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Abstract

Background: Complement proteins and activation products have been found associated with neuropathology in
Alzheimer’s disease (AD). Recently, a C5a receptor antagonist was shown to suppress neuropathology in two
murine models of AD, Tg2576 and 3xTg. Previously, a genetic deficiency of C1q in the Tg2576 mouse model
showed an accumulation of fibrillar plaques similar to the complement sufficient Tg2576, but reactive glia were
significantly decreased and neuronal integrity was improved suggesting detrimental consequences for complement
activation in AD. The goal of this study was to define the role of the classical complement activation pathway in
the progression of pathology in the 3xTg mouse that develops tangles in addition to fibrillar plaques (more closely
reflecting human AD pathology) and to assess the influence of complement in a model of AD with a higher level
of complement hemolytic activity.

Methods: 3xTg mice deficient in C1q (3xTgQ-/-) were generated, and both 3xTg and 3xTgQ-/- were backcrossed
to the BUB mouse strain which has higher in vitro hemolytic complement activity. Mice were aged and perfused,
and brain sections stained for pathological markers or analyzed for proinflammatory marker expression.

Results: 3xTgQ-/- mice showed similar amounts of fibrillar amyloid, reactive glia and hyperphosphorylated tau as
the C1q-sufficient 3xTg at the ages analyzed. However, 3xTg and 3xTgQ-/- on the BUB background developed
pathology earlier than on the original 3xTg background, although the presence of C1q had no effect on
neuropathological and pro-inflammatory markers. In contrast to that seen in other transgenic models of AD, C1q,
C4 and C3 immunoreactivity was undetectable on the plaques of 3xTg in any background, although C3 was
associated with reactive astrocytes surrounding the plaques. Importantly, properdin a component of the alternative
complement pathway was associated with plaques in all models.

Conclusions: In contrast to previously investigated transgenic models of AD, development of neuropathology in
3xTg mice, which progresses much slower than other murine models, may not be influenced by fibrillar amyloid
mediated activation of the classical complement pathway, suggesting that the alternative complement pathway
activation or a C3-independent cleavage of C5 could account for the detrimental effects in these mice that are
prevented by the C5a receptor antagonist. Furthermore, the paucity of complement activation may be a factor in
the slower kinetics of progression of pathology in the 3xTg model of this disease.
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Background
Alzheimer’s disease is a progressive neurodegenerative
dementia of the elderly characterized by a well defined
pathology that includes accumulation of b-amyloid in
plaques, hyperphosphorylated tau that ultimately forms
neurofibrillary tangles, and neuronal loss [1]. In addition
to these hallmarks, a prominent inflammatory reaction,
characterized by the presence of reactive glia associated
with the fibrillar plaques, upregulation of several com-
plement proteins [2-5] including local synthesis of the
components [6,7] is observed. C1q is associated with
fibrillar plaques as well as tangles [3,8], and the presence
of C5b-9 associated with dystrophic neurites in plaques
and with tangles [9] indicates that complement is fully
activated in AD [10]. These in vivo observations, sup-
ported by the in vitro studies demonstrating that fibrillar
b-amyloid can activate the classical [11,12] and alterna-
tive [13] complement pathways and that the comple-
ment activation fragment C5a is chemotactic for
microglia [14], led to the hypothesis that the comple-
ment activation triggered by fibrillar ß-amyloid contri-
butes to the inflammatory reaction that can play a
detrimental role in the progression of the later stages of
Alzheimer’s disease [15].
Both a genetic and a pharmacological approach have

been used to investigate this hypothesis. First, a Tg2576
transgenic mouse model of AD was crossed to a C1q-/-
mouse to generate the APPQ-/- mouse which lacks C1q
(the first component of the classical complement path-
ways). We observed a decrease in reactive glia associated
with fibrillar amyloid plaques in the APPQ-/- compared
to the APP mice at all ages analyzed. In addition, the
APPQ-/- mice showed greater synaptophysin (SYN) and
MAP-2 staining relative to the APP mice indicating a
preservation of neuronal integrity [16]. In a second
approach, Tg2576 mice were treated with a specific
antagonist for CD88, a receptor for the complement
activation fragment C5a, for three months. The treated
animals showed a decrease in plaque and glia pathology,
an increase in the SYN staining and cognitive improve-
ment [17]. 3xTg mice, a mouse model of AD that devel-
ops neurofibrillar tangles as well as plaques, similarly
treated also showed a decrease in plaques, reactive glia
and, in addition, a decrease in hyperphosphoryated tau
[18]. These results support the hypothesis that comple-
ment activation plays a detrimental role in AD since
inhibiting classical complement activation or blocking
the downstream pathway by inhibiting C5a/C5aR inter-
action renders a substantial improvement in pathology
and behavior of these animals.
Since it has also been reported that C1q can bind to

hyperphosphorylated tau and activate complement
in vitro [8], the contribution of complement activation

on the kinetics of appearance and accumulation of both
amyloid plaques and phosphorylated tau, was assessed
in the 3xTg and in the 3xTg lacking C1q (3xTgQ-/-) at
different ages. In addition, a caveat for the use of stan-
dard mouse models for studying the involvement of
complement in human AD is the reported weak hemo-
lytic activity of mouse complement [19]. While the basis
for this apparent deficiency seen in in vitro assays has
not been delineated, one possible consequence in vivo
would be a lower or less efficient C5 cleavage and thus
a lower generation of both C5a, a proinflammatory pep-
tide, and the membrane attack complex composed of
C5b, C6, C7, C8 and C9 (C5b-9). This would result not
only in a decrease in bystander damage of cells in the
mouse system, but also decreased proinflammatory
activity, relative to that in the human system. The BUB/
BnJ strain of mice has higher complement hemolytic
activity, as measured in vitro, than that of current trans-
genic mouse AD models [15,20-22]. To determine if this
parameter translates into differences in pathology in the
3xTg model, the 3xTg was backcrossed (N = 6) to the
BUB strain and to BUBQ-/-, and the development of
pathology compared with that of the 3xTg on a mixed
C57BL/6 background.
The results show that the presence or absence of C1q

generated no difference in plaque or tangle pathology or
inflammatory response in this 3xTg animal model.
Interestingly however, C1q and C4 were not detected
associated with the plaques in the 3xTg models, in con-
trast to prominent deposition in other transgenic mod-
els (Tg2576 and Arc48). These data indicate that the
classical complement pathway may not contribute to the
generation of C5a and inflammation in the 3xTg model
which develops pathology more slowly than other mod-
els of this disease. However, an increase in pathology
was observed in the 3xTg backcrossed to BUB back-
ground relative to the initial 3xTg. Since we previously
demonstrated a suppression of pathology in this model
with a C5a receptor antagonist, these results suggest
that activation of the alternative complement pathway
or the presence of other C5 cleaving enzymes may be
the mechanism by which the proinflammatory peptide
C5a is generated in this model.

Methods
Transgenic mice
3xTg mice harboring the Swedish mutation (KM670/
671NL), a human four repeat Tau (P301L) mutation
and a knock in mutation of presenilin1 (PS1M146V)
[18] in a mixed background (3xTg) were generously
provided by Dr. Frank LaFerla (UCI, Irvine, CA). These
mice were backcrossed for 6 generations to the BUB/
BnJ strain (The Jackson Laboratory, Bar Harbor, Maine)
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to generate 3xTgBUB mice. The 3xTg and 3xTgBUB
were crossed to C1q knockout mice (C1qa-/-) [23] pre-
viously backcrossed onto C57BL/6 or onto the BUB
background until homozygous for all markers (validated
by PCR and/or QPCR and test breeding) generating
3xTgQ-/- and 3xTgQ-/-BUB respectively. The 3xTg col-
ony generated from the initial 3xTg breeders has all the
pathological features originally reported [18] but shows
a slower progression of the AD pathology than the ori-
ginally reported colonies and shows a significant gender
difference in the pathology, as seen by some other inves-
tigators [24]. Since in our colony the females present
significantly higher pathology than the males at all the
ages, the data reported are from females only. Non
transgenic mice or littermates of the same background
were used as controls. Tg2576 [25] were maintained by
breeding to B6/SJL obtained from Jackson Laboratory.
Arc48, Arctic-mutant hAPP mice [26] (obtained from
Dr. Lennart Mucke, Gladstone Institute, San Francisco,
CA), were backcrossed onto the C57BL/6J strain (Jack-
son Laboratory).

Tissue preparation
Mice were anesthetized with a mixture of ketamine/
xylazine (67/27 mg/kg) and perfused with PBS. After
dissection, half brain was immediately frozen on dry
ice and the other half fixed overnight with 4% parafor-
maldehyde (for immunohistochemistry). Thereafter,
fixed tissue was stored in PBS/0.02% Na azide at 4°C
until use.

Immunohistochemistry and image analysis
Vibratome sections (coronal, 40 um) were incubated
sequentially with 3%H2O2/10%MeOH/TBS to block
endoperoxidase, with 2% BSA/0.1%Triton/TBS to block
non specific binding and with the corresponding pri-
mary antibodies or control IgG in blocking solution all
as previously described [16]. Primary antibodies were
detected with biotinylated secondary antibodies against
the corresponding species, followed by ABC complex
and DAB (VECTOR, Burlingame, CA). For immuno-
fluorescence staining detection was done with species
specific biotinylated antibodies followed by Cy3-Strepta-
vidin (Jackson, West Grove, Pennsylvania, 1:200 dilu-
tion) or Alexa555-Streptavidin (SA) (Invitrogen,
Carlsbad, CA, 1:200 dilution). For colocalization of C3
and GFAP, tissue was incubated with both primary anti-
bodies simultaneously and C3 was detected with biotiny-
lated anti rat antibody followed by Alexa555-SA, and
GFAP was labeled with Alexa488 anti rabbit IgG. For
immunofluorescence staining using anti C3d and C3b/
iC3b/C3c antibodies primary antibodies were detected
by incubation with the corresponding biotinylated sec-
ondary antibodies, followed by ABC complex. A final

step with CY3-Tyramide (NEL 744, TSA plus, Perkin
Elmer, Shelton CT) 1:50 dilution in amplification buffer
was done as per manufacturer instructions. For single
and double labeling, controls with the omission of the
primary antibodies or the inclusion of normal IgG were
performed and were negative. Primary antibodies used
were: rabbit polyclonal anti mouse C1q (4 ug/ml, #1151
[27]) rat monoclonal anti CD45 (1 ug/ml) (Serotec,
Raleigh, NC), mouse monoclonal anti hyperphosphory-
lated tau (AT8 or AT100, 0.2 and 0.02ug/ml respec-
tively) (Pierce, Rockford, Il), rat monoclonal anti mouse
C4 (clone16D2, 5ug/ml) (Cell Sciences) and rabbit anti
mouse properdin antibody (5ug/ml) [28]. Three antibo-
dies were used to detect C3: rat monoclonal anti mouse
C3 (clone 11H9, 4ug/ml) (Cell Sciences, Canton, MA),
rabbit polyclonal anti human C3c (10ug/ml) (Dako, Car-
pinteria, CA), and rabbit polyclonal anti human C3d
(Dako, 0.4ug/ml). Rat monoclonal anti mouse C3b/
iC3b/C3c (Cell Sciences, clone 2/11, 5ug/ml) specifically
recognizes cleaved and not native C3. Fibrillar Aß was
stained with 1% thioflavine as previously described [29].
Immunostaining was observed under a Zeiss Axiovert-

200 inverted microscope (Carl Zeiss, Thornwood, NY)
and images were acquired with a Zeiss Axiocam high-
resolution digital color camera (1300x1030 pixel) using
Axiovision 4.1 or 4.6 software. The same software (Carl
Zeiss) was used to analyze the digital images. Percent of
immunopositive area (% Field Area) (immunopositive
area/total image area × 100) was determined for all the
markers studied by averaging images of the subiculum
area from 2-3 sections per animal. Digital images were
obtained using the same settings and the segmentation
parameters constant within a range per given marker
and experiment. The mean value of the % Field Area for
each marker in each animal was averaged per genotype
group with the number of animals per group indicated
in Figure legends. Data was analyzed using single
ANOVA statistical analysis.
Staining of all animals from the same trial that were

compared by image analysis was done simultaneously
per given marker.

Total RNA extraction, reverse transcription and
quantitative real-time PCR (qRT-PCR)
Total RNA from pulverized frozen cortices (10 mg) and
hippocampi (5 mg) was extracted using the Illustra
RNAspin mini kit (GE Healthcare Life Sciences, Piscat-
away, NJ) following manufacturer’s instructions. The
cDNA synthesis was carried out with 100 ng of total
RNA, 0.5 μg oligo(dT) primer, 40 units RNaseOUT and
200 units M-MLV reverse transcriptase RT (Invitrogen,
Carlsbad, CA) according to the manufacturer’s protocol.
Quantitative PCR was performed using the iCycler iQ
and the iQ5 software (Bio-Rad, Hercules, CA). Briefly,
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amplification was conducted in a 25 μl volume using
12.5 μl Maxima SYBR/Green Master Mix (Fermentas,
Glen Burnie, MD), 100 ng of template cDNA and 0.3
μM each of forward and reverse gene-specific primers.
The primers (IL-1a-F: AGACCGACCTCATTTT-
CTTCTG, IL-1a-R: ACCCGACTTTGTTCTTTGGTG,
IL-1b-F: TACATCAGCACCTCACAAGCA, IL-1b-R:
AGAAACAGTCCAGCCCATACT, CCL2-F: CACT
CACCTGCTGCTACTCATTC, CCL2-R: CCATTCCT
TCTTGGGGTCA, IL-6-F: AGGAGACTTCACAG
AGGATACCA, IL-6-R: CATTTCCACGATTTCCCA
GAG, TNFa-F: GGTGTTCATCCATTCTCTACC,
TNFa-R: GAGCCATAATCCCCTTTCTAA, GAPDH-F:
AACTCCCACTCTTCCACCTTC and GAPDH-R: GG
TCCAGGGTTTCTTACTCCTT) were designed using
the primer3 tool (http://frodo.wi.mit.edu/primer3/) and
obtained from Eurofins MWG Operon (Huntsville, AL).
RT was omitted in negative controls. The fold-
difference in target genes cDNA relative to the
GAPDH endogenous control was determined using the
relative quantification method as follows: Fold-difference
= 2-ΔCt, ΔCt = (CtTarget - CtGAPDH) where Ct values are
defined as the number of cycles for which the fluores-
cence signals were detected [30]. Results are represented
as individual scatter dot plot with mean ± SEM of fold-
difference (2-ΔCt) for each genotype group and com-
pared with two-tailed t-test (Bonferroni post hoc test,
alpha error = 0.05) and Pearson rank correlation coeffi-
cient. Differences were considered significant when
p was <0.05.

Results
3xTg and 3xTgQ-/- show similar pathology at all the ages
tested, with trends for accelerated pathology in the 3xTg
on the BUB background
The kinetics of progression of plaque deposition, acti-
vated glia and tangle pathology in the 3xTg as compared
to the 3xTg backcrossed to a C1q knock out, 3xTgQ-/-,
was assessed on animals from 7 months (m) to 18 m of
age to permit comparison at multiple stages of plaque
formation. In our colony of 3xTg mice, there is no pla-
que deposition seen in 7 m animals, while by 18 m
there are a significant number of plaques in the subicu-
lum area of the hippocampus.
The deposition of fibrillar plaques as detected by thio-

flavine staining (which only labels fibrillar amyloid) was
assessed by image analysis in the subiculum area of the
hippocampus (the area where pathology starts in the
3xTg model) at 7,12,14,16 and 18 m in the 3xTg vs.
3xTgQ-/- group. As shown in Figure 1A, and 1B, there is
no significant difference between the 3xTg and 3xTgQ-/-
in the amount of fibrillar plaques seen at any age. Simi-
larly, total amyloid immunostaining using 6E10 antibody,
did not show any differences between the 3xTg and

3xTgQ-/- groups (data not shown). When the same stu-
dies were performed using 3xTg and 3xTgQ-/- on BUB
background, again no differences in the amount of pla-
ques were seen at any of the ages studied (7,10,12.5 and
18 m) in the presence or absence of C1q (Figure 1C).
However, the 3xTg on BUB background did have higher
thioflavine staining than the 3xTg (mixed background) at
12.5 and 18 m with a 3 fold greater amount at 12.5 m
that was statistically significant (p < 0.05).
In contrast to previous comparison of Tg2576 and

Tg2576Q-/- mice [16], deletion of C1q did not affect
the level of CD45 immunoreactivity (activated microglia)
seen around the plaques in the 3xTg model (Figure 2A
and 2B) or in the 3xTg model on BUB background
(Figure 2C). However, as seen with the thioflavine
results, a trend for an increase in the CD45 staining is
observed in the 3xTgBUB at 12.5 m when compared
with 3xTg, a difference that is statistically significant (p
< 0.02). The variability in all pathological markers
among the individual animals in all the groups (at all
ages) was considerable (as can be seen by the SE) even
among littermates, suggesting that it might be due to
genetic factors. This variability was particularly evident
in the microglia reactivity with some groups of animals

Figure 1 Genetic deficiency of C1q does not alter fibrillar
plaque pathology in 3xTg, but kinetics of plaque deposition is
increased in both 3xTg and 3xTgQ-/- backcrossed to BUB.
A. Representative pictures of thioflavine staining in the subiculum
area of 3xTg and 3xTgQ-/- at 16 m (scale bar: 100 um). B, C.
Thioflavine quantification by image analysis in the subiculum area of
the 3xTg and 3xTgQ-/- (B) or the 3xTg and 3xTgBUB and 3xTgQ-/-
BUB (C) at different ages. Data points are the average of n animals
+/- SE at different ages. (B) 3xTg, 3xTgQ-/- at 7 m n = 8,8; at 12 m
n = 11,10; at 14 m n = 3,6; at 16 m n = 9,15; at 18 m n = 3,4. (C)
3xTg, 3xTgBUB, 3xTgQ-/-BUB at 7 m n = 3,3,5; at 10 m n = 8,3,8; at
12.5 m n = 7,7,8; 18 m n = 4,5,6. *p < 0.05 (3xTg vs 3xTgBUB) using
ANOVA single factor.
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displaying little or no clear increase of microglial reac-
tivity (CD45, MAC-1 and Iba1 staining) in parallel with
the increases seen in thioflavine plaques. However,
astrocytes (labeled with GFAP) surrounding plaques
were found in levels corresponding relatively to the thio-
flavine load (data not shown). The reason for this vari-
able microglial reactivity observed in the 3xTg is
currently unknown.
The 3xTg model not only develops plaque pathology

but also accumulates neurofibrillary tangles that contain
hyperphosphorylated tau. Immunostaining and image
analysis of AT8 and AT100 (antibodies for phosphotau)
showed no difference in the amount of phosphorylated
Tau between 3xTg and 3xTgQ-/- (Figure 3A and 3B) or
between 3xTgBUB and 3xTgQ-/-BUB (Figure 3C) at any
age tested indicating that the lack of C1q did not alter
the amount of tau phosphorylation and the progression
of neurofibrillary tangles. However, importantly, there is
a trend of an increase of AT100 reactivity in the 3xTg
and the 3xTgQ-/- on the BUB background relative to
the 3xTg which reached statistical significance at 18 m
between the 3xTg vs 3xTgQ-/-BUB groups (p < 0.05).

Evidence of classical pathway activation is not seen
associated with plaques in brain of 3xTg or 3xTgBUB
There is evidence that supports the hypothesis that
complement activation by ß-amyloid fibrils occur in AD
(Tenner and Fonseca, 2006), and that this activation
might be, in part, responsible for the recruitment of
activated glia and the generation of an inflammatory
environment in the area of the plaque that can enhance
neuropathology. In several transgenic models of AD
complement factors have been shown associated with
the plaques [31-33]. In the Arc48 model [26] which
develops plaque pathology at an early age, C1q is asso-
ciated with plaques as the first thioflavine plaques
develop (around 2 m) and increases with age (data not
shown), strongly colocalizing with thioflavine (Figure 4,
left). In the Tg2576 model, C1q is also associated with
thioflavine plaques (Figure 4, middle). Surprisingly,
neither the 3xTg (Figure 4, right) nor the 3xTg on the
BUB background (data not shown) showed detectable
levels of C1q colocalizing with plaques.
C4 immunostaining with an antibody that recognizes

C4 and its cleavage fragments C4b and C4d showed that
C4 is present in the Arc48 model (Figure 5, top) and
colocalizes with thioflavine (Figure 5, top inset). As pre-
viously reported [33], C4 is deposited on plaques in the

Figure 2 Microglial reactivity associated with plaques is not
altered by the absence of C1q in the 3xTg mice on either
background, although 3xTgBUB mice show a statistically
significant higher CD45 reactivity than 3xTg at 12.5 m. A. CD45
immunostaining in the subiculum area of 16 m 3xTg or 3xTgQ-/-
animals (Scale bar: 50 um). B. Image analysis of CD45 in
representative trials at 12 and 16 m. Data points are individual
animals. Bars are the average of n animals +/- SE. 12 m 3xTg n = 5,
3xTgQ-/- n = 6, 16 m 3xTg n = 4, 3xTgQ-/- n = 6. Data is
representative from one of two different trials (total of at least 11
mice per genotype). C. Progression of the CD45 pathology in 3xTg,
3xTgBUB and 3xTgQ-/-BUB at different ages. Data points are the
average of n animals +/- SE at ages noted. 3xTg, 3xTgBUB, 3xTgQ-/-
BUB at 7 m n = 3,3,5; at 10 m n = 8,3,8; at 12.5 m n = 7,7,8;
*p < 0.02 (3xTg vs 3xTgBUB) using ANOVA single factor.

Figure 3 Neurofibrillary tangles/phosphorylated tau pathology
was similar in the 3xTg and 3xTgQ-/- mice, while a significant
increase was seen in the 3xTg BUB. A. AT8 immunostaining in
the subiculum area of the 3xTg and 3xTgQ-/- mice at 16 m. Scale
bar: 50 um. B, C. AT8 and AT100 quantification by image analysis in
the subiculum of the 3xTg and 3xTgQ-/- mice at 16 m. AT8 n = 4,6,
AT100 n = 4,5 (data is representative from two different trials for the
AT100). Data points are individual animals. D. AT100 quantification
at different ages in the 3xTg, 3xTgBUB and 3xTgQ-/-BUB. Points are
the average of n animals +/- SE at different ages. 3xTg, 3xTgBUB,
3xTgQ-/-BUB at 7 m n = 3,3,5; at 10 m n = 8,3,8; at 12.5 m n =
7,7,8; at18 m n = 4,5,6. *p < 0.05 (3xTg vs 3xTgBUBQ-/-) using
ANOVA single factor.
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Tg2576 mice and also expressed in oligodendrocytes
(Figure 5, middle) as early as 12 m, while undetectable
in the Tg2576Q-/- mice of the same age. In contrast, no
C4 was detected on the plaques of the 3xTg model even
at advanced ages (Figure 5, bottom) or in the BUB (high
complement hemolytic activity) strain (data not shown).

Expression of C3 and cleaved C3 fragments in the 3xTg
brain compared to other APP transgenic models
C3 immunoreactivity was tested using two monoclonal
antibodies, the anti mouse C3 antibody (Clone 11H9)
that recognizes both intact C3 and the cleaved frag-
ments C3b, iC3b and C3d while anti mouse C3b/iC3b/
C3c (clone 2/11) is specific only for the cleaved [34]
fragments and two polyclonal anti human C3 antibodies
that react with either the C3c (C3/C3c antibody) or the
C3d (C3/C3d antibody) in the native or cleaved mole-
cule. Results of immunohistochemical analysis are sum-
marized in Table 1. Reactivity was detected in
subpopulations of astrocytes associated with plaques,
shown by the polyclonal anti human C3/C3c in 3xTg
(Figure 6A), Tg2576 and Arc48 (data not shown), and
the monoclonal anti mouse C3 (clone 11H9) in the
Tg2576 (Figure 6C) and 3xTg (data not shown), consis-
tent with the known synthesis of C3 by astrocytes in an
injured or inflammatory environment. In the Arc48
mice at younger ages the 11H9 antibody stained only
astrocytes, but at later ages (13 m) plaques were also
labeled (data not shown). While staining astrocytes less
prominently, the anti human C3/C3d polyclonal anti-
body also showed reactivity associated with the plaques

in the Arc48 model at older ages (9 m, Figure 6D), sug-
gesting the presence of the activation fragment of C3
since C3d contains the thioester that can form covalent
binding with an activator (here the fibrillar amyloid). In
contrast, while the polyclonal anti human C3/C3d anti-
bodies did label astrocytes surrounding plaques in the
Tg2576 (data not shown) and 3xTg (Figure 6B) similar
to the Arc48, the association of C3d on plaques was not
detected in either Tg2576 (data not shown) or in the
3xTg with this antibody (Figure 6B). The monoclonal
2/11 which reacts with activated/cleaved C3 only (C3b/
iC3b/C3c), stained plaques in Arc48 (13 m) (data not
shown) and Tg2576 [33] although no reactivity was
detected in 3xTg, further demonstrating differential pla-
que associated complement components. The 3xTgBUB

Figure 4 C1q deposition is not detected on plaques in 3xTg in
contrast to other APP mouse models. Representative pictures of
C1q (red) and thioflavine (green) and merge (bottom row) show
colocalization in Arc48 mice at 9 m (left) and Tg2576 at 18 m
(middle), with no detectable staining of C1q in 3xTg at 22 m (right).
Scale bar: 50 um.

Figure 5 C4 is highly expressed in the plaques of Arctic and
Tg2576 models but absent in the 3xTg model. C4
immunostaining (brown) in the Arc48 mouse hippocampus at 9 m
(top) and Tg2576 cortex at 18 m (middle), and 3xTg subiculum at
18 m (bottom). Colocalization of C4 (red) with thioflavine (green)
(top inset) in Arc48 model. Scale bar: 50 um.
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strain reacted similarly to the 3xTg with all anti C3 anti-
bodies (data not shown).

Properdin is associated with plaques in APP transgenic
mice
Since activated C3 was not detected on plaques in the
3xTg mice with the antibodies available but a previous
report had demonstrated a 50-70% decrease of pathol-
ogy following treatment with a C5aR antagonist [17], we
looked for the presence of properdin, a positive regula-
tor of the alternative pathway, as evidence of alternative
pathway activation in these mice. Using an anti mouse
properdin antibody [28], properdin reactivity was clearly
present associated with plaques (with occasional astro-
cyte staining) in the Tg2576 (Figure 7A), 3xTg
(Figure 7C), as well as 3xTgBUB and Arc 48 (data not

shown) models. Properdin staining was also observed in
3xTgQ-/- (Figure 7D) and 3xTgQ-/-BUB brain (data not
shown). No staining was detected in nontransgenic lit-
termates or controls (Figure 7B). These data are consis-
tent with alternative pathway activation in the 3xTg as
well as Tg2576 and Arc mouse models.

Similar increases in inflammatory gene expression are
detected in the 3xTg Q-/-BUB as in 3xTgBUB
Expression of inflammatory gene transcripts in cortex
and hippocampus of 18 m old 3xTgBUB, 3xTgQ-/-BUB
and nontransgenic BUB and BUBQ-/- controls was
assessed by qRT-PCR. (Figure 8) Clearly detectable
increases in IL-1a, Il-1ß and CCL2 (MCP-1) transcripts
were detected in the hippocampus of the 3xTgBUB rela-
tive to the nontransgenic BUB mice (Figure 8A). Specifi-
cally, for IL-1a and IL-1ß, a 3 fold-increase, (p = 0.014
and 0.048, respectively) in gene expression was detected
in the 3xTgBUB vs the BUB nontransgenic mice, and a
2- and 5-fold increase was seen (p = 0.042 and 0.0038,
respectively) comparing 3xTgQ-/-BUB to the BUBQ-/-.
For CCL2 there was a 4-fold increase in transcript levels
in the 3xTgBUB relative to the BUB (p = 0.046) and a

Table 1 Summary of immunoreactivity observed with anti C3 antibodies

Anti mouse C3 (clone 11H9) Anti human C3/C3c Anti human C3/C3d Anti mouse C3b/iC3b/C3c (Clone 2/11)

3xTg A1 A2 A3 negative

Tg2576 A4 A A P

Arc 48 A/P A A/P5 P
1A, Astrocytes; P, Plaques; 2Figure 6A, 3Figure 6B, 4Figure 6C, 5Figure 6D.

Figure 6 C3 is expressed in astrocytes clustered around
plaques in the 3xTg similarly to other APP models of AD, but
is not associated with plaques as shown in the Arc48 model.
C3 immunostaining using anti human C3/C3c (A) and anti human
C3/C3d (B) (red) in astrocytes clustered around plaques in the
subiculum of the 3xTg mice at 18 and 22 m respectively.
C. Colocalization (merged image) of anti mouse C3 (clone11H9)
(red) with GFAP (green) in Tg2576 15 m. D. Colocalization of anti
human C3/C3d (red) with thioflavine (green) in the Arc48 model at
9 m. Merged images shows that this anti C3/C3d antibody labels
astrocytes (red) and also colocalizes with thioflavine plaques
(yellow). Scale bar: 50 um.

Figure 7 Properdin is associated with plaques in Tg2576 and
3xTg models. Representative pictures of properdin immunostaining
using anti mouse properdin antibody in the hippocampus of 17 mo
Tg2576 (A) and 17 mo wild type littermate (B), and the subiculum
of 16 mo 3xTg (C) and 18 mo 3xTgQ-/- (D). Arrow shows properdin
associated with plaques and arrowhead points to occasional
astrocyte staining. Scale bar: 50 um.
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12-fold increase comparing the 3xTgQ-/-BUB to the
BUBQ-/- (p = 0.035). However, there are no statistically
significant differences between the C1q knock out and
C1q sufficient animals (Figure 8A) in agreement with
the pathology results. No such differences were detected
in the cortex (data not shown), correlating with the little
to no pathology in the cortex of these mice at this age
(pathology is predominantly in the subiculum area of
the hippocampus in these animals). No significant differ-
ences in IL-6 or TNFa mRNA levels were identified in
either region of the brain (data not shown) in any of the
animals tested. Comparison of IL-1a, Il-1ß and CCL2
transcript expression with the level of immunohisto-
chemical CD45 reactivity (a general marker of microglial
reactivity) showed a trend toward a positive correlation

with the expression of these elevated transcripts,
although this reached significance only in the case of IL-
1a (p = 0.038, Figure 8B).

Discussion
The presence of complement components and indica-
tors of inflammation in AD brain suggests that comple-
ment activation may contribute to the progression of
AD, and if so, can be a novel therapeutic target. In vitro
data, demonstrating the ability of fibrillar ß-amyloid to
activate both the classical and alternative pathway is
consistent with complement pathway activation by fibril-
lar amyloid plaques in vivo [12,13]. In our previous pub-
lication, treatment of 3xTg mice with a C5a receptor
antagonist [C5a is a proinflammatory peptide that can
be generated as a result of complement activation]
showed marked decreases in both amyloid plaque and
hyperphosphorylated tau pathology [17]. In the present
study the contribution of complement to pathology was
defined in the 3xTg model. To eliminate classical com-
plement pathway activation, mice were first bred to gen-
erate C1q-deficient 3xTg mice. Conversely, to enhance
complement activity, 3xTg were backcrossed 6 genera-
tions to the BUB background, a strain with higher levels
of serum complement hemolytic activity. No differences
in thioflavine plaques, reactive glia, hyperphosphorylated
tau, or selected inflammatory markers were detected
between the C1q -sufficient and -deficient 3xTg mice on
either background, which is in contrast to previous stu-
dies with Tg2576 lacking C1q that had shown reduced
gliosis and increased neuronal integrity [16]. Consistent
with the lack of C1q-dependent pathology in the 3xTg,
there were no early components of the classical comple-
ment pathway associated with the plaques, again in
sharp contrast to the Tg2576 [16] and the Arc48 model
(Figure 5). Therefore, the positive effect of the specific
antagonist for the C5aR (PMX205) in suppressing
pathology in the 3xTg animals [17] suggests that either
alternative pathway of complement activation is the pre-
dominant and sufficient mechanism of C5a-generation
in this animal model (as the alternative pathway is
independent of C1q), that the newly described C3-
independent enzymatic cleavage of C5 [35] may be the
source of the C5a contributing to pathology in these
mice or that the protective effect of PMX205 is indepen-
dent of C5a effects.
The presence of properdin, an alternative complement

pathway component that can stabilize the C3 convertase
as well as initiate alternative pathway activation [36],
associated with amyloid plaques in 3xTg as well as
3xTgQ-/- animals supports the possibility that the alter-
native pathway is activated in this AD model. However,
an additional contribution of the C3-independent gen-
eration of C5a cannot be ruled out at this point.

Figure 8 Similar increased expression of the proinflammatory
markers IL-1a, IL-1b, CCL2 and CD45 in 3xTgBUB and 3xTgQ-/-
BUB mice compared to non-transgenic BUB mice. A. Gene
expression of IL-1a, IL-1b and CCL2 in the hippocampus of 18 m
old 3xTgBUB and 3xTgQ-/-BUB mice compared to the non-
transgenic BUB and BUBQ-/-mice was assessed by qRT-PCR. Results
are represented as individual animal scatter dot plots with mean ±
SEM (BUB and BUBQ-/-, n = 3 and 3xTgBUB and 3xTgQ-/-BUB, n =
6) of fold-difference (2-ΔCt). B. Increases in IL-1a are positively
correlated with increased CD45 (r = Pearson’s correlation coefficient)
*, p < 0.05 and **, p < 0.01.
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A role for the C5a activation fragment of complement
in many inflammatory disorders including neurodegen-
eration has been well documented (reviewed in [37]).
The abrogation of AD pathology in the 3xTg model
backcrossed to the C5 deficient FVB strain (D.A.Morris-
sette, PhD dissertation, 2009, UCI) as well as the delay
in amyloid accumulation in the C5-deficent mice con-
taining the human APP gene under its own promoter
[38] supports, though does not prove, a contribution of
C5a. While it is possible that PMX205 is inhibiting
other receptors, PMX53, the close homolog of PMX205,
was screened for inhibition of 44 different receptors
including 4 ion channels and two transporter proteins
and shown to exert inhibition with only 4 other recep-
tors and only at a minimum of 3 fold higher concentra-
tion than that which inhibits CD88/C5aR [39].
Treatment with PMX205 in mice had no effect on dam-
pening leukocyte migration to the CNS in response to
intracranial inoculation with a neurotrophic coronavirus
(T.E.Lane, UC, Irvine, personal communication) [17],
emphasizing the variety of selective chemotactic and
inflammation inducing mechanisms available that are
not inhibited by this antagonist.
A second major finding of this study is that thioflavine

positive plaques and glial accumulation was detected
earlier (by approximately 2 months) in the 3xTgBUB
mice relative to the 3xTg (Figure 1 and 2), consistent
with the possible greater generation of detrimental C5a
in the BUB background. Since there was no evidence of
C1q and C4b associated with plaques in the 3xTg BUB,
similar to the mixed background 3xTg, greater alterna-
tive pathway complement activation or greater C3-
independent C5 cleavage (both of which can lead to
higher C5a generation) in BUB may be the basis for this
accelerated pathology. Although C3b stably bound to
plaques was not detected in the 3xTg, it is possible that
low levels of alternative pathway activation could occur,
but that amplification is highly regulated (such as by the
complement regulatory protein Crry previously shown
to be present at high levels in mice [32]) resulting in
very low surface bound C3b that may be difficult to
detect by any of antibodies used.
These data, and other results from studies by us and

others, suggest that the role of complement in AD is
complex, with evidence for both detrimental and benefi-
cial functions [16,17,40-42]. For example, transgenic
over expression of the murine complement inhibitor of
C3 (Crry) or generation of a C3 deficient APP mice
resulted in enhanced pathology in these mouse models
suggesting a protective contribution of complement
[41,43] (possibly due to the opsonic effect of C3b for
amyloid or cellular debris that is missing when classical
and alternative pathways are blocked by C3 inhibition
or deletion). This protective role is also consistent with

the recent report demonstrating a correlation between
induction of early components of complement and sup-
pression of Aß deposition in the TgCRND8 AD mouse
model [44]. However, deletion of C1q in the Tg2576
and APPPS1 models of AD supported a detrimental role
for complement activation since the Tg2576C1q-/- and
APPPS1C1q-/- mice showed less reactive glia surround-
ing plaques and increased synaptophysin than the
Tg2576 or APPPS1 [16]. The protection given by the
lack of C1q (and thus lack of the classical pathway for
complement activation) was substantial but not com-
plete, suggesting that the alternative pathway and/or
other non complement mediated events contribute to
the inflammatory reaction around the plaques. The
deposition of C3b on the plaques of Tg2576C1q-/- in
the absence of C1q and C4 demonstrated that the alter-
native pathway is activated in the Tg2576C1q-/- mice
[33]. The presence of properdin on plaques of all mod-
els assessed here indicates that either or both comple-
ment pathways are activated in AD mice.
The 3xTg is the first transgenic model of AD in which

early components of classical (C1q and C4) complement
pathway have not been detected associated with thiofla-
vine positive plaques. Robust deposition of C1q and C4
in the Tg2576 mice [33] and the APP23 mice [32] or
C1q in the APP/PS1 [31] on plaques has been demon-
strated. In addition, the mouse model for cerebral
microvascular amyloid showed increases in C1q, C3 and
C4 in areas with fibrillar amyloid deposits [45]. We can-
not rule out the possibility that there is transit binding
of C1q in C1 (and thus limited activation of the classical
complement pathway) on the plaques of the 3xTg or
increased plaque binding of complement regulators such
as C4BP (known to bind to plaques in AD brain) [46].
In any case, the possibility that the complement path-
ways are more robust in the Tg2576, APP23, (and APP/
PS1) provides a plausible explanation as to why the pro-
gression of the pathology is faster in those strains than
in the 3xTg. Similarly, the accelerated progression of
pathology in the 3xTg on BUB background is consistent
with a role for complement in determining the rate of
progression of the disease. The different C3 and C5 con-
vertases involved in the classical and alternative path-
ways and/or the balance of both pathways might
contribute differently to the extent of downstream acti-
vation (C5a generation) and to the resulting pathology
in these models. The potential polymorphism in CR1
associated with human AD also suggests a point of con-
trol of complement activation, since CR1 is a critical
regulator of C3 convertase activity in humans, and
remains to be further investigated.
Interpretation of the immunohistochemical data asses-

sing the presence of C3 in inflammatory disease models
requires an understanding of the various forms of C3
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being recognized by the antibodies used. While C3 has
been shown to be synthesized by astrocytes and microglia
in culture [47] and in brain tissue by in situ hybridization
in neurodegenerative diseases or with injury or inflam-
mation [7,48], reports of the association of both native
and activated C3 differ among mouse models of neurode-
generation. For example, plaque labeling at different
levels, but not astrocyte labeling was observed in the
APP23 model with the polyclonal anti C3d antibody
[32,49], while weak to absent plaque staining in Tg2576
mice was reported with this antibody [49]. Here, the
polyclonal anti human C3/C3d antibody labels astrocytes
(probably via epitopes on C3d exposed in intact C3) in
the Arc48 model and in the Tg2576 and 3xTg. In addi-
tion, the monoclonal anti C3 antibody, clone 11H9 (that
recognizes intact C3), labeled only astrocytes in 3xTg and
Tg2576 mice, suggesting that this C3 was newly synthe-
sized, uncleaved C3 (consistent with the identification of
C3 as an acute phase protein) [50]. The polyclonal C3/
C3c antibody that recognizes the C3c region within C3
(C3c can also be dissociated from the thioester surface
bound C3d upon a second cleavage of C3b by Factor I),
labeled mainly astrocytes in all three models. The lack of
astrocyte labeling by the 2/11 anti C3b/iC3b/C3c that
recognizes only cleaved C3, supports the conclusion that
the astrocyte labeling in these models represents native,
uncleaved C3. Importantly, activated C3 neoepitopes
detected by the 2/11 monoclonal antibody were asso-
ciated with plaques in the Arc48 model but not on the
plaques in the 3xTg. Plaques in Arc48 were also stained
with the polyclonal anti C3/C3d antibody likely reflecting
reactivity with activated C3b cleaved to C3d on those pla-
ques. Overall, these results are consistent with differential
activation of C3 in these mouse models. [It should be
noted, while we consistently observed astrocytes labeling
with all the C3 antibodies tested (except 2/11, which is
specific for cleaved C3) in all three mouse models, in
another murine model of neurodegeneration C3 was
reported exclusively in microglia [45].]
In conclusion, there is substantial evidence showing

C1q, C4 and C3 strongly associated with fibrillar pla-
ques in human AD brain and Down’s Syndrome with
AD [3,5,51,52] even in early stages of the disease corre-
lating with the appearance of fibrillar amyloid [2]. Com-
plement proteins of the alternative pathway are also
detected associated with plaques in the human disease
[53]. The production of complement factors by brain
cells [6,7,54] and the presence of the terminal comple-
ment membranolytic complex C5b-9 detected on pla-
ques and tangles in human AD [9] provide further
evidence that complement is present and fully activated
in AD brain and therefore might contribute to the
enhancement of neurodegeneration at later stages of the
disease when fibrillar plaques are present. Mouse

models of AD exhibit to some degree many of the
pathological features of AD [55,56]. However, the
absence of definitive evidence for some late complement
factors [32,49] and/or differences in the ratios of com-
plement components and complement inhibitors
between AD and AD animal models have been reported
[32] suggesting that there might not be quantitatively
comparable complement activation in mouse models as
in human AD. Here, the presence of properdin in all
mouse models of AD provides evidence for the activa-
tion of the alternative complement pathway, consistent
with the benefit demonstrated in the 3xTg as well as
Tg2576 mice of treatment with an antagonist of the
proinflammatory C5a receptor [17]. Nevertheless, the
development of new mouse models that more closely
mimic the human system in all aspects of the disease
will further improve the ability to assess the contribu-
tion of complement to AD neuropathology, define the
targets most likely to promote beneficial effects and/or
prevent detrimental activities [57-59] and aid in devel-
oping treatments for this devastating human disease.
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