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Recent evidence suggests that emotions have a distributed neural representation,
which has significant implications for our understanding of the mechanisms underlying
emotion regulation and dysregulation as well as the potential targets available for
neuromodulation-based emotion therapeutics. This work adds to this evidence by
testing the distribution of neural representations underlying the affective dimensions of
valence and arousal using representational models that vary in both the degree and
the nature of their distribution. We used multi-voxel pattern classification (MVPC) to
identify whole-brain patterns of functional magnetic resonance imaging (fMRI)-derived
neural activations that reliably predicted dimensional properties of affect (valence and
arousal) for visual stimuli viewed by a normative sample (n = 32) of demographically
diverse, healthy adults. Inter-subject leave-one-out cross-validation showed whole-
brain MVPC significantly predicted (p < 0.001) binarized normative ratings of valence
(positive vs. negative, 59% accuracy) and arousal (high vs. low, 56% accuracy). We
also conducted group-level univariate general linear modeling (GLM) analyses to identify
brain regions whose response significantly differed for the contrasts of positive versus
negative valence or high versus low arousal. Multivoxel pattern classifiers using voxels
drawn from all identified regions of interest (all-ROIs) exhibited mixed performance;
arousal was predicted significantly better than chance but worse than the whole-brain
classifier, whereas valence was not predicted significantly better than chance. Multivoxel
classifiers derived using individual ROIs generally performed no better than chance.
Although performance of the all-ROI classifier improved with larger ROIs (generated
by relaxing the clustering threshold), performance was still poorer than the whole-brain
classifier. These findings support a highly distributed model of neural processing for the
affective dimensions of valence and arousal. Finally, joint error analyses of the MVPC
hyperplanes encoding valence and arousal identified regions within the dimensional
affect space where multivoxel classifiers exhibited the greatest difficulty encoding brain
states – specifically, stimuli of moderate arousal and high or low valence. In conclusion,
we highlight new directions for characterizing affective processing for mechanistic and
therapeutic applications in affective neuroscience.
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INTRODUCTION

The ability to rapidly and accurately interpret multiple
dimensions of emotion information in affective stimuli is
essential to social behavior and self-preservation. Numerous
studies have sought to elucidate the neural mechanisms by which
we process complex sensory information to arrive at affective
cognitions. Functional magnetic resonance imaging (fMRI)
studies have uniquely informed the neurobiology of human
emotion and affective processing (Bush et al., 2000; Killgore
and Yurgelun-Todd, 2007; Gerber et al., 2008; Wager et al.,
2008; Hagan et al., 2009; Posner et al., 2009; Colibazzi et al.,
2010). Indeed, there is growing evidence to suggest that emotion
processing is broadly encoded by generalized networks that are
distributed throughout the brain (Baucom et al., 2012; Lindquist
et al., 2012; Chang et al., 2015; Saarimäki et al., 2016).

This knowledge has significant implications for our
understanding of the mechanisms underlying emotion regulation
and dysregulation as well as the potential targets available for
neuromodulation-based emotion therapeutics. Several recent
studies have explored neurofeedback-guided volitional control
of specific anatomical regions, e.g., amygdala, based on their
presumed superordinate role in encoding both emotional valence
and arousal (Johnston et al., 2010; Zotev et al., 2013; Paret et al.,
2014; Young et al., 2014). However, as our understanding
of emotion as a distributed cognitive process becomes more
concrete, the assumptions underlying region-specific emotion
regulation approaches may need to be revised.

Initial hypotheses of the neural basis of emotion relied on
assumptions drawn from two influential theoretical models:
the discrete emotion view and the dimensional affect view
(Hamann, 2012). Discrete emotion theory proposes the existence
of a small set of emotional primitives (basic emotions, e.g.,
happiness, sadness, anger, fear, disgust, and surprise) each
having unique causal factors, physiological responses, and
developmental onsets among other properties (Ekman, 1999).
Dimensional affect theory proposes that combinations of
graded fundamental properties, namely valence (the degree of
pleasantness or lack thereof), arousal (the degree of intensity),
and possibly others (e.g., dominance), are shaped by other
cognitive processes (e.g., attribution and social context) to
form emotions (Lindquist et al., 2012). These theoretical
models are important because they originally implied differing
neurobiological origins of affective processing which could
be empirically tested (Scaratino and Griffiths, 2011). Basic
emotions are typically proposed to be mediated by a set of
evolutionarily determined, specific neuroanatomical substrates
that are dedicated to each basic emotion (Ekman, 1999; Izard,
2011) whereas dimensional affect theories typically posit that
emotions arise from cooperation among multiple, distributed
neural processing networks (Lindquist et al., 2012).

Recent meta-analyses suggest that approaches to
understanding the neural correlates of emotions that rely
on simple one-to-one mappings between emotion constructs and
individual brain regions are ultimately insufficient, and that more
complex relationships, such as distributed functional networks,
are required (Vytal and Hamann, 2010; Lindquist et al., 2012).

Multivoxel (or multivariate) pattern analysis (MVPA) represents
a promising approach to detecting highly distributed activation
patterns corresponding to emotions (Hamann, 2012). Within the
context of functional neuroimaging datasets, MVPA elaborates
cognitive states as functions of coordinated activity among
ensembles of multiple and distributed brain voxels (Haxby
et al., 2001). MVPA addresses the limitations of the univariate
approach (Habeck and Stern, 2010) and has been shown to offer
superior predictive performance over univariate analysis (Haynes
and Rees, 2006; Norman et al., 2006; O’Toole et al., 2007).

MVPA applications in affective neuroimaging have identified
novel functional anatomical models of known emotional states
as neural responses to variation in stimulus properties, e.g.,
modality and intensity independence (Peelen et al., 2010),
modality-dependent voice-activation (Ethofer et al., 2009),
dynamic facial expression (Said et al., 2010), facial expression
of fear (Pessoa and Padmala, 2007), and imagined or recalled
emotional situations (Sitaram et al., 2011; Kassam et al., 2013). In
these works, MVPA was used either to disambiguate the possible
neural encoding roles of a theory-driven univariately defined
brain region-of-interest (ROI) or to confirm the roles of known
ROIs.

MVPA-based methods have also been applied to broadly
characterize representations of emotion processing. Indeed,
multivoxel pattern classification (MVPC), a form of MVPA,
has been used to classify the dimensional affective properties
of pictures using low-dimensional, distributed neural features
(Baucom et al., 2012) as well as to identify neural activation
patterns that predict affective responses but are not necessarily
constrained to anatomical regions implicated by univariate
analyses (Chang et al., 2015). A recent, influential MVPC-
based analysis of discrete emotions (Saarimäki et al., 2016)
identified overlapping and distributed neural patterns of the
six basic emotions (primarily) along the medial prefrontal and
medial posterior regions. Combined, these MVPC-based findings
suggest a distributed neural basis underlies both the discrete and
dimensional theoretical models of emotion (Kragel and LaBar,
2016).

In the current study, our goal was to extend the existing
affective neuroimaging literature regarding the neural bases of
dimensional affect in four important ways. First, we used whole-
brain MVPC to map the neural distribution of regions encoding
the affective dimensions of valence and arousal for visual
stimuli within a normative sample (n = 32) of demographically
diverse (across sex, race, age, and education) subjects. Second,
using univariate analysis to derive ROIs canonically associated
with affective processing, we applied MVPC to understand
the ROIs’ individual and collective predictive performance in
characterizing dimensional affective properties compared against
the predictive performance of the whole-brain classifier. In
a trade-off, this approach sacrifices the theoretically optimal
performance MVPC can achieve through voxel-wise feature
selection methods (e.g., Baucom et al., 2012) in order to gain
deeper insights into the processing roles made by discrete
brain regions canonically associated with dimensional affective
processing. Third, we tasked MVPC with classification of
experimental stimuli sampled continuously from the affective
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dimensions of valence and arousal, a more plausible test of
discrimination of these dimensions compared to image stimuli
chosen to cluster at the dimensional extremes (Baucom et al.,
2012). Fourth, we sought to exploit the mathematical structure
of our MVPC algorithm by projecting its multivoxel decision
surface into both anatomical and affect space to better understand
the distribution of neural processing patterns that arise from
presenting multi-dimensional affective stimuli to a relatively
large, normative sample of subjects. This work would not
only generate a more nuanced view of the neural processing
models underlying emotion and affect, but may also inform
methodological approaches to regulating emotion via intrinsic
or extrinsic neuromodulation interventions. Consistent with
prior studies, we focused on behavioral and fMRI responses
to items in the International Affective Picture System (IAPS),
a well-characterized stimulus set often used in the study of
affect processing that captures the richness of multi-dimensional
information encoded by affective stimuli.

MATERIALS AND METHODS

Study Overview
The project conducted retrospective analyses of data acquired
from the Encoding of Affective Pictures task (see below)
of the Cognitive Connectome project, a comprehensive
exploration of normative variance in the neural encoding of
behavior and cognition described in detail elsewhere (Gess
et al., 2014). All study procedures were conducted in the
Brain Imaging Research Center (BIRC) at the University of
Arkansas for Medical Sciences (UAMS). Study participation was
typically conducted in two sessions on separate days. Session 1
included obtaining written informed consent, determining if
participants met exclusionary criteria via structured clinical
interview (SCID-I/NP), administering behavioral surveys and
questionnaires (such as the State-Trait Anxiety Inventory
and Big Five Personality Inventory), and the first of 2 h-long
neuroimaging sessions (with neuroimaging session order
counterbalanced across participants). Session 2 included
comprehensive neuropsychological assessment (lasting 3–4 h)
and the second neuroimaging session. All subjects gave written
informed consent and all procedures were conducted with
approval and oversight by the UAMS Institutional Review Board.

Participants
Thirty-two participants completed the Encoding of Affective
Pictures task of the Cognitive Connectome project.
The participant sample had the following demographic
characteristics: age [mean(SD)]: 29.7(9.3), range 19–50; sex: 16
(50%) female; race/ethnicity: 20 (63%) self-reporting as White
or Caucasian, 10 (31%) as Black or African–American, 2 (6%) as
Hispanic or Latino; education [mean(SD)]: 15.4(2.2) years, range
10–19.

Stimuli
The stimulus set consisted of 90 color images depicting a broad
range of emotional content (e.g., aggression, accidents, injury,

social scenes, inanimate objects). Fifty three images were selected
from the IAPS (Lang et al., 2008) and 37 images from a
corpus of affective images developed by the Hamann Cognitive
Neuroscience Lab (HCNL) (see Supplemental Table 1). The 53
IAPS stimuli included normative ratings of valence (V), arousal
(A) and dominance; additionally, an independent sample (n= 6)
of participants rated all 90 stimuli for valence, arousal, and image
complexity. The 90 images consisted of 30 positive (high valence),
30 neutral (moderate valence), and 30 negative (low valence)
images. The stimulus set was subdivided into two independent
sets of 45 images (Sets A and B), with 15 positive, 15 neutral, and
15 negative images each.

Task
Images from Set A or B (counterbalanced across participants)
were presented to the participant as an incidental memory
task, the “Encoding of Affective Pictures” task. Participants
were asked to rate each image valence as emotionally negative,
neutral, or positive by a button press response with their right
index, middle, or ring finger (respectively) using an 8-button
bimanual response pad (HHSC-2x4-C, Current Designs, Inc.,
Philadelphia, PA, United States). Each image was presented
for 2.5 s with a 2–6 s intertrial interval (3.88 s mean ITI)
using a pre-determined pseudo-randomized order optimized for
event-related fMRI with the optseq2 program available through
FreeSurfer (Greve, 2006). Total task duration was 5 min 14 s.
Participants then underwent three distractor fMRI tasks (verbal
fluency, visuospatial judgment, and n-back working memory
tasks) followed by a forced-choice recognition memory task using
all 90 images from Sets A and B. This work focuses only on the
data from the Encoding of Affective Pictures task.

Affect Label Scaling
The 53 IAPS images had normative ratings of valence and arousal
based upon a 9-point Likert scale, whereas an independent
sample (n = 6) rated all 90 images for valence and arousal using
a 5-point Likert scale. To remove possible latent linear bias in the
ratings of the smaller independent sample, mean affect ratings
for the 37 HCNL images were re-scaled to the normative 9-
point Likert scale as follows. The 53 IAPS images (having both
normative and independent ratings of valence and arousal) were
used as a training dataset. Iteratively reweighted least squares
regression (robustfit) was used to predict normative (IAPS)
ratings from independent (HCNL) ratings separately for both
valence and arousal. Predicted IAPS ratings for the remaining
37 HCNL images were highly significant for valence (ρ = 0.924,
p < 0.001) and arousal (ρ = 0.624, p < 0.001), supporting this
scaling approach. Henceforth, the combined (true and predicted)
IAPS ratings for all 90 images are referred to as the IAPS ratings
(see Supplementary Table 1 for individual stimulus ratings and
identifiers).

Image Acquisition
Imaging data were acquired using a Philips 3T Achieva
X-series MRI scanner (Philips Healthcare, Eindhoven, The
Netherlands). Anatomic images were acquired with a
MPRAGE sequence [matrix = 256 × 256, 220 sagittal slices,
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TR/TE/FA = shortest/shortest/8◦, final resolution = 0.94 mm
× 0.94 mm × 1 mm. For functional images, initial
participants (n = 18)] were acquired using an eight-channel
head coil with an echo planar imaging (EPI) sequence
(TR/TE/FA = 2000 ms/30 ms/90◦, FOV = 240 × 240 mm,
matrix= 80× 80, 37 oblique slices parallel to orbitofrontal cortex
to reduce sinus artifact, interleaved ascending slice acquisition,
slice thickness = 4 mm, final resolution 3.0 × 3.0 × 4.0).
Functional images for later participants (n = 14) were
acquired using a 32-channel head coil with the following
EPI sequence parameters: TR/TE/FA = 2000 ms/30 ms/90◦,
FOV = 240 × 240 mm, matrix = 80 × 80, 37 oblique slices,
ascending sequential slice acquisition, slice thickness = 2.5 mm
with 0.5 mm gap, final resolution 3.0 mm × 3.0 mm × 3.0 mm.
Parameters for the 32-channel coil were selected to reduce
orbitofrontal signal loss due to sinus artifact.

We explicitly tested if head coil influenced task-related neural
pattern classification performance by conducting a two-sample,
two-tailed t-test for group differences in MVPC prediction
accuracy (eight-channel vs. 32-channel coil) for positive vs.
negative valence, high vs. low arousal, and positive vs. negative
self-reported valence (contrast details described below). No
significant group differences were found. Given the lack of
significant differences in our univariate contrasts, head coil was
not included as a covariate of interest for the remainder of the
analyses.

Image Preprocessing
All MRI data preprocessing was conducted in AFNI (Version
AFNI_16.1.07) (Cox, 1996) unless otherwise noted. Anatomic
data underwent skull stripping, spatial normalization to the
icbm452 brain atlas, and segmentation into white matter (WM),
gray matter (GM), and cerebrospinal fluid (CSF) with FSL
(Jenkinson et al., 2012). Functional data underwent despiking;
slice correction; deobliquing (to 3 mm × 3 mm × 3 mm voxels);
motion correction (using the 10th timepoint); transformation
to the spatially normalized anatomic image; regression of mean
timecourse of WM voxels, mean timecourse of CSF voxels, and 24
motion parameters (Power et al., 2014, 2015); spatial smoothing
with a 6-mm FWHM Gaussian kernel; and, scaling to percent
signal change. fMRI scans with head motion exceeding 3 mm
lateral movement were excluded from subsequent analyses.

Gray Matter (GM) Masking
Group-level GM masks were constructed by voxel-wise
thresholding over sets of participants’ GM segmentation masks
using an inclusion threshold of 50% – i.e., only voxels identified
as gray matter for at least half of participants using to form
the mask were included. GM masks were created using sets of
participants including all but one (n = 31) to conduct unbiased
MVPC cross-validation. These masks were tested against the
standard Talairach atlas for inclusion of subcortical structures.
To ensure the inclusion of important subcortical structures in
MVPA that may be lost during preprocessing, we computed the
percent of voxels (combined left and right) kept on average in
these GM masks for the caudate (63.2%), putamen (37.3%), and
thalamus (16.8%).

Univariate Analyses (GLM)
Group-level univariate analyses were conducted as follows.
First, image stimuli were binarized with respect to their
targeted affective properties. Images were classified as having
either a positive or negative valence according to their
normative ratings (positive valence or Vpos if V ≥ 5.0;
otherwise negative valence or Vneg). Similarly, each image
was classified as having either high or low arousal on the
basis of normative arousal rating (high arousal or Ahigh if
A ≥ 5.0; otherwise low arousal or Alow). Our selection of
this binarization approach was motivated by the lack of a
consensus definition for “cut-off” criteria separating neutral
stimuli from positive and negative stimuli (see the Discussion
for alternative label segmentations). Each participant’s GM-
masked voxel timeseries underwent event-related general linear
modeling (GLM) using AFNI’s 3dDeconvolve and 3dREMLfit
programs with two predictors: valence modeling used Vpos
and Vneg; arousal modeling used Ahigh and Alow. Contrast
activation maps were also created for each participant for
both valence, (Vpos – Vneg), and arousal, (Ahigh – Alow),
respectively.

Cluster Analysis
Group-level cluster masks were constructed as follows. Group
contrast activation maps were calculated voxel-wise via one
sample t-tests across participants. These maps were thresholded
at an uncorrected p ≤ 0.001 (corresponding to two-tailed
|t| ≥ 3.63 for df = 31). We executed AFNI’s 3dFWHMx
function using the ‘acf ’ option on the residual maps resulting
from each participant’s univariate GLM, yielding three estimated
smoothness parameters per participant. We then executed AFNI’s
3dClustSim function using the ‘acf ’ option, supplying both
the median values of the estimated smoothness parameters
as well as the GM mask of the appropriate participant set
as inputs, yielding the minimum cluster sizes allowable at a
corrected significance of p ≤ 0.05 (two-sided thresholding,
NN = 1), which were applied to the thresholded group
activation maps to generate the group cluster maps. The
minimum cluster size over all subjects was computed to be 12.8
voxels.

Cluster Stability Analysis
Group-level cluster masks were compared against cross-validated
cluster masks (i.e., n = 31 group-level cluster masks) to
determine the stability of the cluster masks. For each subject,
we conducted the following stability analysis. Each ROI of
the subject’s cross-validated cluster mask (valence and arousal,
respectively), in order descending from the largest cluster to
the smallest cluster (by voxel size), was iteratively assigned to
a group-level cluster mask ROI by prioritizing the smallest
Euclidean distance between the clusters’ center of masses. Each
group-level cluster was assigned once per subject. For each
of the group-level clusters, we then calculated the fraction of
subjects having a matching cluster as well as group-wise mean
and standard deviations over matched cluster size and matched
cluster distance.
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Univariate Analyses (Beta-Series)
The beta-series method (Rissman et al., 2004) and MVPC (which
relies on beta-series to form the feature space) both assume
low trial-to-trial variance – specifically, that greater variance
exists between trials of different categories than within trials
of the same category (Abdulrahman and Henson, 2016). In
other words, differences between the beta-series method and
the canonical univariate GLM approach could pose a confound
to predictions inferred via MVPC. We tested this assumption
by conducting univariate analysis using the beta-series method
and contrasting these results to the GLM approach. Beta-series
were extracted using the -stim_times_IM flag of 3dDeconvolve
to construct the model which we subsequently solved via 3dLSS.
We refer to these stimulus-driven activation maps as brain
states for the remainder of this work. The resulting activation
maps β[subject, stim], paired with the appropriate IAPS labels,
form a dataset of tuples {β[subject, stim], V[stim], A[stim]} for
use in subsequent analysis. We address trial-to-trial variance
by voxelwise correlation of univariate beta-series activations
with univariate GLM activations for both valence and arousal
contrasts.

Multivariate (i.e., Multivoxel) Pattern
Classification
MVPC was implemented using linear support vector machine
(SVM) classification (Boser et al., 1992) using the default
implementation found within the Matlab Statistics Toolbox (The
Mathworks, 2015).

Whole-Brain Variants of MVPC
To investigate the predictive information contained within
anatomically unrestricted fMRI, we performed linear SVM
classification on GM-masked whole-brain fMRI brain imaging
state values. GM masks for each participant were computed by
applying the GM threshold to the (n = 31) other participants
of the study, i.e., according to an inter-subject cross-validation.
However, these GM masks were used for both inter- and intra-
subject whole-brain classifications.

ROI-Based Variants of MVPC
We performed several ROI-based predictions to investigate
the anatomical loci of affective processing. These predictions
were performed on GM-masked whole-brain fMRI brain
imaging state values that were further masked according to
the desired anatomical configuration. We compared three mask
variants: all ROIs (aROI), all ROIs with relaxed masking
criteria (rcaROI), and individual ROIs (iROI). The aROI
mask was comprised of all surviving univariate clusters for
the desired classification task (either valence or arousal). The
rcaROI {params} mask was comprised of all surviving clusters
when thresholding has been relaxed according to a set of
specific relaxation criteria denoted by parameters {params}.
The iROI mask was comprised of a single ROI cluster.
Cross-validation, training, prediction, and statistical analysis
of these MVPC variants were conducted identically to whole-
brain.

Inter-subject Cross-Validation
Leave-one-out-cross-validation (LOOCV) was performed
subject-wise (number of total subjects = Nsubj). Thus, Nsubj-1
subjects’ data were used to predict the data of the remaining
subject. For each of the Nsubj test subjects, the training and
testing set was formed as follows. The test subject’s stimuli and
brain states were divided into two classes (positive) L+ and
(negative) L- with respect to the classification being performed.
The larger set of classes was identified (size = Nmax) and
set as the rotate_set. The smaller set (size = Nmin) is set to
the static_set. For Nmax rotations the first Nmin stimuli from
the rotate_set are selected and combined with the static_set
creating the test dataset having equal numbers of L+ and
L−. The corresponding stimuli from all training subjects
are extracted to form the training dataset. This rotation and
extraction process ensures that all test/train combinations
for each test subject are evaluated and that the training and
testing datasets are formed from similar stimuli. Therefore,
the independent variation in this process is the uniqueness of
the test subject’s brain states compared to that of the training
group. A linear SVM classifier was then fit to the training
set and tested on the test set producing a set of hyperplane
distances whose sign indicated the predicted class. Test set
classes and predicted hyperplanes were saved for succeeding
statistical analysis [accuracy, confidence interval (CI), t-score,
true positive rate (TPR), false positive rate (FPR)]. For each test
subject, Nmax accuracies are averaged to produce the accuracy
of that single fold of LOOCV. The resulting Nsubj accuracies
formed the LOOCV distribution of inter-subject prediction
performance.

Intra-subject Cross-Validation
Cross-validation was performed stimulus-wise within each
subject. Each subject’s stimuli and brain states were divided
into two sets (positive classes) L+ and (negative classes) L−
with respect to the classification being performed. The larger
set of classes was identified (size = Nmax) and set as the
rotate_set. The smaller set (size = Nmin) is set to the static_set.
For Nmax rotations the first Nmin stimuli from the rotate_set
are selected and combined with the static_set creating the
test dataset having equal numbers of L+ and L−. On this
combined dataset, normal LOOCV was performed stimulus-wise
and accuracy was computed. The Nmax accuracies were averaged
to produce the accuracy of a single subject. The resulting Nsubj
accuracies formed the distribution of the intra-subject prediction
performance.

Gaussian Process Model of
Misclassification Accuracy
A Gaussian Process Regression Model (GPRM) (Rasmussen and
Williams, 2006), i.e., kriging model, was used to model the
mean joint affect misclassification accuracy of the linear SVM
model. For each stimulus image, the mean joint misclassification
accuracy of that stimulus was computed as follows. Mean
misclassification accuracy for each stimulus was computed
independently across all subjects separately for valence and
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arousal. These accuracies were assumed independent and the
mean joint misclassification accuracy was formed by the
product of the mean valence and mean arousal misclassification
accuracies across subjects. We warped these probabilities to a
continuous range by projection using the hyperbolic tangent:
y = atanh(2∗p-1). A GPRM was then fit to y as a function
of the mean valence and arousal Likert scores for these
images ({V,A} = x). We used the default implementation
of GPRM found within the Matlab Statistics Toolbox (The
Mathworks, 2015). Estimates of y over ranges V = [1.0,9.0],
A = [2.0,7.5] were then predicted using the model and
projected back into probability space using the projection
p= (tanh(y)+1)/2.

Experiment Design
To meet our objectives of mapping the neural distribution
of regions encoding the affective dimensions of valence and
arousal for visual stimuli, as well as measure the predictive
performance of these encodings, we conducted both inter-subject
and intra-subject whole-brain gray matter (whole-brain) MVPC
experiments independently for both valence and arousal ratings
of stimuli. Inter-subject classification predicted dimensional
affect ratings using the brain states of independent subjects
that were not part of the classifier’s training data. Intra-subject
classification predicted dimensional affect ratings using the brain
states evoked by stimuli (within a single subject) that were not
used for training. Classifier training and testing followed similar
courses within these two models, changing only with respect to
the quantity of the training and testing data used and model-
specific technical details regarding un-biased cross-validation
and performance analysis (see inter- versus intra-subject cross-
validation methods).

To compare and contrast the fidelity of ROIs as predictors
of dimensional affect ratings, either as discrete predictors or as
an intact multiple-ROI predictor to inform our understanding
of the functional role that specific anatomical regions play in
dimensional affective processing, we conducted inter-subject
MVPC experiments independently for both valence and arousal
ratings of stimuli (we conducted only whole-brain analysis for
self-reported valence), using the following set of multi-voxel
patterns as input:

(1) all-ROIs (aROI), the combination of all gray matter voxels
within all statistically significant ROIs,

(2) individual ROIs (iROI), the combination of gray matter
voxels within a single statistically significant ROI, and

(3) relaxed-criteria all-ROIs (rcaROI {param}), i.e., aROIs for
which the criteria used to select gray matter voxels for
inclusion in the ROIs is relaxed according to the parameter,
param. We utilized two relaxation methods: 1- and 2-voxel
dilation (via AFNI’s 3dmask_tool) was used to expand the
sizes of highly significant clusters (p ≤ 0.001). We also
relaxed the level of uncorrected thresholding we applied
prior to cluster size correction, using both p ≤ 0.01 and
p ≤ 0.05 (the minimum cluster sizes in these cases also
change: p ≤ 0.01 yields a minimum cluster of 43.4 voxels;
p ≤ 0.05 yields a minimum cluster size of 138.9 voxels).

RESULTS

Univariate GLM
The univariate GLM approach yielded a group-level statistical
activation map of 14 clusters for the valence contrast (Vpos –
Vneg) and 8 clusters for the arousal contrast (Ahigh –
Alow). Surviving regions include many brain areas previously
identified within the Neural Reference Space (NRS) (Barrett
et al., 2007; Kober et al., 2008), a set of regions identified
from neuroanatomical studies and consistently activated across
meta-univariate analysis of neuroimaging studies of affective
processing. These regions included amygdala, ventrolateral
prefrontal cortex (vlPFC), dorsolateral prefrontal cortex (dlPFC),
dorsomedial prefrontal cortex (dmPFC), occipital-temporal
cortex, and cerebellum (see Table 1).

Our inter-subject pair-wise contrast activation t-scores within
the surviving clusters are also consistent with the affective
neural processing literature (Figure 1). NRS-congruent regions
exhibiting greater activation during viewing of negatively valent
stimuli include amygdala, temporal pole, dmPFC, and left
angular gyrus. Amygdala also showed significant activation in
response to high arousal stimuli; no other NRS region showed
arousal-related activity.

Beta-Series Validation
The beta-series method produced voxel-wise beta maps which
were virtually identical to beta maps derived from univariate
GLM contrasts of valence (see Figure 2A, Pearson r = 0.968,
p < 0.001) and arousal (see Figure 2B, Pearson r = 0.943,
p < 0.001), supporting the use of MPVC to predict the affective
dimensions of valence and arousal from multi-voxel patterns of
brain activation encoding.

Cluster Stability Validation
To simplify the ROI-based cluster analysis, we conducted ROI-
classification on each participant using a single uniform set
of ROI clusters computed from all participants (n = 32). To
justify this approach, we computed the true cross-validated ROI
clusters for each participant. We then mapped these cross-
validated clusters onto the group-level clusters to compute
the variation in presence, size, and distance of the clusters
found. Results of these mappings are presented in Table 2
and suggest strong stability in the cross-validation clustering.
Exceptions in stability were the amygdala, mid-cingulate cortex
(mid CC), and angular gyrus ROIs clustered from the valence
univariate contrast maps. The amygdala and mid-cingulate
cortex exhibited relatively high dropout during cross-validated
clustering. Angular gyrus exhibited above average (8.26 mm)
cluster center-of-mass variability.

Inter-subject MVPC Prediction Accuracy
Table 3 reports MVPC performance for inter-subject
classification of features based on whole-brain (restricted to
cross-validated GM-masked voxels), all ROIs surviving the
univariate GLM contrast (aROI), relaxed criteria variants of
the aROIs (rcaROI), and individual ROIs (iROI). Table 3 only
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TABLE 1 | Summary of brain regions exhibiting significant levels of activation when contrasted between differing stimulus conditions.

Valence contrast activation (pos stim - neg stim) Arousal contrast activation (high stim - low stim)

Region (l = left, r = right) Coord. CoMass x, y, z Size voxels Region (l = left, r = right) Coord. CoMass x, y, z Size voxels

vlPFC (r)∗ 41.6, 25.9, 0.9 51 Visual cortex (l) −52.3, −62.0, 5.3 282

Motor cortex (r) 15.4, −30.6, 68.8 45 Visual cortex (r) 47.2, −68.1, −3.4 231

Motor cortex (l) −6.1, −25.8, 69.0 44 Parahippocampus (l) −28.4, −45.8, −8.7 41

Temporal pole (l)∗ −51.5, 6.4, −20.6 38 Parahippocampus (r) 25.3, −42.0, −9.4 33

Motor cortex – hand knob (r) 30.8, −29.3, 56.2 29 Precuneus 0.2, −62.0, 32.3 31

dmPFC (l)∗ −6.8, 49.5, 32.8 28 Fusiform (l) −45.0, −44.2, −16.3 22

dlPFC (r) 51.3, 19.6, 23.4 26 amygdala (l)∗ −24.1, 2.9, −10.7 20

Inferior parietal (r) 52.4, −52.2, 20.0 22 posterior inferior temporal (l)∗ −42.6, −56.6, −22.4 17

Amygdala (l) ∗ −25.0, −2.8, −14.6 19

SMA 2.7, −16.8, 67.5 18

Angular gyrus (l)∗ −59.1, −51.4, 11.7 16

Cerebellum (l)∗ −20.5, −72.1, −36.3 15

mid CC (r) 5.9, −10.1, 51.1 15

Precuneus (l) −14.1, −37.9, 48.4 14

Coordinates are reported in Talairach space. ∗ Indicates part of the Neural Reference Space (Kober et al., 2008).

FIGURE 1 | Group statistical map for univariate GLM contrasts of (top) valence (Vpos – Vneg) and (bottom) arousal (Ahigh – Alow), whole-brain masked. Warm (yellow)
colors indicate regions where Vpos > Vneg or Ahigh > Alow. Cool (blue) colors indicate regions where Vneg > Vpoa or Alow > Ahigh.Slices are rendered in axial view
using Talairach coordinates and neurological convention (image left = participant left).

reports iROI classification results which were significantly better
than chance. A full report of all iROI experiments is provided in
Supplementary Table 2. MVPC results may be summarized as
follows.

(1) Whole-brain MVPC predictions were significantly more
accurate than predictions based on aROI (and all single
iROIs), indicating that subthreshold voxels (and potentially
ROIs not captured by canonical univariate analysis)
play a significant role in affective processing. This
result holds even when comparing aROI variants built
from very liberal clustering methodology, i.e., p ≤ 0.05
significance thresholding and 2-voxel cluster dilation (see
Supplementary Figures 1A,B, respectively), which increase

the available voxels by more than one order of magnitude
(e.g., p ≤ 0.05 cluster thresholding of valence contrast
betas yielded 5010 voxels, 2-voxel dilation yielded 4523
voxels compared to 380 voxels for the standard p ≤ 0.001
significance threshold).

(2) The individual ROI which predicts dimensional affect
(valence) significantly better than chance (precuneus) is not
a member of the Neural Reference Space.

(3) Whole-brain MVPC prediction of valence was significantly
more accurate than prediction of arousal (p < 0.05, two-
sample t-test).

(4) No significant difference existed between MVPC prediction
accuracy of normative valence compared with self-reported
valence (p < 0.05, two-sample t-test).
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FIGURE 2 | Correlation of voxelwise statistics across univariate and multivariate representations of the BOLD fMRI signal. (A) Correlation between mean GLM
Contrast Betas and mean Beta-Series Contrast Betas computed for the valence dimension of the stimulus (average calculated over participants). Strong correlation
indicates that Beta-Series captures comparable activation information to GLM. (B) Same as (A) for the arousal dimension of the stimulus. In both plots, red line
represents the linear robust regression fit of the data. Comparison voxels were chosen as those voxels simultaneously satisfying the following constraints: group-level
GLM contrast betas’ one-sample t-statistic having |t-score| > 3.63, presence in all 32 folds of the LOOCV of the gray-matter mask (valence voxels = 380; arousal
voxels = 628).

TABLE 2 | Inter-subject cross-validated cluster stability analysis.

Cluster Set Group-Level Cluster,
Region (l = left, r = right)

Cluster Fraction
Matched

Cluster Size
Mean (voxels)

Cluster Size
Standard

deviation (voxels)

Match Distance
Mean (mm)

Match Distance
Standard

deviation (mm)

Valence vlPFC (r) 1.00 43.63 6.49 2.22 0.98

Motor cortex (r) 1.00 46.75 15.00 2.69 2.31

Motor cortex (l) 1.00 39.28 10.93 1.35 1.92

Temporal pole (l) 1.00 32.13 4.26 0.64 0.23

Motor cortex h.k. (r) 0.94 24.67 5.03 0.70 0.61

dmPFC (l) 1.00 27.66 2.03 0.34 0.26

dlPFC (r) 1.00 18.68 5.54 1.45 0.65

Inferior parietal (r) 1.00 20.34 5.00 0.67 0.47

Amygdala (l) 0.50 22.25 5.21 1.58 1.64

SMA 0.97 16.68 2.86 0.76 0.62

Angular gyrus (l) 0.91 21.72 9.94 8.26 10.91

Cerebellum (l) 0.72 16.04 2.69 0.50 0.55

mid CC (r) 0.56 16.00 4.64 2.88 8.69

Precuneus (l) 0.69 14.46 0.91 1.29 4.52

Arousal Visual cortex (l) 1.00 264.91 22.38 0.75 0.49

Visual cortex (r) 1.00 202.91 32.52 1.32 0.53

Parahippocampus (l) 1.00 37.59 5.76 0.54 0.27

Parahippocampus (r) 1.00 28.34 7.38 1.62 0.81

Precuneus 0.91 30.31 35.93 9.25 15.79

Fusiform (l) 0.97 19.55 9.18 0.84 1.16

Amygdala (l) 0.91 18.76 4.29 0.80 0.36

post. infr. temp. (l) 0.91 16.10 2.02 0.91 0.70

Column properties are calculated over the set of matched clusters for each group-level cluster (regions ordered by cluster size as listed in Table 1). The Cluster Fraction
Matched is calculated as the number of subjects that matched a cross-validated cluster to the specific group-level cluster divided by the total number of subjects, i.e.,
maximum value equals 1.0. Cluster Size and Match Distance statistics are calculated on the set of matched clusters for the specific group-level cluster.
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Intra-subject MVPC Prediction Accuracy
Intra-subject MVPC prediction accuracy was not significantly
better than chance (two-tailed one-sample t-test, null
hypothesis = 0.50) for normative valence measures using
whole-brain, aROI, and all but one iROI feature, dmPFC (l).
Intra-subject MVPC prediction accuracy was shown to be
significantly worse than chance on normative arousal measures
using whole-brain and two iROIs: visual cortex (l) and amygdala
(l). The remaining features yield prediction accuracies not
significantly better than chance (see Supplementary Table 3 for
full results).

Interpreting the SVM Hyperplane in
Anatomical Space
Linear SVM implementation of MVPC allowed us to generate
anatomically relevant interpretations of how the brain encodes

perceived affect in voxel activation space by converting the
SVM decoding coefficients into their equivalent voxel encoding
patterns (Haufe et al., 2014; Hebart et al., 2014), which we present
in Figure 3. The voxel activation patterns learned by our linear
SVM also positively correlate with beta-series contrast activations
(see Supplementary Figure 2A, valence Pearson correlation
r= 0.95, p < 0.001; see Supplementary Figure 2B, arousal Pearson
correlation r = 0.87, p < 0.001). This indicates that the SVM
classifier decodes the voxels’ predominant encoding preference,
rather than forming a complex (possibly unnatural and overfit)
mapping to maximize prediction performance.

Interpreting the SVM Hyperplane in
Affect Space
SVM hyperplane distance was strongly correlated with normative
valence and arousal measures (see Supplementary Figure 3:

TABLE 3 | Inter-subject multivoxel pattern classification summary.

Classification task fMRI feature (l = left, r = right) Mean accuracy Accuracy 95% CI Mean TPR Mean FPR

Valence (pos vs. neg) Whole-brain 0.5893∗∗ [0.5684,0.6103] 0.5982 0.4192

rcaROI {p < 0.05} 0.5535∗,∗∗ [0.5327,0.5743]

rcaROI {2-voxel dilation} 0.5326∗ [0.5132,0.5520]

aROI 0.5113∗ [0.4920,0.5307]

iROI: precuneus (l) 0.5240∗ [0.5059,0.5421]

Arousal (high vs. low) Whole-brain 0.5553∗∗ [0.5329,0.5776] 0.5271 0.4165

aROI {p < 0.05} 0.5150 [0.5109,0.5426]

aROI {2-voxel dilation} 0.5212 [0.5027,0.5398]

aROI 0.5202 [0.5020,0.5384]

Valence (self-report pos vs. neg) Whole-brain 0.6103 [0.5949,0.6538] 0.6056 0.3561

All fMRI features depicted are statistically significantly different (p < 0.05) from chance, (two-tailed one-sample t-test, null hypothesis = 0.50). TPR = true positive rate.
FPR = false positive rate. ∗ Indicates that the mean of this feature and the whole-brain feature (for the same classification task) are significantly different (p < 0.05,
two-tailed two-sample t-test). ∗∗ Indicates that the mean of this feature and aROI are significantly different (p < 0.05, two-tailed two-sample t-test).

FIGURE 3 | Whole-brain SVM coefficients converted into encoding parameters (Haufe et al., 2014). Colors indicate the strength of activation and the stimulus class
under which voxel activation would be observed (red indicating positive valence or high arousal, blue indicating negative valence or low arousal). Slices are depicted
in Talairach coordinate space and neurological convention with maximum voxel intensity (VImax) = 0.39.
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valence prediction r = 0.55, p < 0.001; arousal prediction
r = 0.46, p < 0.001). This suggests that MVPA-based regression,
via Platt scaling (Platt, 1999), could be used to quantify both the
perceived valence and arousal of novel stimuli not previously
seen in training in agreement with earlier work supporting
the predictive abilities of MVPA in single affect dimensions
(Chikazoe et al., 2014; Chang et al., 2015).

Toward this end, we can elucidate the relationship between
dimensional affect ratings and their corresponding brain states
by visualizing these states in a low-dimensional representation:
mean distance and direction of brain states from the SVM
hyperplane as a function of the normative dimensional affect
ratings of the stimuli that evoked them. We implemented
this approach and display our findings in Figure 4. Figure 4
simultaneously depicts the SVM hyperplane in high-dimensional
brain statespace (point colors and transparencies) as well as
the theoretically ideal low-dimensional separating hyperplane
(dashed line) and the observed low-dimensional hyperplane
(solid line) for perceived valence and arousal, respectively. As
depicted by Figure 4, the observed low-dimensional separating
hyperplanes deviate from their theoretical ideals but support
the contention that the trained high-dimensional hyperplanes
correctly captured the global properties of dimensional affect.

Figure 4 also illustrates regions within the dimensional
affect space for which brain states systematically lay in the
wrong half of the high-dimensional hyperplane. These regions
of misidentification encompass stimuli with moderate arousal
ratings (range of 4–5) with positive or negative normative valence
ratings. Such regions of misidentification are evident for both
valence and arousal prediction experiments.

Since each image stimulus simultaneously conveys both
valence and arousal information, the hyperplanes encoding

FIGURE 5 | Joint valence and arousal misclassification performance as a
function of normative affect space coordinates. Underlay: Gaussian Process
Model of mean joint misclassification accuracies assigned to each stimulus in
normative affect coordinates. Overlay: stimuli plotted in normative affect space
coordinates and labeled according to the significance with which MVPC could
jointly classify their valence and arousal labels (one-sample t-test, null
hypothesis = 0.25, for symbols p < 0.05 is white, p ≥ 0.05 is red).

valence and arousal can be jointly analyzed to model overall
prediction accuracy for each stimulus. We implemented this
analysis in Figure 5 to depict the joint misclassification
accuracy across both valence and arousal hyperplanes. The

FIGURE 4 | Brain imaging state distances to the linear SVM hyperplane as a function of the normative affect rating coordinates of the stimulus for the prediction of
valence (A) and arousal (B). Reported distances represent the test set distances averaged over cross-validations. Red hue represents distance in the positive
half-plane. Blue hue represents distance in the negative half-plane. Transparency (alpha) represents absolute distance. Full saturation indicates a hyperplane
distance ≥ 1.0. Transparent points lie close to the hyperplane (alpha = 0.0 at distance = 0.0). Note, for illustration purposes transparently filled points maintain a full
saturation marker edge to indicate their absolute position with respect to the half-plane. Dashed lines represent the theoretically ideal separating hyperplane in
2-dimensional affect space. Solid lines represent the separating hyperplane of a linear SVM in 2-dimensional affect space trained to classify the signs of the
hyperplane distances predicted by the brain imaging state SVM hyperplane.
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contour mapping indicates areas within affect space of similar
misclassification accuracy, i.e., reliable prediction (dark blue),
and areas of high misclassification accuracy, i.e., unreliable
prediction (yellow) as given by a Gaussian Process model of
mean joint misclassification accuracy. Greatest misclassification
was observed for positively valent stimuli (V∼7.2) associated
with slightly below threshold arousal levels (A∼4.5). A secondary
misclassification focus was observed for negatively valent stimuli
(V∼2.5) also associated with slightly below threshold arousal
(A∼4.6).

DISCUSSION

In this work we used MVPC to map the neural processing
predictors of the affective dimensions of valence and arousal.
Significant results were observed for inter-subject prediction,
wherein a single participant’s brain states reliably predicted the
affective dimensions of their observed stimuli from a binary
classifier independently trained on datasets pooled from multiple
subjects. We reported stronger inter-subject prediction of valence
ratings than arousal ratings. Features that incorporated voxels
from the whole brain were significantly better predictors of
affective dimension ratings than features restricted to specific
neuroanatomic regions, supporting a widely distributed pattern
of brain activation in rendering such judgments. Furthermore,
features using single ROIs corresponding to regions typically
associated with affect processing produced significantly worse
MVPC-based predictions – often not better than chance.
Moreover, our interrogation of the learned inter-subject MVPC
hyperplane found that the brain regions canonically associated
by univariate approaches with affective processing are indeed
relevant.

Combined, these results offer new insights into the neural
representations of affective processing. In agreement with a
growing body of work based on both univariate (Lindquist
et al., 2012; Wager et al., 2015) and multivariate analyses
(Baucom et al., 2012; Kassam et al., 2013; Chang et al., 2015;
Saarimäki et al., 2016), the attribution of affective processing
to any single brain region appears untenable. However, the
ability of our multivariate approach to achieve superior inter-
subject prediction performance, particularly within a relatively
large, normative dataset, suggests some degree of functional
stability across individuals of the distributed neural processing
underlying affective judgments. This would suggest that,
congruent with a recent MVPC-based investigation of discrete
emotions (Saarimäki et al., 2016), early stage processing in the
dimensional affect model of emotion (Lindquist et al., 2012) can
be characterized by distributed, functional homologues of the
affective dimensions.

The dissimilarity between anatomical regions implicated
in our multivariate analysis and those canonically associated
with affective processing in the univariate literature suggests
that the stringent clustering threshold employed by univariate
analyses to account for multiple comparisons (and thus control
Type I error rates) is inflating Type II error by excluding voxels
(or possibly ROIs) with significant functional contributions to

affective processing. Voxels surviving these univariate clustering
approaches constitute functionally relevant ROIs that – as an
ensemble (if not independently) constitute the major neural
processing correlates of multi-dimensional affective signal
processing – but cannot, without the information contained
within subthreshold voxels, achieve maximum prediction
performance. Our results comparing classifiers built upon
ROIs surviving standard (p ≤ 0.001) versus relaxed (p ≤ 0.05)
thresholding support this possibility, which may also explain
the contradictory findings among univariate meta-analyses as
subthreshold voxels or regions are less likely to be reported in the
literature.

However, classifiers built upon whole-brain data significantly
outperformed all ROI-based classifiers, even those constructed
with highly liberal thresholds, suggesting that voxels outside
these theoretically driven ROIs perform crucial affective
processing functions, thus confirming and extending earlier
MVPC results (Baucom et al., 2012). Collectively, our results
support the hypothesis that a distributed model of neural
information processing functionally organizes to support the
multi-dimensional decoding of affective stimuli, although
additional work is necessary to fully understand its anatomical
limits beyond the NRS.

A clear implication of this work is the need for caution in the
use of single-ROI-based targets for fMRI-based neurofeedback
studies of emotion regulation. Although our univariate analyses
confirm the amygdala’s recruitment in the processing of images
of negative affect and/or high arousal, our MVPC analyses show
that the amygdala response alone did not significantly predict
these signal encoding properties. Based upon our multivariate
analyses, we conclude that fMRI-based neurofeedback may
depend on the characterization or classification of a distributed
neuromodulation network as a readout to achieve robust
volitional emotion regulation.

Our work complements earlier work conducted by Baucom
et al. (2012), which used MVPC to classify affective labels
from voxel-wise features. Baucom et al.’s (2012) work reported
inter-subject peak prediction accuracy (mean accuracy ∼75%
for valence and arousal). We attribute this accuracy difference
to inter-study differences in stimuli, features, classifier, and
participants. Baucom et al. (2012) chose a large number of
images (100 per subject) to generate five distinct image sets:
a neutral image set (neutral valence, low arousal) and four
affectively extreme, highly clustered image sets (positive/negative
valence and high/low arousal). Of these, the four extreme image
sets (80 images) were used for classification. Conversely, our
smaller image set size (45 images per subject) was chosen to
span the full continuous range of affective space, offering greater
nuance in valence and arousal, which may potentially come at
the cost of reduced predictive accuracy in exchange for broader
generalizability to everyday stimuli, and may in part explain
the recruitment of additional brain regions outside the NRS.
Baucom et al. also selected the 2000 most stable voxels across
subjects prior to classification, which reduces the dimensionality
of the feature space while effectively maintaining the signal to
noise ratio, thereby improving MVPC performance. In order
to characterize the anatomical encoding of the classification,
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we conducted classification on the entire set of gray matter
voxels. Furthermore, our recruitment practices used broad
inclusion criteria and community-based sampling to acquire a
more heterogenous sample (in age, ethnicity, and education)
than the sample recruited by Baucom et al. (2012) (n = 13,
92% female, convenience sampling from a college campus).
Although these methodological choices increase feature and label
variance that putatively reduce classification performance, we
contend that these choices are justified as they provide a more
robust understanding of the anatomical constraints of normative
affective processing.

A novel finding of our study was that classification of affective
images using normative population valence ratings did not
significantly differ from classification based upon the study
participants own self-reported valence ratings. An implication of
this finding is that acquiring each participant’s ratings of affective
stimuli may be superfluous for stimulus-based fMRI studies for
which norms already exist. Given the expense of MRI scanning
and temporal limitations on how long each participant can
comfortably tolerate the MRI environment, having participants
rate each image may not be prudent – particularly since the
rating process may introduce additional performance confounds
such as working memory, motor activity, and/or self-referential
processes. Instead, having MRI study participants passively view
a larger stimulus set would increase the density of samples within
the affect space, and thus potentially increase predictive power.
The current findings suggest the feasibility of implementing
real time fMRI as a means of individually titrating stimulus
presentation number based on attainment of a target brain state
(Feng et al., 2015). An important caveat, however, is that passive
viewing of images may be less attentionally engaging than active
rating of images.

We also found specific regions of the affect space that are
poorly partitioned by a linear SVM hyperplane. Specifically,
regions of extreme positive and negative valence are difficult to
classify when combined with moderate arousal. We interpret
this regional failure of the hyperplane as the result of a group-
level variation in the distribution of brain states corresponding
to these stimuli. However, an alternative hypothesis is that
sex-based individual variation in our normative sample may
contribute to this region of poor classification performance,
which is congruent with earlier work (Bradley and Lang, 2007)
showing that sex differences drive correlation differences between
arousal and valence in the positive valence half-plane. This idea
is further bolstered by univariate clusters indicating significant
sex differences in pairwise contrast activation (Supplementary
Figure 4). Increased mean valence contrast activation was
observed in the right vlPFC and right motor cortex of male
versus female participants as was increased mean arousal contrast
activation observed in the anterior cingulate cortex. These
findings suggest that sex differences may impact our ability to
characterize both the neural representations of affective valence
and arousal in mixed-sex samples. However, no sex differences
were observed in whole-brain classification performances for
valence (p = 0.29, two-sample t-test), arousal (p = 0.13, two-
sample t-test), or self-reported valence (p = 0.53, two-sample
t-test). Global neural pattern classification performance may not

explain local performance fluctuations. We thus explored sex
differences of misclassified stimuli within the regions of highest
misclassification shown in Figure 5, but found no significant
sex differences for valence classification accuracy (p = 0.703,
two-sample t-test) nor arousal (p = 0.069, two-sample t-test).
While these sample sizes are small and may not sufficiently
power the comparison, the determinants of these affect space
regions of misclassification remains unknown and warrants
further investigation.

Our finding of high inter-subject prediction and relatively
poor intra-subject prediction accuracy, a result that supports
earlier affect state prediction work (Baucom et al., 2012),
may reflect anti-learning (Kowalczyk and Chapelle, 2005), a
phenomenon in which a classifier systematically learns a high-
performing decision hyperplane on the training dataset but
prediction performance is worse than chance with LOOCV on
an independent test set (see Supplementary Table 3, prediction
of normative arousal ratings). Anti-learning is a fundamental
property of both synthetic and real-world datasets (Kowalczyk
et al., 2007) and has been theoretically linked to data domains
exhibiting both high-dimensionality and low sample size (Hall
et al., 2005; Kowalczyk and Chapelle, 2005), which typifies
neuroimaging studies and is particularly relevant here. Our intra-
subject normative arousal predictions were learned from only 40
training examples, each having 36,594 dimensions. In contrast,
our inter-subject predictions were learned from 31 times the
number of training examples. It follows then that no examples
of anti-learning were found during inter-subject prediction.

The strength of our study’s inferences is influenced by
clear limitations in experimental approach. The most serious
possibility is that the structure of affective processing in the
brain’s statespace may be non-linear rather than linear as we
assumed. It is possible that observed aROI or iROI results would
differ if we had explored other MVPC implementations beyond
the linear SVM classifier. Our choice of a linear SVM classifier
was primarily made for ease of interpretability rather than to
optimize classification performance, as linear classifiers are more
intuitively depicted in neuroanatomic space than non-linear
classifiers. Thus, our reported iROI results conservatively fall on
the lower performance bound of what may be possible using more
advanced machine learning techniques.

We report stronger classifier performance for features derived
from all univariate ROIs than for single ROIs. It is possible
that small combinations of ROIs (pairs, triplets, etc.) would
achieve performance comparable to classifiers trained using all
ROIs. The difficulty here is that there is no obviously efficient
method for optimally selecting samples from the space of
possible ROI-networks, having on the order of 14-choose-2
(91) or 14-choose-3 (364) combinations in the case of valence.
Local search optimization strategies, when considering the full
cost of evaluating a single network configuration over all 32
subjects, are not computationally tractable. Also, the equivalence
of small ROI networks to aROI, while more supportive of the
canonical neuroanatomical model of affective processing, does
not refute the primary conclusion of this work that whole-brain
features are superior to ROI-based features as regards classifier
performance.
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Our use of binary classification may mask the possibility that
affective processing naturally aligns with higher-order systems of
affect states. The univariate analysis literature provides evidence
that brain regions important for affective processing select for
either neutral or extreme conditions (Posner et al., 2009). Thus,
more accurate classification may be attainable using a ternary
state system (e.g., positive, negative, and neutral valence rather
than positive and negative, or high, medium, and low arousal
rather than high and low). This proof-of-concept analysis lays the
foundation for future exploration of multi-state classification of
affect encoding.

Moving forward, this work supports a vigorous new look at
the use of control theoretic neuroimaging techniques in the study
of affective processing: specifically, real-time fMRI (rt-fMRI)
methodology for investigating the neural substrates of affect
and fMRI-based neurofeedback experiments that employ affect
responses to achieve neuromodulation goals. In the first case, our
results suggest that rt-fMRI combined with MVPA could form the
basis of active learning (Cohn et al., 1996) based neuroimaging
studies in which stimulus density varies during experimentation
to oversample portions of the affect space that are not well-
predicted by the model. In the latter, we propose next generation
fMRI-based neuromodulation experiments that utilize model-
derived whole-brain read-outs as targets of volitional control to
boost emotion regulation.
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