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Introduction

Cervical cancer has caused 275,000 deaths in 2008, 
with an estimated 529,000 new cases in the same year 
(WHO, 2008) with persistent infection by HPV shown to 
be the main cause of cervical carcinogenesis. Interestingly, 
HPV infection is common as its DNA can be detected in 
cervical tissues ranging from normal, low-grade squamous 
intraepithelial lesion (LSIL), high-grade squamous 
intraepithelial lesion (HSIL) to carcinoma (De Sanjosé et 
al., 2007; Smith et al., 2007; Prétet et al., 2008).

The virus replication is in correlation with the host 
cell differentiation stages. This association is an important 
determinant not only for effective viral replication, but 
also potentially crucial in viral-host immune interaction 
(Doorbar 2005). During natural infection, HPV produces 
viral protein to assist viral replication and production. 
Such proteins include E1, E2, E4, E5, E6, E7, L1 and 
L2. It was proposed that the virus gains entry into host 
cells at the basal lamina through the acquisition of micro 
wounds across the epithelial barrier (Schiller et al., 2010). 
The virus then gains entry into host cells by the action of 
the icosahedral capsid protein, L1 and L2 (Johnson et al., 
2009). Then, the viral genome is released into the host 
cell, followed by an initial amplification phase controlled 
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by HPV protein E1 and E2 (Parish et al., 2006; McBride 
2008; Pyeon et al., 2009). The amplification is followed 
by the expression of E6 and E7, which lead to an increase 
in cell proliferation. E6 enhances cell proliferation due to 
its ability to down-regulate p53 (Fu et al., 2010) and to 
activate telomerase activity (Gewin et al., 2001). HPV 
E7 also contributes to viral replication by increasing the 
host cell proliferation by down-regulating members of 
the Retinoblastoma (Rb) protein family (Roman 2006; 
Barrow-Laing et al., 2010). The expression of both E6 
and E7 protein thus causes cells to overcome the cell 
cycle block and re-enter the S-phase, which is conducive 
for viral replication.

Both E4 and E5 also contribute to viral replication. E5 
was shown to  induce the formation of pores and abrogate 
apoptosis (Kabsch et al., 2004), as well as proposed 
function as to enhance the activity of EGF signals and 
MAP kinase in order to facilitate genome amplification 
(Pim et al., 1992; Crusius et al., 2000; Genther et al., 
2003). During the later stages of viral replication, viral 
genome is packaged and released into the environment. 
These processes are facilitated by the minor coat protein, 
L2 and major coat protein, L1. An increase in the 
availability of E2 causes the production of the both L1 
and L2 protein to initiate, thus leading to viral packaging, 
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producing infective virion  (Johansson et al., 2012). In 
some instances, the viral productive cycle can progress 
into neoplasia due to de-regulation of the viral protein. 
This was proposed to be related to the change in E6 and 
E7 expression. It was shown that as E6 and E7 expressions 
are elevated, the associated severity of neoplasia also 
increases (Fontecha et al., 2016).

HPV E4
HPV E4 protein is synthesised as a E1^E4 fusion 

protein as a result of mRNA splicing, where the first 
initial sequence of amino acid including the initiation 
codon contains sequences from E1 open reading frame 
(ORF) (Wang et al., 2011). The protein was found to be 
highly expressed in HPV infected biopsies as well as in 
HPV associated productive warts (Breitburd et al., 1987). 
Initially thought to be an early protein of HPV (Chen et al., 
1982),no evidence was shown to support the hypothesis 
that E4 protein involves in the early stages of HPV 
viral replication cycle. This, and factors such as the first 
appearance of E4 protein in relation to the start of viral 
propagation, thus suggest a role of E4 in the late stages 
of HPV replication cycle (Breitburd et al. 1987; Doorbar 
et al., 1996; Peh et al., 2002).

During the viral replication cycle, E4 was shown to 
have predominant expression within cells that resides in 
the middle and upper parts of the epithelial layer (Peh et 
al., 2004; Maglennon et al., 2011) and appears in granules 
within the cytoplasmic of infected host cells (Croissant et 
al., 1985; Breitburd et al. 1987; Peh et al., 2002). These 
E4 containing granules were proposed to be one of the 
main contributors of the “cytopathic effect” defined by 
pathologists. These so called E4 granules associated 
“cytopathic effect” differs in terms of their morphology 
depending on the types of HPV that infected the host 
(Rogel-Gaillard et al., 1993; Doorbar et al. 1996; Roberts 
et al., 2003). 

It was assumed that E4 proteins from different HPV 
types have similar functionality and mechanisms of 
action. E4 from HPV1, HPV16, HPV18 and HPV31 exist 
as E1^E4 form. During the early viral replication cycle, 
E1^E4 protein is undetectable within the host cell. As 
host cell initiates late viral promoter activation, E1^E4 
expression occurs (Doorbar 2013).  The knowledge 
regarding the functions of E1^E4 during the viral life cycle 
remains incomplete. However, extensive examinations of 
the functionality of E4 protein carried out in high risk HPV 
types 16, 18 and 31 has suggested multiple roles during 
the late stages of the viral replication cycle. E4 protein, 
in the form of E1^E4 was shown to contain a ‘leucine 
cluster’ motif in close proximity to the N-terminus of the 
protein, which is integral in the protein association with 
keratin (Roberts et al., 1997). Keratin binding by E4 was 
suggested to be integral in viral release, however, this 
claim has yet to be successfully explored (Brown et al., 
2006). The leucine structure within E1^E4 protein from 
various HPV types was also shown to be important in E4 
protein self-association through its interaction with the 
C-terminal domain of other E4 protein (McIntosh et al., 
2008). E4 self-association allows E4 to form structures 
resembles amyloid fibres, allowing for the manipulation 

of host cell organisation, including the cytokeratin 
network (McIntosh et al., 2010). In its constrained form, 
however, E4 has reduced capacity to bind keratin or to 
undergo multimerisation, and was proposed to be the E4 
prevalent type during the early stages of viral infection 
(Doorbar 2013). As the virus replication cycle transitions 
into the genome application phase, the E4 protein 
experiences post-translational modification by means of 
phosphorylation. Studies by McIntosh et al. (2010) and 
Wang et al. (2009) suggested that E4 is phosphorylated at 
the amino acid Threonine 57 by S-phase associated p42 
ERK and other MAP kinase (Wang et al., 2009; McIntosh 
et al. 2010). The study conducted by Wang (2009) also 
further showed the importance of phosphorylation as 
means to stabilise E4 protein and increase in its capacity 
to bind keratin. As E4 protein accumulates during viral 
genome amplification stage, the protein is cleaved by 
calpain at the amino acids 17 and 18, releasing E4 from its 
constrained form (McIntosh et al. 2008), which then leads 
to E4-associated disorganisation of the  keratin network 
(Khan et al., 2011). 

The functionality of E4 as to cause disruption in 
keratin organisation suggests the role of E4 in viral release. 
Although the exact function of E4 in viral replicative 
cycle has yet to be determined, scientists suggested that 
E4 might have an important function in arresting the cell 
cycle. Epithelial cells with the expression of E4 from HPV 
types 16 and 18 as well as HPV1 were shown to experience 
cell growth arrest at G2 due to the inhibition of nuclear 
accumulation of Cyclin/Cdk1 protein in the nucleus (Davy 
et al., 2002; Davy et al., 2005; Knight et al., 2006). In high 
risk HPV type 16, E4-associated induction of cell cycle 
arrest might be associated to the inhibition of E6 and E7 
function as cells transit from basal to the mid layer of the 
epithelia (Doorbar 2013). 

Current HPV testing and E4
Cervical cancer is considered as one of the major 

health issue concerning women worldwide, with more 
than 500,000 registered cases (Jemal et al., 2011). In the 
year 2006, the National Cancer Registry of Malaysia has 
reported that cervical cancer is the second most common 
cancer in Malaysia women (National Cancer Registry, 
Ministry of Health 2006),. HPV infection has been 
determined to be the main contributor to the development 
of this type of cancer due to the presence of HPV DNA 
within 95% of cervical cancer cases (Walboomers et al., 
1999). This apparent aspect of cervical cancer oncogenesis 
has led scientists to develop methods for HPV detection in 
order to assist in patient diagnosis and management.  To 
date, detection of HPV by using viral proteins such as L1 
and E1 is becoming very useful in assisting the detection 
and management of high risk HPV infection and cervical 
cancer (Clifford et al., 2005; Smith et al. 2007). Currently, 
HPV DNA testing involving detecting L1 or E1 protein 
or genes has become useful tool for the triage of women 
with abnormal cervical pap smears and as follow up on 
women undergoing cancer treatment (Petry et al., 2003; 
Chansaenroj et al., 2010). 

Mainstream HPV DNA testing, for example The 
cobas® HPV Test was shown to be able to identify and 
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facts that E4 is available at the end of the viral replication 
cycle as well as its ability in negatively affecting the 
keratinocytes suggest that E4 could be used as an indicator 
of the severity of HPV infection. This will potentially 
pave way to replace the current Pap smear screening, 
which is less specific, time consuming and in some cases 
require re-testing and colposcopy. Thus, development 
of a diagnostic tool that allows rapid detection without 
requiring the need for re-testing and sample biopsy will 
play an important role in improving patient management. 
This will ultimately assist in reducing the cost involved 
in HPV and cervical screening at large. 
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