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ABSTRACT Evolution of plants under climatic gradients may lead to clinal adaptation. Understanding the
genomic basis of clinal adaptation in crops species could facilitate breeding for climate resilience. We
investigated signatures of clinal adaptation in the cereal crop sorghum (Sorghum bicolor L. [Moench]) to the
precipitation gradient in West Africa using a panel (n = 607) of sorghum accessions from diverse agro-
climatic zones of Nigeria. Significant correlations were observed between common-garden phenotypes of
three putative climate-adaptive traits (flowering time, plant height, and panicle length) and climatic vari-
ables. The panel was characterized at >400,000 single nucleotide polymorphisms (SNPs) using genotyping-
by-sequencing (GBS). Redundancy analysis indicated that a small proportion of SNP variation can be
explained by climate (1%), space (1%), and climate collinear with space (3%). Discriminant analysis of
principal components identified three genetic groups that are distributed differently along the precipitation
gradient. Genome-wide association studies were conducted with phenotypes and three climatic variables
(annual mean precipitation, precipitation in the driest quarter, and annual mean temperature). There was no
overall enrichment of associations near a priori candidate genes implicated in flowering time, height, and
inflorescence architecture in cereals, but several significant associations were found near a priori candidates
including photoperiodic flowering regulators SbCN12 and Maé. Together, the findings suggest that a small
(3%) but significant proportion of nucleotide variation in Nigerian sorghum landraces reflects clinal adap-
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tation along the West African precipitation gradient.

Adaptation to environmental gradients can lead to evolution of clines, a
continuous form of local adaptation (Slatkin 1973; Savolainen et al.
2013; Yoder et al. 2014). Climatic gradients that may shape trait adap-
tation include ultraviolet radiation, photoperiodicity, temperature, and
precipitation (Hancock et al. 2011; Haussmann ef al. 2012; Bastide et al.
2016). In the model plant Arabidopsis, clinal variation across latitude
has been observed for seed dormancy, cold tolerance, height, and flow-
ering time (Zhen and Ungerer 2008; Samis et al. 2012; Kronholm et al.
2012; Debieu et al. 2013). Likewise, in crop species, diffusion from
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tropical to temperate zones has led to clinal adaptation in flowering
time (Ducrocq et al. 2008; Buckler et al. 2009; Wu et al. 2013;
Kloosterman et al. 2013) and cold tolerance (Comadran et al. 2012;
Macet al. 2015). Local adaptation of traditional varieties has played a key
role in smallholder crop production under adverse climatic conditions
and low agricultural inputs (Vasconcelos et al. 2013). Locally-adapted
crop landraces possess alleles that can be beneficial for the development
of improved varieties to ensure food security under stressful climates
(Zeven 1998; Soler et al. 2013; Lasky et al. 2015).

Understanding genetic diversity, population structure, and geno-
type-phenotype associations in crop landraces can guide germplasm
conservation and breeding (Dje et al. 2000; Soler et al. 2013; Dwivedi
et al. 2016). Recent advances in genotyping technology have facilitated
studies of genomic diversity in crops, including studies of local and
clinal adaptation using population and quantitative trait genomics
(Myles et al. 2009; Morrell et al. 2012; Savolainen et al. 2013). Popula-
tion genomics methods based on genome-wide patterns of nucleotide
variation can identify loci with signatures of selection (Siol et al. 2010).
These have been used to identify genomic targets of adaptation in many
crops including maize (Gore et al. 2009; Hufford et al. 2012), rice
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(Meyer et al. 2016; Li et al. 2017), and sorghum (Morris et al. 2013;
Mace et al. 2013). In sorghum, quantitative trait genomics approaches
using mixed linear model have identified genomic regions associated
with adaptive traits and climatic variables (Morris et al. 2013; Zhang
et al. 2015; Lasky et al. 2015).

Sorghum (Sorghum bicolor L. [Moench]) is an essential staple cereal
crop in dryland regions of the world (National Research Council 1996).
It has adapted to a wide variety of climatic gradients and has abundant
phenotypic variation for flowering time, plant morphology, and inflo-
rescence morphology (Morris et al. 2013; Zhang et al. 2015; Lasky et al.
2015). Globally, the morphological types (botanical races) of sorghum
are distributed according to precipitation zones, with open-panicle
guinea types predominant in humid regions, semi-compact caudatum
types predominant in semi-arid regions, and compact-panicle durra
types predominant in arid regions (Doggett 1988; Morris et al. 2013). In
West Africa, sorghum is found across a steep north-south precipitation
gradient, ranging from semiarid grasslands bordering the Sahara Desert
in the north (Sahelian zone), through subhumid savannah (Sudanian
zone), to humid forest zones in the south (Guinean zone). These re-
gions have been subject to major droughts for several millennia
(Shanahan et al. 2009) and increased drought under climate change
is expected to reduce sorghum yields in this region (Lobell et al. 2008).

The West African country of Nigeria is Africa’s most populous
nation and its largest sorghum producer, with 5-10 million Mg of grain
production per year (Nzeka and Akhidenor 2018). Sorghum is the
major cereal in the northern Sudano-Sahelian region of Nigeria, which
is characterized by prolonged dry seasons and short rainy seasons
(National Research Council 1996). Sorghum, as a non-centric crop,
has multiple centers of diversity and two of these overlap with the
boundaries of Nigeria (Harlan 1971, 1992). The genetic diversity of
Nigerian sorghum is poorly characterized compared to other African
sorghum germplasm (Rao et al. 1985; Deu et al. 2008; Barro-Kon-
dombo et al. 2010; Leiser et al. 2014). Identifying genomic regions
underlying adaptation in Nigerian sorghum germplasm could facilitate
the identification of adaptive traits and genetic diversity relevant to crop
improvement.

Given that sorghum is distributed across the precipitation gradient in
Nigeria, we hypothesized that Nigerian sorghum germplasm has been
shaped by clinal adaptation. Under this hypothesis, we expect pre-
cipitation variables to be associated with both phenotype (putative
climate-adaptive traits) and genotype (population structure and SNPs).
Further, we expect that trait-associated and climate-associated genome
regions will colocalize with genes involved in putative climate-adaptive
traits. We investigated these predictions in a large panel of georeferenced
Nigerian genebank accessions, which were previously phenotyped and
which we genotyped at high-density using GBS. We characterized
patterns of association among climatic, phenotypic, and genotypic
variables and tested colocalization of associated genomic regions. Over-
all, the patterns are consistent with a small contribution of clinal
adaptation shaping genomic variation in Nigerian sorghum.

MATERIALS AND METHODS

Plant materials

Seeds for 553 Nigerian accessions were obtained from the USDA Na-
tional Plant Germplasm System (NPGS) (https://www.ars-grin.gov/).
Seedlings were raised in a greenhouse for two weeks and 50 mg of
fresh leaf tissue was collected from each accession into 96-well plates.
A control well was left empty on each plate. Leaf tissue was lyophilized
(Labconco Freeze Dryer, Kansas City, MO, USA) for two days and
then ground using 96-well plate plant tissue grinder (Retsch Mixer
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Mill, Haan, Germany). Genomic DNA was extracted using BioSprint
96 DNA Plant Kit (QIAGEN, Valencia CA, USA), quantified using
Quant-iTTM PicoGreen dsDNA Assay Kit (ThermoFisher Scientific,
Waltham MA, USA), then normalized to 10 ng/pul.

Genotyping-by-sequencing

GBS was conducted on 553 Nigerian accessions using methods previously
described (Elshire et al. 2011; Morris et al. 2013). Briefly, individual DNA
samples were digested using ApeKI restriction enzyme (NEB R0643L)
followed by ligation of barcode and common adapters ligation using T4
DNA ligase (NEB MO0202L). Ligated libraries were pooled (96-plex
libraries) then amplified by polymerase chain reaction (PCR). Purifica-
tion of libraries was performed using QIAquick PCR purification kit
(QIAGEN, Valencia CA, USA). Library size distribution was obtained
using a Bioanalyzer (Agilent Technologies 2100, Santa Clara CA, USA).
Four 96-plex libraries were pooled to generate 384-plex sequencing
libraries. Libraries were sequenced using single end 100-cycle sequenc-
ing using lumina HiSeq2500 (Illumina, San Diego CA, USA) at the
University of Kansas Medical Center, Kansas City MO, USA.

Sequence reads for Nigerian germplasm were combined with pub-
lished sequence reads obtained for 1943 accessions (Lasky et al. 2015).
The published sequence data were composed of globally diverse sor-
ghum landraces with major representation by accessions from Africa
and Asia. They were obtained from the United States NPGS-GRIN and
the International Crops Research Institute for the Semi-Arid Tropics
(ICRISAT) gene banks. From these 1943 georeferenced global acces-
sions, sequence information from 158 Nigerian accessions was
obtained and combined with the Nigerian NPGS set. Duplicated ac-
cessions and accessions with sorghum conversion (SC) numbers (i.e.,
with introgressions for early maturity and semi-dwarf genes) in the
NPGS database were removed from the Nigerian germplasm. Thus,
607 Nigerian accessions (of which 443 were georeferenced; Figure
1A) and 1785 georeferenced global accessions were used for down-
stream analysis (Files S1 and S2). Reads were aligned to the sorghum
reference genome v3.0 (McCormick et al. 2018) using Burrow Wheeler
Alignment algorithm (Li and Durbin 2009). SNP calling was performed
using TASSEL 5.0 GBS pipeline (Glaubitz et al. 2014). The SNPs were
filtered for < 20% missingness, then missing data were imputed using
BEAGLE 4.0 (Browning and Browning 2013).

Climate and phenotype data

Climate data (average from 1960 to 1990) were obtained from WorldClim
1.4 using the Raster package in R (Hijmans et al. 2016) based on the
coordinate (latitude and longitude) for each of the 443 georeferenced
Nigerian accessions (File S1) and 1785 global accessions (File S2). As
proxies for precipitation gradients that are hypothesized to affect Nigerian
sorghum we investigated “annual precipitation” and “precipitation in the
driest quarter”. Common garden passport data for flowering time, plant
height, and panicle length for the Nigerian accessions were obtained from
the USDA-NPGS Germplasm Resource Information Network database
(https://www.ars-grin.gov/). The passport data were based on evaluations
in one or more common garden experiments in tropical latitudes (Puerto
Rico and St. Croix, 17-18°N), so best linear unbiased predictors (BLUPs)
were estimated for each trait for each accession (File S1). A term for
common garden was fit as random in the BLUP estimation model using
Imer function in LME4 package in R (Bates et al. 2014) as follows:

yi=p+ v+ i

where y; is the vector of phenotypic observation of the i accession,
v, is the j common garden where i accession was evaluated, and
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&jjk is the residual or error term. Pearson correlations were calculated
between BLUPs of three adaptive traits (flowering time, panicle
length, and plant height), and environmental factors (latitude, tem-
perature and precipitation). To reduce the influence of outlier sites
with exceptional climatic variables, precipitation values of three geo-
graphical locations where sorghum is not commonly cultivated were
removed. Analysis of variance (ANOVA) and Tukey HSD test in
R were performed to identify precipitation differences among sites
of origin for different genetic groups or botanical races.

Redundancy analysis

Redundancy analysis (RDA) was performed separately for global and
Nigerian germplasm sets using the varpart function in the R vegan
package (Oksanen et al. 2017). A multivariate model was fit using
the genomic data (431,698 SNPs for the global accession and 279,689
SNPs for the Nigerian accessions, filtered for monomorphic and sin-
gleton markers) as response variable. Ten WorldClim 1.4 climatic var-
iables (annual mean temperature, mean temperature wettest quarter,
mean temperature driest quarter, mean temperature warmest quarter,
mean temperature coldest quarter, annual precipitation, precipitation
wettest quarter, precipitation driest quarter, precipitation in the warm-
est quarter, and precipitation in the coldest quarter) and geographical
variables (latitude and longitude, which we refer to as “space”) were
fitted as predictor terms. The “space” term is included to account for
isolation-by-distance (Lasky et al. 2012). To test the significance of the
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proportion of variation explained by climate collinear with space in the
Nigerian germplasm, the proportion of variation explained was com-
pared to the distribution from 1000 permuted data sets. In each stage of
the permutation, individuals (genotypes) were randomized and RDA
regression fitted and repeated 1000 times.

Population structure and linkage
disequilibrium analyses
Discriminant analysis of principal components (DAPC) was con-
ducted with the find clusters function in Adegenet package in R
(Jombart 2008; Jombart et al. 2010). Population differentiation (Fgr)
between DAPC groups was estimated using —weir-fst-pop parameter
(Weir and Cockerham’s Fgy) in VCFtools (Danecek et al. 2011). While
nucleotide diversity within DAPC groups was estimated using
—window-pi (1kb) in VCFtools. LD decay analysis for each DAPC group
was performed by PopLDdecay (BGI-shenzhen 2017). For comparison
with Nigerian germplasm, West African accessions were identified from
the published global GBS data (Lasky et al. 2015). The published GBS
data were composed of global accessions from 55 countries, predomi-
nantly representing landraces from sub-Saharan Africa and Asia. In the
text, “global” refers to all accessions (including Nigerian and other West
African accessions), unless otherwise noted that Nigerian or West
African accessions have been removed.

Linkage disequilibrium decay for the genomic data for Nigerian,
West African, and global germplasm was estimated by PopLDdecay
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(BGI-shenzhen 2017), with minor allele frequency parameter set at 0.05
and smoothing by the spline function in R. Principal component analysis
(PCA) was performed using SNPrelate package in R (Zheng et al. 2012)
with LD pruning threshold parameter set to 0.5 and minor allele fre-
quency parameter set to 0.05. Neighbor-joining analysis was performed
using TASSEL 5.0 and visualized in APE (Analyses of Phylogenetics
and Evolution) package in R (Paradis et al. 2004). Population differen-
tiation (Fsy) between Nigerian, West African and global germplasm
was evaluated using —weir-fst-pop parameter (Weir and Cockerham’s
Fsr) in VCFtools (Danecek et al. 2011). While nucleotide diversity
within each germplasm, their inbreeding coefficients, and observed
heterozygosity were estimated using —window-pi (1kb window), -het,
and —hardy respectively, in VCFtools.

Genome-wide association studies

Genome-wide association studies (GWAS) were performed using
BLUPs of traits (panicle length, n = 330; plant height, n = 332; and
flowering time, n = 412). After filtering the Nigerian data for
a minimum minor allele frequency (MAF) of 0.03, a total of 149,342
SNPs were used in the GWAS analysis. First, a multi-locus mixed linear
model (MLMM) (Segura et al. 2012) with a fixed population term
(Q) and a random polygenic term (K) was used to perform GWAS
for the phenotypic traits. PCA components (first three PCs) used for Q
term were estimated using TASSEL 5.0 (Bradbury et al 2007) and
kinship matrix used for the polygenic term was derived from GAPIT
(Lipka et al. 2012). Bonferroni correction of 2.6e-07 (o/number of
markers, where o = 0.05) was used to determine the cut-off threshold
for the phenotypic associations. A set of a priori candidate genes was
compiled from Phytozome including known sorghum genes, and sor-
ghum homologs of rice and maize genes known to be involved in in-
florescence morphology, maturity, and plant height (n = 169; File S3).

Genome scans

Three environmental variables (annual precipitation, precipitation in
the driest quarter, and annual mean temperature) were used as proxies
for the precipitation gradient (n = 443). A GLM, which does not include
population structure and kinship terms, was used to perform an
association scan for climatic variables to reduce false negatives
(Bergelson and Roux 2010; Lasky et al. 2015). The top 1% outliers of
the environmental associations were selected for enrichment analysis.
Enrichment of a priori genes near association peak were performed
using a chi-square test. Windows of 100 kb were used as conservative
regions for colocalization between SNPs and a priori genes since LD
decayed to background levels at > 100 kb. The genome wide Tajima’s
D across 100 kb windows was tested using VCF tools in global germ-
plasm (Dgiopa)> West African germplasm (Dyyestafrica)> and Nigerian
germplasm (Dyjgeria). Enrichment analysis for a priori genes was per-
formed by testing whether the Dyjgeria 100 kb windows were signifi-
cantly enriched for our a priori candidate genes relative to a set of
random genes derived from the sorghum genome version 3 gff3 gene
file from Phytozome (Goodstein et al. 2011; McCormick et al. 2018) for
1000 whole genome permutations.

Data availability

Raw sequencing data are available from the NCBI Sequence Read
Archive under project accession SRP132525 SNP genotype, phenotype,
and geographic data are available at Dryad (doi:10.5061/dryad.
g0141g7). All data are publicly available. File S1 contains detailed de-
scriptions of Nigerian accessions, their passport data, georeference in-
formation, the BLUPs of phenotypes, climatic data, and DAPC groups.
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File S2 contains detailed descriptions of global accessions, their geore-
ference information, and climatic data. File S3 contains a priori candi-
date genes list and literature sources. File S4 contains ANOVA and
Tukey test results for race by precipitation analysis. File S5 contains
detailed descriptions of a priori candidate genes associated with signif-
icant SNPs for MLMM and GLM GWAS results for the phenotypes.
File S6 contains detailed descriptions of a priori candidate genes asso-
ciated with outlier SNPs for GLM of environmental variables. File S7
contains detailed descriptions of a priori candidate genes associated
with Nigerian germplasm Tajima’s D (Dyjigeria) Windows. Supplemental
material available at Figshare: https://doi.org/10.25387/g3.6942986.

RESULTS

Trait and environment correlations

The georeferenced sorghum accessions from Nigeria originated across a
wide precipitation gradient (Figure 1A). Annual precipitation at the
locations of origin ranges from < 500 mm/year for the northern Niger-
ian accessions (Sahelian zone) to > 3500 mm/year for the southern
Nigerian accessions (Guinean zone). Analysis of variance indicates a
significant difference in annual precipitation at sites of origin among
the botanical races (P-value < 0.001). Significant differences were
found between guinea and caudatum types (P-value < 0.05) and be-
tween guinea and durra-caudatum types (P-value < 0.01) (File $4) in
precipitation differences among sites of origin.

The correlation of annual precipitation with common garden phe-
notypes of georeferenced Nigerian germplasm was investigated for three
traits (panicle length, plant height, and flowering time) (Figure 1B-D).
For comparison, we also considered correlations with annual mean
temperature and latitude. Significant positive relationships with annual
mean precipitation were observed for panicle length (Figure 2A;
r = 021, P-value < 0.001) and plant height (Figure 2B; r = 0.22, P-
value < 0.001) but not flowering time (Figure 2C). By contrast, annual
mean temperature had no correlation with panicle length (Figure 2D)
or plant height (Figure 2F) but a significant negative relationship with
flowering time (Figure 2F; r = - 0.19; P-value < 0.001). Latitude had
negative relationships with panicle length (Figure 2G; r = - 0.19,
P-value < 0.001) and plant height (Figure 2H; r = - 0.26, P-value <
0.001), but no relationship with flowering time (Figure 2I). Among the
traits, flowering time had significant positive relationships with both
panicle length and plant height (Fig. S1; r = 0.32 and 0.41, respectively;
P-values < 0.001). Among the environmental variables, annual mean
precipitation had a significant negative relationship with latitude (Fig.
S1; r = -0.86, P-value < 0.001) and a weaker but significant negative
correlation with annual mean temperature (Fig. S1; r = -0.23, P-value <
0.001).

Genome-wide nucleotide variation

To investigate genomic variation we developed a data set consisting of
431,698 SNPs genotyped across 2392 accessions (Nigeria, West Africa,
and global). Most of the SNP variation in the three panels was rare; about
51% of the Nigerian genomic data were composed of SNPs with minor
allele frequencies (MAF) < 0.01, 46% of the West African SNPs have
MAF < 0.01, 36% of the global reference SNPs have MAF < 0.01, and
37% of global SNPs have MAF < 0.01 (Fig. S2A). The mean observed
heterozygosity across loci in each of the germplasm is 0.02 (2%) (Fig.
S2B). SNP density was higher in sub-telomeric regions and lower in
sub-centromeric regions (Fig. S3). In the Nigerian germplasm (n =
607 accessions; Figure 1A), 279,689 SNPs were retained after removing
monomorphic markers, singletons, and doubletons from the initial
431,698 SNPs. This corresponds to an average of 1 SNP per 2.7 kb.
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Figure 2 Relationships between traits and environmental variables in georeferenced germplasm. Pearson correlations between three
environmental variables, annual mean precipitation (in mm) (A-C), annual temperature (in °C) (D-F), and latitude (G-I), vs. three phenotypic
variables, panicle length (A, D, G), plant height (B, E, H), and flowering time (C, F, I) (n = 443). Phenotypes are BLUPs from common garden
experiments. Significant correlation values are noted at 0.05, 0.01 and 0.001 (¥, **, and **¥).

In the West African germplasm (n = 325 accessions), 311,786 SNPs
were obtained after removing monomorphic markers, singletons, and
doubletons.

The nucleotide diversity of Nigerian germplasm was similar to the
West African and global germplasm. The average nucleotide diversity for
global germplasm (Tgoba) and West African germplasm (Tryyestafrica)
was 4.5 X 107% The nucleotide diversity in Nigerian germplasm
(TrNigeria) Was somewhat lower at 4.0 X 107% The average inbreeding
coefficients were 0.83, 0.82, and 0.80 for global germplasm, West African
germplasm, and Nigerian germplasm, respectively (all significantly dif-
ferent from each other at P-value < 0.01) (Fig. S2C). The Fgr between
Nigerian and West African germplasm was 0.007 (Fig. S4A) and Fsr
between Nigeria and global germplasm was 0.07 (Fig. S4B). The ge-
nome-wide average rate of linkage disequilibrium decay differed among
the panels. Of the three germplasm sets, the global germplasm had the
fastest LD decay rate by reducing to * = 0.1 at 20 kb (Fig. S5). LD
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decayed to half its initial value at 12 kb and 72 = 0.1 at 50 kb in the
Nigerian germplasm. The West African germplasm had a slowest LD
decay rate among the three sets, with 72 = 0.1 at 100 kb.

Redundancy analysis

To estimate the proportion of SNP variation that has been shaped by
climate vs. geographic distance (space) we carried out a redundancy
analysis, a form of multivariate regression. The proportion of SNP
variation explained by climate and space in global germplasm was
substantially greater than in Nigerian germplasm. In global germplasm,
the proportion of variation explained by the 10 climate variables, space
(latitude and longitude), and their combination together are 4%, 8%,
and 5%, respectively (Figure 3A). By contrast, in Nigerian germplasm,
climate and geographic variables explained a smaller proportion of
the total SNP variation (Figure 3B); climate and space alone each
explained 1% of the SNP variation, while climate collinear with
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space explained 3% of the SNP variation. The proportion of variation
explained by climate collinear with space was significantly greater (P <
0.001) than the null distribution from geographically permuted data
(Figure 3C).

Population structure analysis of the

Nigerian germplasm

To characterize the genetic structure of Nigerian germplasm in relation
to global sorghum diversity, we conducted PCA and DAPC. In the PCA,
the first PC explained about 6% of the variation while the second PC
explained about 4% of the variation. The Nigerian accessions formed
mostly separate clusters relative to the global accessions. The West
African and Nigerian germplasm clustered together in most cases (Fig.
S6A). Neighbor joining analysis also showed that Nigerian accessions
and West African accessions cluster together, separately from the rest of
the global germplasm (Fig. S7A). Clustering by botanical race was also
observed in the Nigerian germplasm (Fig. S6B and Fig. S7B).

DAPC analysis identified three genetic groups (Figure 4A-C). The
DAPC groups were genetically differentiated from each other as fol-
lows: Group 1 vs. Group 2 (Fst of 0.21), Group 1 vs. Group 3 (Fsy of
0.18), and Group 2 vs. Group 3 (Fst of 0.22). Accessions in Group
2 originate from locations with higher precipitation than the accessions
in Group 1 (P-value < 0.001) and Group 3 (P-value < 0.001) (Figure
4D). The average nucleotide diversity in 1kb windows for groups 1, 2,
and 3 are 44 x 1074, 3.3 x 107, and 3.8 x 10~ * respectively. Linkage
disequilibrium (r?) level decayed to 0.1 at 30 kb in in Group 1, 80 kb in
Group 2, and 90 kb in Group 3 (Fig. S8). Caudatum types are more
predominant in Group 1, Guinea types are more predominant in
Group 2, and Durra types are more predominant in Group 3 (Table 1).

In order to characterize variation among genetic groups identified by
DAPC, ANOVA, and Tukey test were performed for putative adaptive
traits and environmental variables. Significant difference in the distri-
bution of precipitation and temperature gradient were found between
DAPC Groups 1 and 3 (P-value < 0.01) and Groups 2 and 3 (P-value <
0.01). Also, there were significant differences between Groups 2 and
1 (P-value < 0.001) and Groups 2 and 3 (P-value < 0.001). We also
found significant differences for putative adaptive traits between DAPC
groups. For panicle length, all DAPC groups comparisons were differ-
ent at P-value < 0.01. Significant differences were found for flowering
time distribution between Groups 1 and 2 (P-value < 0.001). For plant
height, significant differences were found between Groups 1 and
2 (P-value < 0.001) and Groups 2 and 3 (P-value < 0.001).

Genome-wide association studies of phenotypes

To identify genomic regions associated with phenotypic variation, we
conducted MLMM GWAS for panicle length, plant height, and flower-
ing time using BLUPs of common-garden phenotypes. Several genomic
regions associated with the traits were identified and two a priori can-
didate genes fell within 100 kb (Figure 5, File S5). For panicle length no
associations were significant at the Bonferroni threshold (Figure 5A).
For plant height, a single significant association was observed on chro-
mosome 3 (Figure 5B). The single significant association for plant
height (S3_62675143, MAF = 0.29) colocalized with photoperiodic
flowering gene SbCN12 (Sobic.003G295300, 73 kb away) (Yang et al.
2014). For flowering time, nine significant associations were found on
chromosomes 3, 6, 7, 9, and 10 (Figure 5C). The most significant
flowering time association (S6_799609, MAF = 0.09) colocalized with
the known sorghum flowering time and photoperiod sensitivity gene
Maturity6 (Ma6/Ghd?7, Sobic.006G004400, 99 kb from gene) (Murphy
et al. 2014). With a naive model (GLM GWAS), nominally significant
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Figure 3 Redundancy analysis of SNP variation explained by climatic
and spatial variables. Multivariate redundancy analysis showing the
proportion of genotypic variation explained by climate variables
(precipitation and temperature) and space (latitude and longitude) in
(A) global germplasm and (B) Nigerian germplasm. (C) Density plot
showing the distribution of proportion of variation explained by
climate collinear with space obtained for 1000 permutations. The
green line indicates the position of the proportion of variation
explained by climate collinear with space and the red line indicates
the 95t percentile of the null distribution obtained by permutations.

associations were found on all chromosomes for panicle length, plant
height, and flowering time, and a large number of these colocalized with
a priori candidate genes (Fig. S9).

Genome scans for adaptation

Associations with environmental variables were used to investigate possible
genomic signature of climate adaptation. GLM outliers (top 1% of asso-
ciations) were identified on all chromosomes for “annual precipitation”,
“precipitation in the driest quarter,” and “annual temperature” (Figure
6 A-D and File S6). Genome-wide, 15% and 6% of a priori candidate genes
were localized within 100 kb of a 1% outlier SNP for “annual precipita-
tion” and “precipitation in the driest quarter”, respectively (vs. 17% and
16% of all genes). Therefore, there is no enrichment of a priori candidate
genes near environmental association outliers. A few of the a priori can-
didate genes that localize near 1% outlier SNPs are as follows. The SNP
S9_54870238 (MAF = 0.36; 99™ percentile) associated with annual pre-
cipitation was 90 kb away from the regulator of photoperiodic flowering
SbCN8 (Centroradialis8, Sobic.009G199800). S9_8022437 (MAF = 0.49;
99t percentile) associated with annual precipitation is 94 kb from the
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Figure 4 Genetic grouping of Nigerian germplasm in relation to the precipitation gradient. (A) Three genetic groups identified by the
discriminant analysis of principal components (DAPC), (B) neighbor joining tree showing genetic relatedness among Nigerian accessions
belonging to the three DAPC groups, (C) distribution of the georeferenced accessions based on their DAPC genetic groups across precipitation
zones in Nigeria, and (D) density plots of precipitation distribution of georeferenced accessions based on their DAPC genetic groups. Group

2 accessions originate from locations with higher precipitation than Group 1 (P-value < 0.001) and Group 3 (P-value < 0.001).

sorghum ortholog (Sobic.009G069700) of maize barren inflorescence4
(bif4) (Galli ef al. 2015). S3_4891237 and S3_4750963 (MAF = 0.31,
98" percentile and MAF = 0.04, 99 percentile) associated with annual
precipitation and precipitation in the driest quarter were 100 kb from
Sbra2 (Sobic.003G052900), the sorghum ortholog of maize inflorescence
gene ramosa2 (ra2) (Brown et al. 2006).

Genome-wide pattern of Tajima’s D in the Nigerian germplasm
(Dnigeria) across 1 kb windows ranged between -2.0 to 4.0 (Fig. S10 and
Fig. S11). The average Tajima’s D value in the Nigerian germplasm
(Dnigeria) Was -0.2 while the average genome wide Tajima’s D (across
1 kb windows) in the global germplasm (Dgjoba) and West African germ-
plasm (Dyyestagrica) Were 0.1 and 0.2, respectively. Positive Dygeri Windows
were significantly enriched for a priori candidate genes compared to the
expectation under a null distribution (Fig. S12 and File S7). Some of the
Dyjigeria windows (Fig. S10) contain genes that control for flowering time
and inflorescence development (File S7). For instance, the sorghum
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flowering time gene Maturity6 (Ma6, Sobic.006G004400) colocalized with
the genome wide Dyjigeria Scan window at 0.697 Mb (Tajima’s D = 1.48,
89t percentile) on chromosome 6. Maturityl (Mal, Sobic.006G057866)
colocalized with the genome wide Dyjgeria Scan window (Tajima’s D = 2.9;
in the 98" percentile) around 40 Mb on chromosome 6. The sorghum
ortholog of branched silkless1 (Sobic.002G411000), a maize spikelet mer-
istem identity gene (Chuck et al. 2002), colocalized with the genome wide
Dyjigeria Scan window (Tajima’s D = 2.2 in the 94t percentile) around 75.9
Mb on chromosome 2.

DISCUSSION

Evidence for clinal adaptation to the

precipitation gradient

Genome-wide studies of nucleotide variation can provide insights into
patterns of genetic variation in crop landraces and the role of clinal
adaptation in shaping this variation (Meyer et al. 2016). Overall, we
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Table 1 Distribution of sorghum botanical races among DAPC
groups

Botanical Race Group 1 Group 2 Group 3
Bicolor 6 3 1
Caudatum 39 7 6
Durra 4 1 3
Guinea 12 179 0
Bicolor Caudatum 9 5 3
Bicolor Durra 7 1 0
Bicolor Guinea 2 13 2
Caudatum Durra 28 11 57
Guinea Caudatum 5 5 4
Guinea Durra 1 1 1

found several lines of evidence that sorghum phenotypic variation
across Nigeria has been shaped by clinal adaptation to precipitation.
For panicle length, common garden variation in the Nigerian sorghum
germplasm was correlated with annual precipitation (Figure 2, Fig. S1).
Sorghum accessions originating from lower latitudes that have high
precipitation had longer panicles than accessions originating from
higher latitudes that have less precipitation (Figure 2A, 2G). The long
panicle morphology is associated with open and lax primary branches,
which is a key feature of guinea race which are predominant in humid
to sub-humid regions of Nigeria (Figure 1A-B) and West Africa more
generally (Deu et al. 2008; Barro-Kondombo et al. 2010; Lasky et al.
2015). This open panicle morphology is thought to allow airflow, re-
ducing mold infection under high humidity (Doggett 1988), though
this model has not been formally tested in diverse germplasm.

For plant height, sorghum accessions from lower latitudes associated
with high precipitation were taller than sorghum accessions from higher
latitudes associated with less precipitation (Figure 2B, 2H). This pattern
is consistent with cross-species ecological studies of plant height, which
identified precipitation as the best environmental predictor of within-
species latitudinal variation of height (Moles et al. 2009). Given that
higher latitudes in Nigeria have lower rainfall, reduced plant height and
panicle length in dry regions may be an adaptation to increase yield
stability under reduced water availability, as has been observed in West
African pear]l millet (Vigouroux et al 2011). In our study, common
garden variation in flowering time is associated with temperature but
not precipitation at the location of origin. The negative relationship
between flowering time and annual mean temperature (Figure 2F) sug-
gests that sorghum in hot climates may flower early as an escape from
high temperature and resulting water limitation (Tuinstra et al. 1997).

The significant proportion of nucleotide variation explained by
climate collinear with space (3%; Figure 3) is consistent with clinal
adaptation of sorghum in Nigeria. Redundancy analysis indicated that
climate collinear with space explained more SNP variation in the Niger-
ian germplasm than either of climate and space (isolation-by-distance)
alone. The finding that climate collinear with space explained more
SNP variation than either climate or space alone is consistent with
findings in global sorghum germplasm (Lasky et al. 2015) and regional
germplasm in wild soybean (Glycine soja) (Leamy et al. 2016) and
barley (Hordeum vulgare) landraces (Abebe et al. 2015). However,
the proportion of SNP variation explained by climate collinear with
space we observed in this study was much lower than what was ob-
served in wild soybean and barley landraces (6-34% and 29-61%, re-
spectively). Methodological differences that may contribute to the
lower proportion of SNP variation explained in this study are the
greater number of environmental variables used in the soybean and
barley studies, and the use of ascertained SNPs in the soybean study.
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Figure 5 Genome wide association studies of phenotypes for putative
adaptation traits. Genome-wide SNP associations for multi-locus
mixed model with a fixed population term and a random polygenic
term for (A) panicle length, (B) plant height, and (C) flowering time in
Nigerian germplasm (n = 329, 331, and 411 respectively). Vertical
dashed lines represent position of a priori candidate genes (Maé and
SbCN12) and found within 150 kb region of the significant association.
Horizontal broken red lines signify the Bonferroni correction threshold
(P-value < 0.05).
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Genome-wide nucleotide variation in Nigeria is also structured
according to precipitation zones. The DAPC analysis identified genetic
groups within the sorghum botanical races. These genetic groups showed
differences in precipitation distributions (Figure 4C-D, Table 1). Group
1 was associated with the lowest annual mean precipitation, and com-
posed predominantly of caudatum, caudatum intermediates and bicolor
types and prevalent at higher latitudes in northeastern Nigeria charac-
terized with lower annual precipitation. The northeastern part of Nigeria
was classified as part of the center of diversity of caudatum and cauda-
tum-durra (Harlan 1992). Group 2 was associated with higher annual
precipitation distribution and more prevalent at lower latitudes. Most of
the accessions in this group belong to the guinea and guinea interme-
diate racial types. Group 3 was predominantly made up of durra and
caudatum-durra intermediates. Notably, there was a complete absence
of the guinea race from this group. Consistent with the model that
botanical races in sorghum are differentially adapted to precipitation-
based agroclimatic zones (Harlan 1992; Morris et al. 2013), we found
differences in botanical race distribution in precipitation zones (File S7).
Precipitation distribution of guinea accessions was significantly different
from precipitation distribution of caudatum (P-value < 0.05) and cau-
datum-durra races (P-value < 0.01).

Despite some evidence of clinal adaptation, we should note that the
redundancy analysis (Figure 3) and theoretical considerations (Pavlidis
et al. 2012; Meirmans 2015) suggest that bulk of the nucleotide
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variation observed in the Nigerian germplasm is neutral. In addition,
the small proportion of phenotypic and genomic variation explained by
the precipitation gradient (Figure 3B-C; Figure 2) suggest a modest role
of clinal adaptation in shaping phenotypic diversity at the geographic
scale of modern Nigeria. However, more detailed studies of panicle and
vegetative morphology may reveal traits with stronger climate associ-
ations. Other factors that may have shaped the observed diversity pat-
terns which we did not investigate include seed sharing based on
ethnolinguistic grouping (Soler et al. 2013; Labeyrie et al. 2014) and
historical processes of domestication and diffusion (Kimber et al. 2013;
Morris et al. 2013). Consistent with a major role of cultural and his-
torical factors shaping diversity at a Nigeria-wide scale, in the cases
where multiple accessions were collected from single locations, multiple
botanical races and genetic group were observed (Figure 1A, File S1).

Identifying putative loci underlying adaptation
The combination of phenotypic association, environmental association,
and selection scans can provide multiple lines of evidence for the
involvement of particular loci in adaptation (Meyer et al. 2016). In
the Nigerian sorghum germplasm, we observed some cases where a
priori candidate genes related to adaptive traits colocalized with GWAS
signals (Figure 5-6; File S5-S6). The colocalization of two sorghum
photoperiod sensitivity genes (SPCNI12 and Ma6) with plant height
and flowering time associations suggests that photoperiod sensitivity
contributes to plant height and flowering time adaptation in Nigerian
sorghum germplasm. This is consistent with previous studies that iden-
tified SbCN12 and Ma6/Ghd7 as major genes underlying natural var-
iation in photoperiodic flowering in sorghum (Murphy et al. 2014;
Yang et al. 2014; Bouchet et al. 2017). In sub-tropical latitudes, like
the common gardens used by the USDA genebank (~17° N), photo-
period sensitive sorghums are expected to have longer vegetative
growth and attain greater heights than in tropical latitudes due to
longer days at the higher latitudes (Murphy et al. 2014).

Given that strong association peaks for both environmental variables
(annual precipitation and precipitation in the driest quarter; Figure 6)
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Figure 6 Genome wide association
studies of climatic variables. Genome-
wide SNP associations for general linear
model of (A) annual mean precipitation,
(B) precipitation in the driest quarter,
(C) and annual mean temperature.
Horizontal broken lines indicate the
cutoff point of top 1% outliers. Vertical
broken lines indicate the position of a
priori candidate genes related to inflo-
rescence morphology (orange), plant
height (blue), and flowering time
(purple), which are within 100 kb from
associated SNPs.

were found near SbCN8, this gene may be a candidate for clinal adap-
tation to the precipitation gradient in West Africa. The colocalization of
inflorescence genes (ra2 and bif4) with associations for annual precip-
itation (Figure 6A; File S5-S6) is consistent with an adaptive role of
inflorescence morphology across the precipitation gradient (Harlan
1992; Morris et al. 2013). Accounting for population structure in
GWAS models when mapping phenotypes that are correlated with
population structure can lead to false negatives (Bergelson and Roux
2010; Lasky et al. 2015). Notably there were no significant associations
for panicle length after accounting for population structure (MLM;
Figure 5A). This finding is consistent with the expectation that cli-
mate-associated traits will be confounded with population structure
and there will be little power to map the genetic basis of these traits
using mixed model association (Brachi et al. 2011). Genetic dissection
of panicle morphology and other putative clinal adaptation traits
should be more effective with a multi-parent mapping strategy that
breaks up confounding population structure, such as nested association
mapping (Buckler et al. 2009; Bouchet et al. 2017).

Long-term stable clinal adaptation is expected to be reflected in
genomic signals of balancing selection (Novembre and Rienzo 2009;
Yoder et al. 2014). Consistent with the phenotypic evidence of clinal
trait adaptation (Figure 2A, 2B, 2F), there was evidence of balancing
selection from genome-wide enrichment of Dyjgeria windows at a priori
candidate genes for flowering time, plant height, and inflorescence
morphology (Fig. S11 and Fig. S12). Further functional studies of can-
didate genes will be needed to establish if these candidate genes have a
role in climate adaptation (Kesari et al. 2012; Romero Navarro et al.
2017). Resequencing of georeferenced germplasm should facilitate the
identification of putative functional variants underlying clinal adapta-
tion (Gore et al. 2009; Meyer et al. 2016). Demographic effects due
to historical processes of domestication and differentiation affect the
pattern of diversity under neutrality (Molina et al. 2011; Meyer and
Purugganan 2013). While it is suspected that sorghum has a complex
domestication history based on morphology (Harlan 1992), population
structure (Deu et al. 2006), and shattering gene haplotypes (Shatteringl)
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(Olsen 2012), the demographic scenarios have not been formally de-
scribed or evaluated. Therefore, further study on demographic history
in sorghum will be valuable to identify which genomic outlier loci are
most likely to represent signatures of selection.

If variation at genes involved in putative adaptive traits (flowering
time, plant height, and panicle length) underlie clinal variation, then we
expect significant enrichment of the a priori genes with environment
associations (Rellstab et al. 2015). However, there was no enrichment of
a priori candidate genes near associations with “precipitation in the
driest quarter” or “annual mean precipitation”. An alternative to the
single-trait GWAS and colocalization approach used in this study
would be a multi-trait GWAS approach (Korte et al. 2012; Zhou and
Stephens 2014) simultaneously considering traits and environmental
variables. However, biological interpretation of the synthetic or “eigen”
traits may remain a challenge until more corroborating functional ge-
netic data are available (Banerjee et al. 2008).

Resources for genomic-enabled breeding of

clinal adaptation

The Nigerian germplasm harbors abundant nucleotide polymorphism
(90% of the global nucleotide polymorphism based on the my;geria V5.
T global)> cOnsistent with West Africa as a center of diversity for sorghum
(Harlan 1992). The high diversity could be a result of ancestral diversity
in the Nigerian sorghum, and/or gene flow and diffusion from other
regions of Africa (Westengen et al. 2014). Population structure and
neighbor-joining tree analysis showed that majority of the Nigerian
accessions and West African accessions clustered together (Fig. S6
and Fig. S7). The Nigerian germplasm was 10 times less differentiated
from West African germplasm compared to the rest of global sorghum
germplasm (Fsy Nigeria-West Africa = 0.007 and Fgy Nigeria-Global =
0.07). Low level of differentiation among regional germplasm in sor-
ghum has been attributed to gene flow from human migration and
agricultural trade (Menkir et al. 1997).

Characterization of LD patterns is critical for interpretation of
genome scans since the local extent of LD decay determines resolution
of mapping and long-range LD creates spurious associations (Myles
et al. 2009). LD decay rate in Nigerian germplasm (half of maximum
value at 12 kb) was slower than LD decay estimated in the global
sorghum association panel (half of maximum value at 1 kb) (Morris
et al. 2013). The global sorghum association panel may capture more
historical recombination than the Nigerian germplasm because of its
greater geographic diversity. The reduced long-range LD decay in the
Nigerian germplasm compared to the West African germplasm (Fig.
S5) may be due to the smaller geographic scale, which should reduce
long range LD due to isolation-by-distance (Brachi et al. 2011).
Given the observed LD decay rates, the mapping resolution for
genome-wide scans in the Nigerian germplasm is expected to be
less than in global sorghum panels but greater than in West African
regional panels. Overall, the modest LD decay rate and high genetic
diversity in the Nigerian germplasm make it suitable for genome-
wide association studies.

The application of genomics for crop improvement and plant genetic
resource management is still in the early stage for most national
agricultural research systems in sub-Saharan Africa, including Nigeria
and neighboring countries (Ezeaku and Gupta 2004; Leiser et al. 2014;
Yohannes et al. 2015). The genomic resources developed in this study
represent a step toward genomics-enabled breeding and germplasm
management for sorghum landraces in Nigeria. The resources devel-
oped include a genome-wide catalog of SNP variation, a description of
geographic population structure, and estimates of genetic properties
including nucleotide diversity and LD decay. The genomic signatures
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of clinal adaptation identified in this study, if validated in managed
stress and multi-environment mapping studies (Cooper et al. 2014;
Lasky et al. 2015), could be another resource to facilitate genomics-
enabled breeding for climate-resilience in West Africa.
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