
 

Open Peer Review

F1000 Faculty Reviews are commissioned
from members of the prestigious F1000

. In order to make these reviews asFaculty
comprehensive and accessible as possible,
peer review takes place before publication; the
referees are listed below, but their reports are
not formally published.

Discuss this article

 (0)Comments

REVIEW

 Recent advances in understanding eosinophil biology [version 1;
referees: 2 approved]
Amy Klion
Human Eosinophil Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of
Health, Bethesda, MD, USA

Abstract
With the advent of novel therapies targeting eosinophils, there has been
renewed interest in understanding the basic biology of this unique cell. In this
context, murine models and human studies have continued to highlight the role
of the eosinophil in homeostatic functions and immunoregulation. This review
will focus on recent advances in our understanding of eosinophil biology that
are likely to have important consequences on the development and
consequences of eosinophil-targeted therapies. Given the breadth of the topic,
the discussion will be limited to three areas of interest: the eosinophil life cycle,
eosinophil heterogeneity, and mechanisms of cell-cell communication.
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Introduction
Eosinophils are primitive myeloid cells found in all vertebrate 
species, including zebrafish1. Historically, eosinophils have been 
viewed as effector cells involved primarily in the defense against 
parasites and in allergic inflammation, but the role of these cells 
in homeostasis and immunoregulation has become increasingly  
clear over the past decade2,3. This is due in large part to the develop-
ment of several strains of eosinophil-deficient mice4–6, which have 
been instrumental in demonstrating a role for murine eosinophils 
in a wide variety of fundamental processes, including antibody 
production7,8, glucose homeostasis9, and muscle and liver regen-
eration10,11. Although preliminary findings corroborate a role for 
eosinophils in many of these processes in humans7,8,12,13, definitive 
data have been elusive. In this regard, the recent explosion in the 
development of novel therapies that deplete eosinophils or affect 
eosinophil function14,15 provides a unique opportunity to increase 
our understanding of the role of this multifunctional and complex 
cell in human health and disease.

A comprehensive list of all of the important recent findings in eosi-
nophil biology is beyond the scope of this review. Consequently, 
this article will focus on three aspects of eosinophil biology in 
which there have been major advances in the past several years: 
(1) the eosinophil life cycle, (2) eosinophil heterogeneity, and  
(3) mechanisms of cell-cell communication. Each of these has 
important implications for eosinophil-targeted therapies, especially 
since the long-term consequences of eosinophil depletion will 
depend not only on the efficacy of depletion of eosinophils but also 
on the processes that are perturbed in their absence.

The eosinophil life cycle
Eosinophilopoiesis
As is true of other circulating leukocytes, eosinophils differenti-
ate from CD34+ progenitor cells in the bone marrow under the  
influence of a variety of lineage-specific and common transcrip-
tion factors and cytokines (reviewed in 16). Beginning in the late  
1980s with the discovery of the critical roles of the cytokine,  
interleukin-5 (IL-5), and the GATA transcription factors17–19, the 
delineation of the sequential steps involved in eosinophilopoi-
esis has been instrumental in the development of a number of 
innovative mouse models to study eosinophilic disorders. These 
include the ΔdblGATA-1 and PHIL eosinophil-less mice4,5 and the 
recently described MBP-1/EPX double-knockout eosinophil-less  
mouse6 and Cre recombinase eosinophil transgenic mouse20.  
A new addition to this cohort is the recently described Xbp1-null 
mouse, in which deletion of the transcription factor, Xbp1, in  
multi-lineage hematopoietic progenitor cells causes a lineage-
restricted late maturational arrest in eosinophil development  
(due at least in part to dysregulated production and assembly of 
granule proteins) and a total absence of circulating eosinophils21. 
Since early eosinophilopoiesis is unaffected in the Xbp1-null  
mouse and eosinophil precursors (EoPs) appear to be normal, 
this model is likely to provide a unique window into the role of  
eosinophil granule protein packaging in the terminal differentia-
tion of eosinophils. Xbp1 may also prove to be a novel lineage- 
specific therapeutic target for the treatment of eosinophilic  
disorders.

New transcription factors involved in the negative regulation 
of eosinophil development have also been recently identified. 
These include RhoH—a negative regulator of eosinophilopoiesis 
that is upregulated by IL-5, IL-3, and granulocyte-macrophage  
colony-stimulating factor (GMCSF) and likely functions through 
GATA222—and Olig2, which is expressed late in eosinophil devel-
opment and regulates expression of Siglec-8, an inhibitory recep-
tor restricted to eosinophils, basophils, and mast cells23. Finally, 
a more global approach using genome-wide transcriptome and  
epigenome analysis has both confirmed prior findings and led to  
the identification of previously unreported transcriptional regula-
tors of eosinophil development, including Helios and Aiolos24.

EoPs were first identified in the peripheral blood and nasal mucosa 
of atopic subjects in the late 1980s by using colony-forming 
assays25,26. These results were confirmed by many different  
groups using flow cytometry, immunohistochemical staining,  
or in situ hybridization (or a combination of these) to identify 
CD34+, and more recently CD34+IL-5Rα+, cells in the blood  
and tissues of patients with allergic disorders27–30. Increased  
circulating levels of EoPs have also been described in patients 
with active eosinophilic esophagitis (EoE), a food antigen–driven  
eosinophilic disorder31. The clinical relevance of these findings is 
supported by the correlation of EoPs in blood and sputum with  
disease activity27,31,32.

Whereas the acquisition of IL-5Rα on the surface of CD34+  
cells has long been recognized as a critical event in the expansion 
and maturation of EoPs33,34, the factors driving eosinophil line-
age commitment are less well understood. Recent data suggest  
that IL-33 may play a significant role in this process. IL-33 and 
its receptor, ST2, were first described in 200535. Although a role 
for IL-33 in the induction of IL-5 and eosinophilia was first pro-
posed at that time, these effects were attributed to the production of 
IL-5 by Th2 cells. Eosinophil expression of ST2 was subsequently 
demonstrated, suggesting that IL-33 might also interact directly 
with eosinophils36. In their recent report, Johnston et al. have 
taken this one step further, demonstrating in a mouse model that  
ST2 is expressed on EoPs and that IL-33 both expands the EoP 
compartment and upregulates IL-5Rα expression on EoPs37.  
The authors conclude that IL-33 precedes IL-5 in regulating  
lineage commitment in eosinophils and that this is important in 
maintaining eosinophil homeostasis. In a separate study, Anderson 
et al. showed that IL-5 and IL-33 produced in the lung (but not 
bone marrow) in a murine model of Alternaria exposure lead to  
increased numbers of eosinophils and EoPs in bone marrow38,  
suggesting that IL-33 also plays an important role in allergen-
induced eosinophilia. The capacity of IL-33 to directly induce 
murine EoP production of Th2 and inflammatory cytokines  
associated with allergic inflammation has also been reported39. 
These data provide a potential explanation for the observation 
that anti–IL-5 treatment with mepolizumab depletes blood eosi-
nophils but not their precursors in the bone marrow of patients with  
asthma40. Of note, mepolizumab treatment did lead to a decrease 
in CD34+IL-5Rα+ cells in bronchial mucosal biopsies from the 
same patients, suggesting potential differences in IL-5 dependence 
between lung and bone marrow EoPs.
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Whereas the IL-33/ST2 axis clearly plays an important role in 
the regulation of bone marrow eosinophilia, recent data describ-
ing the opposing roles of paired immunoglobulin-like receptor 
A (PIR-A) and PIR-B on IL-5–induced eosinophil development 
illustrate the complexities of this process and the implications for 
eosinophil-associated pathogenesis41. Using a murine model, the 
authors demonstrated that PIR-B, in the context of self-recognition 
through major histocompatibility complex (MHC) class I, allowed 
IL-5–induced eosinophilopoiesis by blocking the pro-apoptotic 
activity of PIR-A. Importantly, mice lacking PIR-B had decreased 
lung eosinophilia in response to aeroallergen challenge. Eosi-
nophil expression of the human homologues of PIR-A and PIR-B,  
leukocyte immunoglobulin-like receptors B1 and B2 (LILRB1 and 
LILRB2), has been described42, although their function has not 
been studied to date.

Many of the transcription factors and cytokines involved in  
eosinophilopoiesis have also been shown to play a role in the devel-
opment of other lineages, most notably basophils and mast cells. 
This has important implications for eosinophil-targeted therapies, 
which may or may not deplete multiple cell types. In an elegant 
study using reporter mice expressing enhanced fluorescent green 
protein from GATA-1 and single-cell sequencing, Drissen et al. 
demonstrated that eosinophils, mast cells, and likely basophils 
(although this was not examined directly) are generated from 
a dedicated progenitor that arises prior to the segregation of the 
erythroid-megakaryocytic and lymphoid lineages, rather than from 
a common myeloid precursor43. The applicability of these data to 
the human system awaits confirmation.

Eosinophil trafficking
Since tissue eosinophilia is integral to the pathogenesis of a wide 
variety of eosinophilic disorders, the mediators involved in eosi-
nophil trafficking to the tissue during inflammation provide 
ideal therapeutic targets. Most early interest focused on eotaxins  
(CCL11, CCL24, and CCL26) and their receptor CCR3 because 
of their role in promoting tissue eosinophilia in a wide variety of 
eosinophilic disorders, including asthma, eosinophilic gastroin-
testinal (GI) disease, eosinophilic skin diseases, and most recently 
eosinophil trafficking to the heart in a murine model of myocardi-
tis44. Despite promising pre-clinical data, however, a clinical trial 
with an oral CCR3 antagonist was ineffective in reducing sputum 
eosinophilia in patients with asthma45.

IL-13 is known to promote eotaxin production by a variety of cell 
types. Consequently, therapies targeting IL-13 would be expected 
to block migration of eosinophils from the bloodstream to the 
tissue. Consistent with this hypothesis, clinical trials of mono-
clonal antibodies to IL-13 or its receptor in patients with asthma 
have consistently shown increases in peripheral blood eosinophil  
counts46–48, and tissue eosinophilia was decreased in a recent  
phase 2 study of anti–IL-13 antibody in EoE49. Unfortunately, 
the effects on eosinophil numbers were mild to moderate in most  
of these studies, suggesting that the IL-13/eotaxin/eosinophil  
connection may be more complex than previously thought.

The recent demonstration that the inhibitory receptor, PIR-B, is 
involved in preventing IL-13–induced esophageal eosinophilia in 

a murine model of EoE provides an important example in support 
of this conclusion50.

Eosinophil senescence
Although the role of cytokines and other mediators in eosinophil 
survival has been recognized for more than 30 years, very little 
is known about the mechanisms by which these pro-survival 
cues determine the eosinophil life span. The recent descrip-
tion of a long non-coding RNA, Morrbid, which enables allele- 
specific control of pro-apoptotic gene transcription in response 
to extracellular cytokine signals, begins to provide an answer to 
this very basic question51. Initially described in mice, Morrbid  
expression was increased in eosinophils from patients with  
hypereosinophilic syndromes and correlated with serum IL-5  
levels, suggesting that Morrbid plays a similar regulatory role 
in human eosinophils and may be a novel target for therapeutic 
intervention. As mentioned in the Eosinophilopoiesis section, our 
understanding of the regulation and function of inhibitory recep-
tors, including Siglec-823,36,52,53, which are important in eosinophil 
apoptosis, has also advanced significantly in recent years. This has 
led to the development of novel therapeutic agents for eosinophilic 
disorders, including two monoclonal antibodies to Siglec-8 that 
are currently in clinical trials for nasal polyposis and systemic  
mastocytosis in Europe.

Eosinophil heterogeneity
Eosinophil heterogeneity was first proposed in the early 1980s with 
the description of hypodense eosinophils in the blood of patients 
with eosinophilia of varied etiologies, including allergic disease, 
helminth infection, and idiopathic hypereosinophilic syndrome54–56. 
The reproduction of this phenomenon in vitro and its association 
with enhanced eosinophil cytotoxic activity and degranulation were 
described shortly thereafter57,58. Since that time, numerous studies 
have confirmed the ability of a wide variety of activating stimuli to 
induce degranulation and a “hypodense” phenotype. Whether all 
hypodense eosinophils are functionally equivalent despite differ-
ences in the activating stimulus remains unclear.

The first evidence that tissue eosinophils might be different from 
blood eosinophils came from studies in the 1980s comparing  
density and respiratory burst in blood and bronchoalveolar lav-
age eosinophils from individuals with pulmonary eosinophilia59.  
Subsequent studies have demonstrated changes in expression of 
surface receptors, including IL-5Rα and integrins, on eosinophils 
recruited to the lung following segmental allergen challenge60–62. 
More recently, several groups have demonstrated associations 
between specific surface phenotypes and eosinophil function in 
murine models of allergic inflammation in the lung. In one such 
study, Mesnil et al. characterized two distinct eosinophil subsets 
in the lungs of mice following allergen challenge63. These sub-
sets, resident (rEos) and inflammatory (iEos) eosinophil, differed 
not only in location (parenchymal versus peribronchial), nuclear 
morphology (ring-shaped versus segmented), surface phenotype 
(Siglec-FintCD62L+CD101lo versus Siglec-FhiCD62L−CD101hi), 
and dependence on IL-5 (independent versus dependent) but also 
in their ability to down-modulate the inflammatory response63. 
Although similar populations have not been functionally character-
ized in humans, parenchymal rEos in non-asthmatic lungs displayed 
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a different surface phenotype than iEos in the sputa of patients with 
eosinophilic asthma63. Whether the presence of IL-5–independent  
rEos might explain the clinical efficacy of anti–IL-5 antibody 
therapy in asthma, despite the persistence of tissue eosinophilia64, 
remains to be seen. Using a different set of surface markers (Siglec 
F and Gr1), Percopo et al. identified two morphologically similar 
eosinophil populations with different cytokine profiles in mouse 
lung following allergen challenge65.

The GI tract provides another example of the potential differences 
between tissue and blood eosinophils. Eosinophils are normal resi-
dents of the lamina propria of the GI tract and, unlike the situation 
in other tissues, appear to undergo degranulation under homeo-
static conditions66,67. The relevance of this finding has become 
increasingly clear with the demonstration that eosinophils in the 
GI tract play important roles in mucosal immunity, including the 
promotion of IgA class switching and the maintenance of IgA 
plasma cells8,68,69. Although eosinophils increase in the intestine 
in a number of pathological settings—including intestinal nema-
tode infection, inflammatory bowel disease, and eosinophilic GI  
disorders—and clearly can contribute to tissue inflammation and  
damage, recent data from several groups suggest that they may help 
limit tissue destruction and preserve the intestinal barrier in some 
settings. Examples include the requirement for eosinophils in the 
suppression of Th2 responses in Peyer’s patches during an intestinal 
nematode infection in mice70 and for IL-25–mediated maintenance 
of the intestinal barrier during murine infection with Clostridium 
difficile infection71. Of note, similarities between IL-25 expression 
in intestinal biopsies in mice and humans with C. difficile infec-
tion suggest that eosinophils may also be important in the main-
tenance of tissue integrity in human infection72. These protective 
functions of eosinophils in GI disease seem to be more pronounced 
in the tissue. In support of this, recent studies have demonstrated 
that murine lamina propria eosinophils, but not blood eosinophils, 
are able to induce differentiation of naïve T cells into regulatory  
T cells in vitro72 and suppress differentiation of Th17 cells through 
production of IL-1Ra73. Although abnormal responses to infection 
have not been reported in patients receiving eosinophil-depleting  
therapies, vigilance is needed as these therapies reach a wider popu-
lation with exposure to helminths and other infectious agents.

Cell-cell communication
Eosinophils have a complex subcellular structure that includes  
primary and secondary granules, lipid bodies, and a dynamic 
intracellular vesicular system74. Moreover, contained within their  
secondary granules are cationic granule proteins and a host of 
preformed cytokines and other soluble mediators that can be 
rapidly mobilized for secretion in response to a wide variety of 
stimuli75. Although a variety of secretory processes have been 
described (piecemeal degranulation, exocytosis, and cytolysis), the  
mechanisms by which eosinophils selectively secrete mediators 
are incompletely understood and remain an active area of research. 
Some of the more exciting recent advances in this field are described 
below.

Surface receptors
CD63 is a member of the transmembrane-4 glycoprotein super-
family (tetraspanins) that is found on the surface of secretory gran-
ules in multiple cell types, including eosinophils. Translocation  

of CD63 to the eosinophil cell surface during piecemeal degran-
ulation was first demonstrated in 200276. Recent studies using 
CD63 labeling provide evidence for distinct CD63-dependent  
secretory processes in eosinophils depending on the stimulus 
provided (piecemeal degranulation in response to CCL11 versus  
compound exocytosis in response to tumor necrosis factor alpha, 
or TNFα)77.

Eosinophil-derived extracellular DNA traps
Eosinophil-derived extracellular DNA traps (EETs) containing 
eosinophil granules were first described in 2008 in the GI tract, 
where they were believed to play a primary role in antibacterial 
defense78. Although these initial EETs contained mitochondrial 
DNA that was catapulted from an intact cell, subsequent studies 
have demonstrated that eosinophils can also release nuclear DNA 
into the extracellular space during cytolysis (ETosis)79. EETs have 
been described in a variety of tissues, including skin, lung, and 
the GI tract, where their presence has been correlated with disease 
activity80. More recently, EETs have been identified in eosinophil-
rich secretions from patients with eosinophilic rhinosinusitis and 
otitis media81. Ultrastructural analysis of ultrathin sections using 
transmission electron microscopy demonstrated globular chromatin 
fibers containing intact eosinophil granules, providing a potential 
explanation for persistent effects of eosinophilic inflammation once 
the eosinophil itself is no longer present.

Exosomes
Secreted microvesicles that are believed to function in extracel-
lular communication, exosomes have recently been demonstrated 
in the culture supernatants of human eosinophils82,83. As expected, 
eosinophil exosomes express CD63 and CD9 on their surface 
and contain a variety of eosinophil proteins, including eosinophil  
cationic protein and eosinophil peroxidase84. Eosinophil produc-
tion of exosomes was increased in patients with asthma and in 
response to in vitro stimulation with CCL11, TNFα, or interferon 
gamma82,83. Moreover, eosinophil-derived exosomes induced an 
increase in reactive oxygen intermediates by eosinophils and could 
induce eosinophil adhesion and chemotaxis in vitro84. Since the 
composition of eosinophil exosomes appears to be similar between  
asthmatic patients and normal controls, these data suggest that 
selective packaging of mediators into exosomes may play an impor-
tant role in modulating the outcomes of eosinophil activation in  
different settings.

Conclusions and therapeutic implications
The past several years have seen the publication of the eosinophil 
transcriptome, proteome, and epigenome85–88. These tools, coupled 
with the availability of innovative mouse models and increasing 
numbers of targeted therapies in humans, are likely to dramati-
cally increase our understanding of the basic biology of eosinophils 
and their role in a wide variety of disorders associated with blood 
and tissue eosinophilia. Conversely, unraveling the complexity of 
the eosinophil and its role in homeostasis and pathogenesis will  
certainly lead to the identification of novel therapeutic agents, 
as evidenced by the development of monoclonal antibodies to  
IL-5 and IL-5 receptor for the treatment of eosinophilic asthma 
and other eosinophilic disorders. Despite these advances, a number 
of questions remain, including the morphological and functional  
features that define eosinophil activation, the relationship of these 
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features to disease pathogenesis, and the long-term safety of  
therapies that target eosinophils, particularly those that deplete 
eosinophils more completely in the tissues than currently approved 
agents and those that concomitantly target additional lineages, 
including mast cells and basophils. The interactions between  
eosinophils and other cells in the bone marrow, blood, and tissues 
are key factors in this regard. Negotiating the balance between  
eosinophil-driven pathogenesis and maintenance of homeostasis 
will be the next major challenge.
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