compared to the CLP group
(Figures 3A, F). Surprisingly, the relative abundance of
Escherichia_Shigella, related to lipopolysaccharide (LPS)
production, in the CLP group increased with metformin
administration (Figures 3C, E). The relative abundance of
Frontiers in Immunology | www.frontiersin.org 4
Alloprevotella, Muribaculaceae and Prevotella_9, related to SCFA
production and anti-inflammation, decreased in the CLP group but
increased in metformin-treated septic rats compared to the CLP
group rats, while the relative abundance of Lactobacillaceae increased
in CLP group compared with C and MET group. (P<0.05;
Figures 3B–D, G–I). Collectively, these findings highlight the
modulatory effect of metformin on the gut microbiota of septic rats.

The correlation analysis results among the groups about
gut microbiota showed that Muribaculaceae and Alloprevot_9
were negatively correlated to Firmicutes/Bacteroidetes and
Lactobacillaceae, and Muribaculaceae was positively correlated to
Alloprevot_9. Interestingly, Escherichia_Shigella showed a positive
correlation to Alloprevotella (Figure 4A). We further explored the
correlation between gut microbiota and inflammation and
observed that Firmicutes/Bacteroidetes and Lactobacillaceae were
positively and Alloprevotella, Muribaculaceae, Prevotella_9, and
Escherichia_Shigella were negatively correlated to TNF-a, IL-6,
and CXCL1 (Figure 4B). The PICRUSt analysis used to evaluate
the differences in the COG_metagenome among the groups showed
that CLP-induced sepsis enriched 8 COG_metagenomes negatively,
while 30 COG_metagenomes showed a positive enrichment
compared with the C group. However, metformin influenced 29
COG_metagenome enrichment compared to the CLP group
(Supplementary Figure 1). Therefore, it can be inferred that
metformin regulated gut microbiota and affected the metabolic
pathways in septic rats.

Metformin Affects the Gut Microbial
Metabolites in Septic Rats
Metabolites of gut microbiota are functional units that affect host
cells and are produced during food fermentation. Untargeted
metabolomics of the fecal samples was performed to explore the
regulation of gut microbial metabolites by metformin. The fecal
metabolites were affected by sepsis, whereas metformin
administration induced distinct metabolite profile clusters in
septic rats (Supplementary Figure 2). We further explored the
impact of metformin on microbial metabolites of septic rats. The
results showed a significant increase in prostaglandin A1 levels,
while the abundant 1-methylxanthine, 2-methylbutyrylcarnitine, 3-
oxotetradecanoic acid, 4-oxoproline, 4-pyridoxic acid, arachidonic
acid, citric acid, cystathionine ketimine, D-(-)-glutamine, D-alanyl-
D-alanine, dulcitol, gluconic acid, mallotophenone, melatonin,
methanesulfonic acid, mevalonic acid, N4-phosphoagmatine, N-
acetylornithine, N-acetylvaline, norepinephrine sulfate, paracetamol
sulfate, phenylacetylglycine, pyruvic acid, riboflavin, sedoheptulose,
succinic acid, succinic semialdehyde, tetradecanedioic acid,
tyramine sulfate decreased in the CLP group compared to the C
group. However, metformin could reverse the sepsis-induced
changes in the metabolites mentioned above (P<0.05;
Figures 5A, B). A correlation analysis showed 21 positive and 29
negative correlations among the microbial metabolites (P<0.05;
Figure 6A). The correlation analysis between gut microbiota and
its metabolites showed a positive correlation of Firmicutes/
Bacteroidetes, whereas Lactobacillaceae showed a positive
correlation with prostaglandin A1 and a negative correlation with
the remaining 29 metabolites (P<0.05; Figure 6B). Furthermore,
April 2022 | Volume 13 | Article 797312
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Alloprevotella, and Escherichia_Shigella correlated positively with 2-
methylbutyrylcarnitine, 3-oxotetradecanoic acid, 4-oxoproline, 4-
pyridoxic acid, arachidonic acid, D-(-)-Glutamine, gluconic
acid, mallotophenone, mevalonic acid, N-acetylvaline,
phenylacetylglycine, pyruvic acid, riboflavin, sedoheptulose,
succinic acid, succinic semialdehyde; while Muribaculaceae and
Alloprevot_9 correlated positively with 1-methylxanthine, citric
acid, cystathionine ketimine, D-alanyl-D-alanine, dulcitol,
melatonin, methanesulfonic acid, N4-phosphoagmatine, N-
acetylornithine, norepinephrine sulfate, paracetamol sulfate,
tetradecanedioic acid, tyramine sulfate (P<0.05; Figure 6B).
Additionally, only prostaglandin A1 correlated positively with
inflammatory factors and chemokines such as TNF-a, IL-6, and
CXCL1 of the brain (P<0.05; Figure 6C). More importantly, the
changed metabolites impacted the metabolic pathways of tyrosine,
metabolic pathways, biosynthesis of various secondary metabolites,
and so forth (Supplementary Figure 3). Collectively, the findings
Frontiers in Immunology | www.frontiersin.org 5
highlight the role of metformin in regulating the sepsis-induced
imbalance of gut microbiota and its metabolites.
DISCUSSION

This study revealed that metformin could mitigate sepsis-related
neurodamage by regulating gut microbiota and its metabolites in
septic rats. The composition of gut microbiota and metabolites in
septic rats treated with metformin increased the abundance of gut
microbiota related to the SCFA production and anti-
inflammation. Our work supported the general idea of using
FMT analysis in sepsis, as metformin protects inflammatory
response and neurodamage in sepsis.

Metformin is the first-line treatment for type 2 diabetes, and its
other effects have been widely studied. Metformin has attracted
extensive attention for its impact on intestinal microbiota in
A

B

C

F

G

H

D

E

FIGURE 1 | Metformin mitigates sepsis-related neuroinflammation and injury in septic rats. (A) H&E staining showed a large number of nerve cells with nuclear
pyknosis, disordered structural arrangement, edema of nerve cells, and serious injury in CLP group compared with the C group; metformin administration reversed
the CLP-induced serious brain injury compared to the septic rats. It showed a decreased level of the inflammatory infiltrates, oedema, and haemorrhage of brain
tissue in the FMT-MET group compared to the FMT-CLP group (scale bar = 100 um). (B–E) The immunofluorescence experiments indicated that the iBA1 and
GFAP expression increased significantly in septic rats compared to the C group rats, whereas metformin administration and metformin-treated FMT assay showed
significantly decreased iBA1 and GFAP expression (scale bar = 100 um). (F–H) The expressions of TNF-a, IL-6, and CXCL1 increased drastically in the CLP group
than the MET group. * CLP vs C group; & MET vs CLP group; : FMT-MET vs FMT-CLP group, ***, ###, &&& P<0.001; ns: not significant (n = 3–5/group).
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A B

C D

E

FIGURE 2 | Effect of metformin on gut microbiota in septic rats. (A–D) 16S rRNA analysis showed that the alpha diversity of gut microbiota such as Ace, Chao1,
Shannon and Simpson index was slightly reduced in the CLP group compared to the C group. However, metformin treatment slightly reversed the alpha diversity
reduction caused by sepsis. (E) The beta diversity of gut microbiota showed that the compositions in the CLP group were different from the C group. However, the
composition of the gut microbiota in the MET group was similar to the C group. a P<0.05 (n = 5/group).
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various diseases. A study reported that metformin could delay the
aging of nematodes by changing the metabolism of microbial
folate andmethionine, providing effective treatment for aging (28).
A subsequent study showed that metformin played an anti-
diabetic role by regulating the encoding of metal protein or
metal transporter encoded by species (20). A recent article
reported that metformin could regulate lipid metabolism and
affect the host’s life span (27). More and more evidence shows
that the microbiome changes after metformin administration have
been previously described and related to some host effects of the
drug; metformin affects sepsis at least in part by regulating
the microbiome.

Increased abundance of Escherichia coli (E. coli) after
metformin treatment was observed in healthy volunteers and
Frontiers in Immunology | www.frontiersin.org 7
patients with type2 diabetes mellitus (T2DM) or other diseases
(20, 29–32). Additionally, a study reported that metformin
administration uses other energy sources to create a competitive
environment for E. coli, resulting in many gut microbial changes
(30, 33). A subsequent study pointed out that metformin
administration may affect the relative abundance of E. coli under
in vitro intestinal simulation conditions (20). Another recent
article demonstrated that the large presence of E. coli/Shigella
before metformin treatment was related to side effects (31).
Furthermore, a report showed that E. coli was considered a
marker of gastrointestinal side effects after metformin
administration (30).

The FMT analysis emphasizes the role of gut microbiota as
upstream conductors of sepsis-related neurodamage. We observed
A B

C

F G

H I

D E

FIGURE 3 | The beneficial effect of metformin on gut microbiota in septic rats. (A–C) The gut microbiota at Phylum, Family, and Genus levels showed the difference
among the C, CLP, and MET groups. (D–I) The specific gut microbiota abundance varied among the groups, such as the relative abundance of Alloprevotella,
Escherichia_Shigella, Prevotella_9 and Muribaculaceae were decreased in the CLP group compared to the C group, but increased in the MET group compared to
the CLP group rats; while ratio of Firmicutes/Bacteroidetes and Lactobacillus were increased in the CLP group compared to the C group, and decreased in the MET
group.*: CLP vs C group; & MET vs CLP group. & P<0.05; **, && P<0.01; *** , &&& P<0.001; ns, not significant (n = 5/group).
April 2022 | Volume 13 | Article 797312
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that metformin therapy relieved sepsis-related neurodamage by
regulating gut microbiota and metabolites and alleviated gut
leakage in septic rats, which was consistent with the previous
study (15). It was reported earlier that gut leakage could regulate
inflammation, a high-risk metabolic dysfunction in the elderly (34).
The results were consistent with a previous article reporting that
decreased expression of gut barrier markers such as tight junction
proteins resulted in intestinal leakage (35). Additionally, CLP-
induced colitis infiltration, edema, and bleeding also promoted
intestinal leakage.

Our study suggested that there were significant differences in gut
microbial composition between the C and CLP groups. As
expected, metformin administration increased the abundance
of Escherichia_Shigella. The increased levels of opportunistic
Frontiers in Immunology | www.frontiersin.org 8
pathogens with the proinflammatory response (such as Klebsiella
and Escherichia_Shigella in CLP-induced sepsis) destroies the gut
microecological balance, while the activated gut pathogens increase
inflammation, which is consistent with the previous study (23).
Another study reported that Escherichia_Shigella was either
associated with obesity-related metabolic dysfunction or a
proinflammatory bacterium (36). Our study also showed that
Escherichia_Shigella and sepsis-related neural inflammation were
positively correlated. The gut microbial composition of the MET
group was similar to that of the C group. This study showed that
compared to the CLP group, metformin therapy increased the
abundance of Muribaculaceae, and Alloprevotella and Prevotella_9.
It can produce energy providing SCFA for intestinal cells and
maintain the intestinal barrier (37), thereby preventing the
A

B

FIGURE 4 | The correlation analysis of the gut microbiota and inflammation of the brain of septic rats. (A) The correlation analysis of the gut microbiota showed that
Muribaculaceae and Alloprevot_9 were negatively correlated to Firmicutes/Bacteroidetes and Lactobacillaceae, and Muribaculaceae was positively correlated to
Alloprevot_9.Interestingly, Escherichia_Shigella showed a positive correlation to Alloprevotella. (B) The correlation analysis between gut microbiota and brain
inflammation showed that Firmicutes/Bacteroidetes and Lactobacillaceae were positively and Alloprevotella, Muribaculaceae, Prevotella_9, and Escherichia_Shigella
were negatively correlated to TNF, IL-6, and CXCL1. TNF:TNF-a.
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A

B

FIGURE 5 | Metformin affects the gut microbial metabolites in septic rats. (A) Untargeted metabolic analysis showed differences in the intensity of specific
metabolites among the groups. (B) 30 specific metabolites showed significant differences among the groups. *: CLP vs C group; & MET vs CLP group. ***, &&&
P<0.001 (n = 5/group).
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displacement of LPS from the intestinal barrier (38, 39). Prevotella_9
andMuribaculaceae have beneficial effects on intestinal disorders by
immune regulation and intestinal homeostasis regulation (21, 40).
Metformin administration also affected COG_metagenomes by
changing the intestinal microbiota, demonstrating the role of
metformin in improving intestinal microbial imbalance by affecting
metabolic pathways of tyrosine, biosynthesis of various secondary
metabolites, and so forth.

Additionally, intestinal microbial metabolites are a response to
changes in the intestinal microbiota. In our study, the intestinal
microbial composition was similar between the groups because all
rats were locked together before CLP. Therefore, the changes in
intestinal microbiota are caused by sepsis. Different microbial
components may not be parallel to the corresponding metabolic
spectrum in sepsis (41). Among 30 differential metabolites, only one
metabolite, prostaglandin A1 and neural inflammation showed a
positive correlation; Firmicutes/Bacteroidetes and Lactobacillaceae
showed a positive correlation with prostaglandin A1while they were
Frontiers in Immunology | www.frontiersin.org 10
negatively correlated with the remaining 29 metabolites.
Furthermore, Alloprevotella and Escherichia_Shigella correlated
positively with 2-methylbutyrylcarnitine, 3-oxotetradecanoic acid,
4-oxoproline, 4-pyridoxic acid, arachidonic acid, D-(-)-glutamine,
gluconic acid, mallotophenone, mevalonic acid, N-acetylvaline,
phenylacetylglycine, pyruvic acid, riboflavin, sedoheptulose,
succinic acid, and succinic semialdehyde; while Muribaculaceae
and Alloprevot_9 correlated positively with 1-methylxanthine,
citric acid, cystathionine ketimine, D-alanyl-D-alanine, dulcitol,
melatonin, methanesulfonic acid, N4-phosphoagmatine, N-
acetylornithine, norepinephrine sulfate, paracetamol sulfate,
tetradecanedioic acid, and tyramine sulfate. Thus, the metabolites
changed in our study confirmed that metformin effectively inhibited
intestinal microbial metabolic abnormalities caused by CLP.

The study has some shortcomings. First, the samples in each
group are very small, and the results of this study need to be
confirmed in further study. Furthermore, the metformin
concentration in the feces of donors is not detected before the FMT
A B

C

FIGURE 6 | The correlation analysis of the gut microbial metabolites, gut microbiota and brain inflammation in septic rats. (A) A correlation analysis showed 21 positive
and 29 negative correlations among the microbial metabolites. (B) only prostaglandin A1 correlated positively with the inflammatory factors and chemokines such as TNF,
IL-6, and CXCL1 of the brain. TNF:TNF-a (C) The correlation analysis between gut microbiota and its metabolites showed a positive correlation of Firmicutes/
Bacteroidetes, whereas Lactobacillaceae showed a positive correlation with prostaglandin A1 and a negative correlation with the remaining 29 metabolites.
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assay. Itmay affect the result reliability as the unprocessedmetformin
in the fece samples may act directly on the recipient animals. Note
that we do not confirm the host metabolites, so it may weaken the
causality of metformin in improving neurodamage through gut
microbiota and its metabolites. Therefore, further study should
continue to explore the mechanism by which metformin
ameliorates neurodamage through gut microbiota. Finally, we only
perform untargetedmetabolomics, which can provide a future scope
for targeted metabolomics to confirm the specific metabolites that
influence the pathophysiology in sepsis.
CONCLUSION

Our results provided some evidence that metformin may alleviate
neuroinflammation and injury via the restoredgutmicrobiota and its
metabolite dysbiosis. Firmicutes/Bacteroidetes and Lactobacillaceae
and their relatedmetabolite, prostaglandinA1, increased significantly
in septic rats; metformin therapy could restore the gut microbiota
dysbiosis and increase the relative abundance of Muribaculaceae,
Prevotella_9, and Alloprevotella and their related metabolites. These
results demonstrate that metformin could be a potential therapy for
neuroinflammation and injury caused by sepsis-induced gut
microbiota and metabolite dysbiosis in septic rats.
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