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Abstract

The limited efficacy of the BCG vaccine against tuberculosis is partly due to the missing expression of immunogenic
proteins. We analyzed whether the addition to BCG of ESAT-6 and HspX, two Mycobacterium tuberculosis (Mtb) antigens,
could enhance its capacity to activate human dendritic cells (DCs). BCG showed a weak ability to induce DC maturation,
cytokine release, and CD4+ lymphocytes and NK cells activation. The addition of ESAT-6 or HspX alone to BCG-stimulated DC
did not improve these processes, whereas their simultaneous addition enhanced BCG-dependent DC maturation and
cytokine release, as well as the ability of BCG-treated DCs to stimulate IFN-c release and CD69 expression by CD4+

lymphocytes and NK cells. Addition of TLR2-blocking antibody decreased IL-12 release by BCG-stimulated DCs incubated
with ESAT-6 and HspX, as well as IFN-c secretion by CD4+ lymphocytes co-cultured with these cells. Moreover, HspX and
ESAT-6 improved the capacity of BCG-treated DCs to induce the expression of memory phenotype marker CD45RO in naı̈ve
CD4+ T cells. Our results indicate that ESAT-6 and HspX cooperation enables BCG-treated human DCs to induce T
lymphocyte and NK cell-mediated immune responses through TLR2-dependent IL-12 secretion. Therefore ESAT-6 and HspX
represent good candidates for improving the effectiveness of BCG vaccination.
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Introduction

Mycobacterium tuberculosis (Mtb), the etiological agent of

tuberculosis, modulates dendritic cell (DC) and T lymphocyte

functions in diverse ways. Treatment of immature monocyte-

derived DCs with Mtb elicits the formation of mature DCs, which

produce several cytokines and activate T lymphocytes [1].

However, Mtb also alters DC differentiation [2], maturation and

cytokine secretion [3–4], in order to survive inside the host

organism. Mtb secretes numerous proteins that subvert host

defenses [5] and impair the development of protective immunity

[6–7]. Among such are 16-kDa heat shock protein (HspX)

(Rv2031c) [6] and early secreted antigenic target protein-6

(ESAT-6) (Rv3875) [7]. HspX, also known as a-crystallin, is

secreted during the latency phase of mycobacterial growth and is

required for the persistence of Mtb in the environment of the

macrophage phagosome [8]. HspX also plays a role in slowing

Mtb growth [9] and generates IFN-c-producing T cells in the

peripheral blood mononuclear cells (PBMC) of Mtb-exposed

individuals [8].

ESAT-6, a highly immunogenic secreted protein [10], is able to

lyse alveolar epithelial cells and macrophages [11], destabilize

phagolysosomes [12], and activate the inflammasome [13].

Recently, Romagnoli et al. demonstrated that ESAT-6 is involved

in the ability of Mtb to escape the human DC phagosome [14].

Also, ESAT-6 is known to induce the PBMC of tuberculosis-

bearing patients to produce IFN-c and chemokines [15–16].

Furthermore, recombinant DNA vaccine encoding ESAT-6 elicits

a strong Th1 response in mice [17]. Vaccination with a fusion

protein composed of ESAT-6 and Antigen 85B, a protein

belonging to the Mtb Antigen 85 complex [18], activates DCs

and Th1/Th17 cell responses in mouse models [19–21].

Collectively, these findings suggest that HspX and ESAT-6 may

be promising candidates for vaccines against tuberculosis,

although Wang et al. have found that high doses of ESAT-6

decrease Th1/Th17 cell activity [22], indicating that the optimal

design of such vaccines requires further investigation to better

characterize the effects these antigens have on immune cells.

Bacillus Calmette-Guerin (BCG), the only tuberculosis vaccine

currently used, is a live, attenuated strain obtained from virulent

Mycobacterium bovis, closely related to Mtb. Its attenuation

results in the deletion of region of difference 1 (RD1), a 9.5 Kb

region encoding nine genes, including ESAT-6. RD1 is absent

from all BCG substrains but present in virulent M. bovis and M.

tuberculosis [7]. Given that BCG often fails to protect against

pulmonary tuberculosis in adults [23], recent research has been

focused on improving the effectiveness of BCG. One way to do this

is by introducing Mtb antigens absent from BCG, such as ESAT-

6. Another is to induce the overexpression of immunogenic

proteins not expressed throughout all phases of Mtb infection,

such as HspX [24]. Majlessi et al. demonstrated that the

reintroduction of RD1 into BCG improved its capacity to protect

mice against Mtb challenge [25]. Similarly, HspX augments the
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immune stimulatory effect of BCG. In fact, HspX based vaccines

enhance the ability of BCG to stimulate immune response in mice,

providing a better protection against Mtb [8,26–28].

Therefore, many reports indicate that ESAT-6 and HspX

improve the capacity of BCG to activate the host immune system

against Mtb in mouse models. However, little is known about the

effect of these antigens on human immune cells stimulated with

BCG. Indeed, further studies are needed to elucidate a possible

cooperation between ESAT-6, HspX, and BCG in human DCs

function and to investigate the dual role of Mtb antigens as vaccine

candidates and as virulence factors inhibiting the immune system

[29]. For these reasons, we analyzed the effects of BCG, ESAT-6

and HspX on the maturation and function of human primary

DCs. In particular, we investigated whether the addition of ESAT-

6 and HspX antigens, alone or in combination, could improve the

ability of BCG to induce DC maturation and/or cytokine release,

as well as the capacity of BCG- and antigen-treated DCs to

stimulate T lymphocytes and Natural Killer (NK) cells. Also we

sought to identify the DC receptors and cytokines responsible for

the effects of ESAT-6 and HspX. Our results indicate that ESAT-

6 and HspX represent possible candidates for improving the

effectiveness of BCG on human immune cells.

Figure 1. Effect of HspX and ESAT-6 on BCG-induced cytokine secretion by DCs. Monocytes were treated (5 days) with 50 ng/ml GM-CSF
and 20 ng/ml IL-4 to obtain immature DCs, that were subsequently cultured (24 hrs) in the absence (CTRL) or presence of 50 mg/ml BCG, alone or
combined with 10 mg/ml HspX and/or 10 mg/ml ESAT-6. DCs were also cultured with 50 mg/ml Mtb as a positive control. Release of the indicated
cytokines in culture supernatants was evaluated by ELISA. Results are expressed as the mean value+SD of seven independent experiments. Statistical
analysis: DCs treated with BCG alone vs BCG plus HspX and ESAT-6 added alone or in combination; ns P.0.05, *P,0.05, **P,0.01, ***P,0.001.
doi:10.1371/journal.pone.0075684.g001

HspX and ESAT6 Improve BCG-Induced Immune Response
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Materials and Methods

Reagents and Antibodies
RPMI 1640 and low-endotoxin fetal bovine serum (FBS) were

obtained from Lonza (Walkersville, MD). Recombinant human

granulocyte-macrophage colony-stimulating factor (GM-CSF) and

human IL-4 were purchased from Miltenyi Biotec (Bergisch

Gladbach, Germany). Gamma-irradiated whole cells of M.

tuberculosis (strain H37Rv) were obtained through BEI Resources,

NIAID, (NIH NR-14819); a-crystallin (Gene Rv2031c), a purified

native protein from M. tuberculosis (strain H37Rv, NR-14860)

was provided by NIH Biodefense and Emerging Infections

Research Resources Repository, NIAID, NIH; M. bovis BCG

kindly provided by Dr. G. Batoni (Dept. Of Experimental

Pathology, Medical Biotechnology, Infectivology and Epidemiol-

ogy, University of Pisa, Italy) was prepared as described in [30]

and killed at 55uC for 30 minutes; rdESAT-6 was provided by

Statens Serum Institut (Copenhagen, Denmark). Ultrapure

lipolysaccharide (LPS) from E. coli (0111: B4 strain) and

palmitoyl-3-cysteine-serine-lysine-4 (Pam3CSK4) were purchased

from InvivoGen (San Diego, CA). All of the above reagents

contained less than 0.125 endotoxin units/ml, as measured by the

Limulus amebocyte lysate assay (Microbiological Associates,

Walkersville, MD). Flow cytometric analysis was performed using

the following mouse anti-human antibodies: CD83 (HB15e), CD4

(SK3) and CD1a (HI149) (Becton Dickinson, San Jose, CA); CD56

(HCD56), CD69 (FN50), CD86 (T2.2), HLA-DR (L243) and IFN-

c (4S.B3) (Biolegend, San Diego, CA); CD4 (VIT4), CD45RO

(UCHLI), CD45RA (T6D11) (Miltenyi Biotec); IL-17AF

(20LJS09) (eBioscience, San Diego, CA). The blocking antibodies

were: anti- Toll-like Receptor (TLR) 2 (T2.5) (eBioscience, San

Diego, CA); anti-IL12p70 (20C2) [31–32] kindly provided by Dr.

G. Trinchieri (Center for Cancer Research, NCI, Frederick, MD).

Monoclonal mouse IgG1 (eBioscence) was used as the isotype

control antibody.

Preparation and Culture of DCs, Lymphocytes and NK
Cells

After written informed consent and upon approval of the ethical

committee, human blood was collected from healthy volunteers at

the blood bank of the University of Verona. Monocytes were

isolated from buffy coats by Ficoll-Hypaque and Percoll (GE

Healthcare Life Science) density gradients and purified using the

human monocyte isolation kit II (Miltenyi Biotec), as previously

described [1]. The final monocyte population was 99% pure, as

measured by FACS analysis. To generate immature DCs,

monocytes were incubated at 37uC in 5% CO2 for 5–6 days at

16106/ml in 6-well tissue culture plates (Greiner, Nürtingen,

Germany) in RPMI 1640, supplemented with heat-inactivated

10% low endotoxin FBS, 2 mM L-glutamine, 50 ng/ml GM-CSF,

and 20 ng/ml IL-4. The final DC population was 98% CD1a+, as

measured by FACS analysis.

NK cells and autologous total and naı̈ve CD4+ T cells were

isolated from the lymphocyte fraction of the Percoll gradient with

EasySepTM Negative Selection Human Cell Enrichment kits

(StemCell Technologies, Vancouver, Canada). The final popula-

tions were 98% pure, as measured by FACS analysis. To preserve

T cells during differentiation of monocytes into DCs, the cells were

spinned down, resuspended in freezing medium (low endotoxin

FBS +10% DMSO), and kept in a liquid nitrogen freezer.

To induce cell maturation and cytokine release, DCs were

treated for 24 hrs with: Mtb (50 mg/ml), Pam3CSK4 (10 mg/ml),

LPS (100 ng/ml), BCG (50 mg/ml) alone or combined with HspX

(10 mg/ml) and/or ESAT-6 (10 mg/ml). For experiments with

blocking antibodies, immature DCs were pre-incubated for

15 min at room temperature with anti-IL-12p70 or anti-TLR2

antibodies and with an isotype antibody IgG1. In order to study

their effects on T lymphocytes, mature DCs were co-cultured for

7 days with total CD4+ T cells or for 9 days with naı̈ve CD4+ T

cells. The DCs:T-cell ratio was 1:10. NK cells were incubated for

24 hrs with conditioned media (added to 1:1 ratio) from DCs

treated with Mtb (50 mg/ml) or BCG (50 mg/ml) alone or

combined with HspX (10 mg/ml) and/or ESAT-6 (10 mg/ml).

For the experiments with blocking antibodies, the supernatants

were pre-incubated for 15 minutes at room temperature with anti-

IL-12p70 and with an isotype antibody IgG1.

ELISA Assay
Cytokine production in culture supernatants was determined by

ELISA according to the manufacturer’s instructions: IL-6 (range

8–800 pg/ml) purchased from ImmunoTools GmbH, (Friesoythe,

Germany); IL-12 (range 4–500 pg/ml), IL-1b (range 4–500 pg/

ml), IL-23 (range 15–2000 pg/ml), TNF-a (range 4–500 pg/ml),

IL-10 (range 2–300 pg/ml), IFN-c (range 4–500 pg/ml), IL-17AF

(range 30–4000 pg/ml), purchased from eBioscience (San Diego,

CA).

Flow Cytometric Analysis
For surface staining, cells were washed twice with PBS salt

solution and incubated for 30 min with 10% human serum to

prevent non-specific binding. For direct immunofluorescence

staining, mouse anti-human CD1a, CD83, CD86, HLA-DR,

CD69, CD56, CD4, CD45RO, and CD45RA were used (see

reagents). Following stimulation with 20 ng/ml PMA, 1 mM

ionomycin and 10 mg/ml brefeldin A (Biolegend) for the final

6 hrs of culture [33], cytokine intracellular staining of T cells was

performed. After staining with a fluorescent-conjugated antibody

anti-CD4, the cells were incubated with fixation/permeabilization

buffer (420801 and 421002, Biolegend). Subsequently, they were

stained with anti-IL17AF and IFN-c fluorescent-conjugated

antibodies (see reagents). Annexin-V (Roche Applied Science,

Indianapolis, IN) was used to detect apoptotic cells. Samples were

acquired on a seven-color MACSQuant Analyzer (Miltenyi

Biotec) and analyzed with FlowJo 10 (TreeStar).

Statistical Analysis
Data are expressed as the mean+SD. Statistical analyses,

including Student’s t test and one-way ANOVA with Bonferroni

test, were performed using SigmaStat 3.0 for Windows (Systat

Software, San Jose, CA).

Results

ESAT-6 and HspX Improve the Ability of BCG to Stimulate
Human DC Maturation and Pro-inflammatory Cytokine
Release

The interaction of DCs with pathogenic microorganisms or

their derivatives elicits the production of various cytokines that

orchestrate the immune response [34]. We examined the capacity

of BCG, ESAT-6 and HspX to induce cytokine secretion by DCs.

For this purpose, monocytes were cultured for 5 days with GM-

CSF and IL-4 to obtain immature DCs. The latter cells were

challenged with BCG, ESAT-6 or HspX, as well as with Mtb as a

positive control [1]. The bacteria and antigen doses were selected

on the basis of preliminary dose-response experiments (results not

shown). After 24-hr treatment, culture supernatants were collected

and cytokine secretion was analyzed by ELISA. We found that

HspX and ESAT6 Improve BCG-Induced Immune Response
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Figure 2. Effect of HspX and ESAT-6 on BCG-elicited DC maturation. DCs were treated with Mtb as a positive control and with BCG alone or
combined with HspX and ESAT6. Cells were collected after 24 hrs culture and the expression of maturation markers was analyzed by flow cytometry.
(A) Histograms illustrate CD83, CD86 and HLA-DR surface expression in CD1a+ cells and the MFI. Filled histograms represent the control, open
histograms indicate treated cells. One of four different experiments is presented. (B) Bar graphs show the CD83, CD86 and HLA-DR MFI value of the
four experiments expressed as fold change (MFI FC) over control (CTRL). Statistical analysis: CTRL vs BCG alone; BCG alone vs BCG plus HspX and
ESAT6; ns P.0.05, *P,0.05.
doi:10.1371/journal.pone.0075684.g002

HspX and ESAT6 Improve BCG-Induced Immune Response
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Figure 3. ESAT-6 and HspX enable BCG-stimulated DCs to elicit IFN-c secretion and to enhance CD69 expression in CD4+ T
lymphocytes. DCs were stimulated for 24 hrs with Mtb or BCG alone or with ESAT-6 and/or HspX, and then co-cultured with autologous CD4+ T
lymphocytes for 7 days. (A) Evaluation of IFN-c and IL-17AF secretion in culture supernatants by ELISA. Results are expressed as the mean+SD of
seven independent experiments. Statistical analysis: DCs treated with BCG alone vs BCG plus HspX and/or ESAT-6; ns P.0.05, *P,0.05. (B) Evaluation
of IFN-c and IL-17AF-production detected by intracellular staining and analyzed by FACS in Annexin V2/CD4+/CD1a2 cells. Zebra plots illustrate one
representative experiment and the percentage of positive cells (left); bar graphs show the mean+SD of three independent experiments (right).
Statistical analysis: DCs treated with BCG alone vs BCG plus HspX and/or ESAT-6; ns P.0.05, *P,0.05, **P,0.01. (C) Flow cytometric analysis of CD69
expression in Annexin V2/CD4+/CD1a2 cells. Panels illustrating one representative experiment with the MFI are shown on the left. Filled histograms
represent the control, open histograms represent treated cells. Bar graphs representing the MFI mean value+SD of three experiments expressed as
fold change over control (MFI FC) are shown on the right. Statistical analysis: DCs treated with BCG vs BCG/HspX/ESAT-6; **P,0.01.
doi:10.1371/journal.pone.0075684.g003

HspX and ESAT6 Improve BCG-Induced Immune Response
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BCG induced a weak release of these cytokines (Fig. 1). DCs

challenge with a purified HspX and/or a recombinant ESAT-6

protein did not affect the cytokine production (results not shown).

As reintroduction of the ESAT-6 gene restores the ability of BCG

to activate mouse immune cells [25], we wanted to determine

whether the addition of the ESAT-6 protein, alone or simulta-

neously with HspX, which also augments the immune stimulatory

effects of BCG in mice [8,24], could increase human DC response

to BCG stimulation. We found that the addition of HspX alone to

BCG-treated DCs did not significantly influence cytokine release,

whereas ESAT-6 increased the secretion of IL-23 but not the other

cytokines (Fig. 1). Interestingly, the simultaneous addition of HspX

and ESAT-6 to BCG-stimulated DCs significantly increased the

secretion of IL-12, IL-1b, IL-23, IL-6, and TNFa but not IL-10, as

compared to DCs challenged with BCG alone or when combined

with either antigen separately (Fig. 1).

The interaction between immature DCs and pathogens induces

their maturation, enabling DCs to activate immune effectors cells

[34]. This leads to the formation of DCs with increased CD83,

CD86 and HLA-DR expression on the membrane surface [35–

36]. Consequently, we analyzed the maturation of the DCs

already used for ELISA (Fig. 1) and found that BCG did not

induce significant CD83 and CD86 up-regulation and that it

inhibited HLA-DR basal expression, as compared to untreated

DCs (Fig. 2A and B). However, the simultaneous addition of

ESAT-6 and HspX to BCG-treated DCs significantly increased

CD83, CD86, and HLA-DR expression, as compared to DCs

incubated with BCG alone (Fig. 2A and B). DCs did not mature

upon cell stimulation with ESAT-6 or HspX in the absence of

BCG nor did they mature following cell stimulation with BCG and

either ESAT-6 or HspX alone (results not shown).

ESAT-6 and HspX Enable BCG-treated DCs to Activate
CD4+ Lymphocytes

Mature DC are known to regulate the activity of T lymphocytes

which play a prominent role in defensive mechanisms against

tuberculosis [37]. As ESAT-6 and HspX improved the BCG-

dependent DC cytokine release and maturation (Fig. 1 and 2), we

hypothesized that these antigens could influence the capacity of

DCs to regulate T lymphocyte activity. Therefore, we investigated

whether treatment with BCG, HspX and/or ESAT-6 would

enable DCs to induce Th1 and/or Th17 response. For this

purpose, DCs induced to maturation with Mtb or BCG, alone or

combined with ESAT-6 and/or HspX, were co-cultured with

autologous CD4+ lymphocytes. After 7 days the culture superna-

tants were assayed by ELISA for the presence of IFN-c and IL-

17AF. This time point was chosen on the basis of previous time

course viability assays (results not shown). Figure 3A shows that

DCs incubated with Mtb induced remarkable IFN-c and IL-17AF

production by T cells, whereas DCs stimulated with BCG, alone

or in combination with either HspX or ESAT-6, showed a weak

ability to activate these responses. However, DCs incubated with

BCG and both HspX and ESAT-6 induced significantly higher

IFN-c secretion by CD4+ lymphocytes than that elicited by DCs

challenged with BCG alone or when combined with either antigen

separately (Fig. 3A). In contrast, IL-17AF secretion induced by

DCs incubated with BCG/HspX/ESAT-6 was comparable to

that observed when DCs were treated with BCG alone or in

combination with either antigen separately.

Among the classical Th1 and Th17 cells responsible for IFN-c
and IL-17 production, respectively, a Th17/Th1 subset able to

produce both IL-17 and IFN-c has been discovered [38]. In order

to identify the T cell subsets responsible for cytokine production

(Fig. 3A), we performed IFN-c and IL-17AF intracellular staining.

Cell viability was evaluated by Annexin V staining. FACS analysis

demonstrated that DC stimulated with BCG, alone or in

combination with either HspX or ESAT-6 separately, showed a

weak ability to induce Th1, Th17, and Th17/Th1 differentiation,

whereas DC incubated with BCG/HspX/ESAT-6 induced a

remarkable development of all these Th cell subsets. Notably, this

effect was comparable to that obtained upon DCs challenge with

Mtb (Fig. 3B). These results demonstrate that IFN-c and IL-17AF,

as detected by ELISA (Fig. 3A), are produced by Th1 and Th17,

respectively, but also by Th17/Th1 cells. Although DCs incubated

with BCG/HspX/ESAT-6 induced a significant increase in IL-

17AF-producing cells as compared to BCG-treated DCs (Fig. 3B),

the amount of IL-17AF detected in the culture media of these cells

was not significantly different (Fig. 3A). This discrepancy could be

due to the fact that a very low percentage of IL-17AF-producing

cells is insufficient to generate significant IL-17AF protein

secretion in culture media.

Control experiments with CD4+ lymphocytes stimulated with

various combinations of BCG, ESAT-6 and HspX in the absence

of DCs did not elicit IFN-c or IL-17AF secretion (results not

shown), suggesting that BCG, ESAT-6 and HspX do not directly

modulate T cell activation. Moreover, DCs alone treated with

Figure 4. The ability of BCG, ESAT-6 and HspX-treated DCs to elicit IFN-c secretion by CD4+ cell is mediated by IL-12. DCs pre-
incubated (open bars) or not (filled bars) with 20 mg/ml IL-12p70 blocking antibody were stimulated for 24 hrs with Mtb or with BCG alone or with
ESAT-6 and HspX and then co-cultured for 7 days with autologous CD4+ T lymphocytes. IFN-c and IL-17AF secretion was analyzed by ELISA. Results
are expressed as the mean+SD of five experiments. Statistical analysis: antibody-treated vs antibody-untreated cells; ns P.0.05, *P,0.05.
doi:10.1371/journal.pone.0075684.g004

HspX and ESAT6 Improve BCG-Induced Immune Response
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various combinations of BCG, HspX, and ESAT-6 did not secrete

IFN-c or IL-17AF (results not shown), thus ruling out their

contribution to cytokine production after co-culture of DCs with T

lymphocytes.

Subsequently, we analyzed the effect of BCG, HspX and

ESAT-6 on the ability of DCs to induce the expression of CD69, a

well-known T lymphocyte activation marker, in CD4+ cells [39].

We found that BCG-treated DCs did not elicit CD69 expression,

whereas the simultaneous addition of BCG, HspX and ESAT-6

up-regulated this activation marker in CD4+ cells co-cultured with

DCs. Notably, this effect was comparable to that obtained upon

DCs challenge with Mtb (Fig. 3C).

TLR2-dependent IL-12 Secretion is Involved in CD4+

Lymphocyte Activation by DCs Stimulated with BCG,
ESAT-6 and HspX

It is well accepted that IL-12 plays a key role in the induction of

IFN-c secretion by T lymphocytes [40]. We hypothesized that

among the cytokines secreted upon DCs treatment with BCG/

ESAT-6/HspX, IL-12 could be the one mainly involved in

stimulating IFN-c secretion by T lymphocytes (Fig. 3A). Conse-

quently, we wanted to examine whether IL-12 blockage could

affect IFN-c secretion. To test this hypothesis, the cells were

incubated with an antibody able to bind IL-12 p70 and,

specifically, to block IL-12 without affecting IL-23 [31–32].

Figure 5. TLR2 is involved in IL-12-dependent IFN-c secretion
by CD4+ cells co-cultured with ESAT-6, HspX and BCG-treated
DCs. DCs cultured in the absence (filled bars) or presence (open bars)
of 5 mg/ml TLR2-blocking antibody were treated for 24 hrs with Mtb,
BCG alone or combined with HspX and ESAT6, 10 mg/ml Pam3CSK4
(Pam3) or 100 ng/ml LPS. (A) Supernatants were collected and IL-12
release was analyzed by ELISA. Results are the mean value+SD of four
experiments. Statistical analysis: antibody-treated vs antibody-untreat-
ed cells, ns P.0.05, *P,0.05, ***P,0.001. (B) DCs were co-cultured with
autologous CD4+ T lymphocytes. After 7 days, culture supernatants
were collected and analyzed by ELISA for IFN-c release. Results are the
mean+SD of three experiments. Statistical analysis: antibody-treated vs
antibody-untreated cells, ns P.0.05, *P,0.05.
doi:10.1371/journal.pone.0075684.g005

Figure 6. CD45RO and CD45RA modulation in CD4+ naı̈ve T
cells. DCs pre-treated for 24 hrs with Mtb or with BCG alone or
combined with HspX and ESAT6 were co-cultured with purified CD4+

naı̈ve T cells. After 9 days, the surface expression of CD45RO and
CD45RA was analyzed by flow cytometry in Annexin V2/CD4+/CD1a2

cells. (A) Zebra plots illustrate one representative experiment with the
percentage of CD45RO positive cells. (B) Bar graph shows the CD45RO
and CD45RA MFI mean+SD of three experiments expressed as fold
change over control (MFI FC). Statistical analysis: BCG vs BCG plus HspX
and ESAT-6, *P,0.05.
doi:10.1371/journal.pone.0075684.g006

HspX and ESAT6 Improve BCG-Induced Immune Response
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Figure 4 shows that IL-12 blockage decreased the ability of DCs

challenged with BCG, alone or combined with HspX and ESAT-

6, to induce IFN-c secretion by CD4+ lymphocytes. Moreover, the

antibody increased IL-17AF production by CD4+ lymphocytes

cultured with DCs stimulated with BCG/HspX/ESAT-6 (Fig. 4).

Similar results were obtained from control experiments with DCs

incubated with the antibody and stimulated with Mtb (Fig. 4). An

isotype matched antibody did not affect the capacity of DCs to

modulate cytokine production by T cells (results not shown). These

results indicate that ESAT-6 and HspX increase IFN-c release by

T lymphocytes mainly by enhancing IL-12 secretion by co-

cultured BCG-conditioned DCs. Moreover, the ESAT-6- and

HspX-dependent increase in IL-12 release inhibited IL-17AF

secretion, shifting the lymphocytes toward a Th1 response

characterized by a prevalent IFN-c release.

It has been reported that ESAT-6 [41–42] and some Mtb heat

shock proteins [43] bind TLR2, which plays a critically important

role in the interaction between DCs and mycobacteria [44].

Therefore, we explored whether a TLR2-blocking antibody could

affect BCG, ESAT-6 and HspX cooperation. We found that the

antibody reduced IL-12 release by BCG-treated DCs stimulated

with ESAT-6 and HspX (Fig. 5A). The antibody also suppressed

IL-12 release by both Mtb-treated DCs and control DCs

stimulated with Pam3CSK4, a specific TLR2 agonist. In contrast,

the antibody did not affect IL-12 production by DCs stimulated

with LPS, a TLR4 agonist (Fig. 5A), indicating that it specifically

blocks TLR2-dependent IL-12 release. An isotype matched

antibody did not affect IL-12 release by DCs stimulated with

BCG/ESAT-6/HspX, Mtb, Pam3CSK4 or LPS (results not

shown). Interestingly, the TLR2-blocking antibody also decreased

the ability of DCs incubated with Mtb, as well as with BCG/

HspX/ESAT-6, to induce IFN-c secretion by co-cultured CD4+

lymphocytes (Fig. 5B). Additionally, the capacity to induce IFN-c
secretion by CD4+ lymphocytes was inhibited by the antibody only

in Pam3CSK4-stimulated DC and not in LPS-treated DCs

(Fig. 5B).

DCs Challenged with BCG, HspX and ESAT-6 Induce a
Memory Phenotype in Naı̈ve T Lymphocytes

Human CD4+ lymphocyte preparations contain both naı̈ve and

memory T cells. Hence, we examined whether DCs incubated

with BCG/HspX/ESAT-6 were able to induce a memory

phenotype in naı̈ve T cells. For this purpose, we isolated naı̈ve

CD4+ T cells (CD45RA+/CD45RO2) and co-cultured them with

Figure 7. Effect of BCG plus ESAT-6 and HspX on DC-mediated IFN-c release and CD69 expression by NK cells. Culture supernatants of
DCs treated as described in Figure 1 were incubated without (filled bars) or with (open bars) 20 mg/ml IL-12-blocking antibody and then added to
purified NK cells. After 24 hrs, IFN-c release was measured by ELISA (A and C) and CD69 expression was analyzed by flow cytometry in CD56+ cells (B).
(A) Results are the mean+SD of three experiments. Statistical analysis: NK cells stimulated with supernatants from BCG-treated DCs vs supernatants of
BCG plus HspX and/or ESAT-6-treated DCs; ns P.0,05, *P,0.05. (B) Panels illustrate one representative experiment and the bar graph shows the MFI
mean value+SD of three experiments expressed as fold change over control (MFI FC). Filled histograms represent the control; open histograms
represent the treated cells. Statistical analysis: NK cells stimulated with supernatants from BCG-treated DCs vs supernatants of BCG/HspX/ESAT-6-
treated DCs, *P,0.05; (C) Results are the mean+SD of three experiments. Statistical analysis: IL-12-blocking antibody-treated supernatants vs
untreated supernatants; ns P.0,05, *P,0.05.
doi:10.1371/journal.pone.0075684.g007
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DCs stimulated with BCG, alone or with HspX and ESAT-6, as

well as with Mtb as a positive control. After 9 days, we analyzed by

flow cytometry the expression of CD45RO and CD45RA, well-

known memory and naı̈ve T cell markers, respectively [45]. As

shown in Figure 6A and B, BCG treatment did not lead to a

significant expansion of CD45RO+ cells (22.9%), as compared to

untreated cells (21.5%). Interestingly, we observed that the

simultaneous addition of HspX and ESAT-6 enabled BCG-

treated DCs to induce the expansion of memory CD4+ T cell

population (51.4%) (Fig. 6A and B).

ESAT-6 and HspX Improve the Ability of BCG-treated DCs
to Activate NK Cells through Induction of IL-12 Release

Soluble mediators released by mature DCs activate NK cells

involved in the host defense against micobacteria [46]. We

explored whether cytokines released in culture supernatants by

DCs in the experimental conditions depicted in Figure 1 induced

NK cell activation. For this purpose, NK cells were isolated and

incubated with conditioned media collected from the cultures of

DCs treated with BCG, alone or combined with ESAT-6 and/or

HspX, as well as with Mtb as a positive control. IFN-c secretion

was analyzed by ELISA and expression of the CD69 activation

marker was evaluated by FACS analysis. We found that the

incubation with conditioned media from Mtb-treated DCs

induced IFN-c release by NK cells (Fig. 7A), whereas culture

supernatants from DCs stimulated with BCG, added alone or in

combination with either HspX or ESAT-6 separately, showed a

slight ability to activate such a response (Fig. 7A). In contrast,

media collected from cultures of DCs treated with BCG/HspX/

ESAT-6 elicited a significantly higher IFN-c release than that

observed in the media from DCs incubated with BCG added alone

or with the either antigen (Fig. 7A). The FACS analysis revealed

that supernatants from DCs treated with Mtb or BCG/HspX/

ESAT-6, but not with BCG alone, induced CD69 expression by

NK cells (Fig. 7B). Direct NK cell stimulation with Mtb, BCG,

ESAT-6 and HspX did not induce IFN-c release or CD69

expression (results not shown), suggesting that NK cell activation is

mediated by soluble agonists released by mycobacteria- and

antigen-activated DCs.

As IL-12 plays an essential role in the NK cell activation [47],

we analyzed the effect of the IL-12-blocking antibody, already

used for the experiments shown in Fig. 4, on NK cell responses

induced by culture media of DCs stimulated with BCG and the

two antigens. Antibody addition to the media from DCs treated

with Mtb or BCG/HspX/ESAT-6 decreased the ability of these

supernatants to induce IFN-c release by NK cells (Fig. 7C). An

isotype matched antibody did not affect the capacity of culture

media from DCs treated with Mtb or with BCG/HspX/ESAT-6

to stimulate IFN-c release by NK cells (results not shown). These

results indicate that ESAT-6 and HspX enhance NK cell

activation by increasing IL-12 release from BCG-treated DCs.

Discussion

Here we demonstrate that BCG shows a scarce ability to induce

human DC maturation and cytokine release, which results in a

subsequent weak capacity of DCs to induce CD4+ lymphocytes

and NK cell activation. Our findings confirm previous results

showing a weak immune cell response to BCG [29] which might,

in part, explain why BCG vaccination does not produce strong

and persistent protection against adult pulmonary tuberculosis.

We have also shown that ESAT-6 and HspX, per se or when

separately added to BCG-treated DC, do not significantly affect

DC activity. However, ESAT-6 and HspX cooperate in increasing

BCG-dependent DCs maturation and pro-inflammatory cytokine

secretion, suggesting that the addition of HspX and ESAT-6 could

attribute to BCG important immune stimulatory characteristics.

Conversely, anti-inflammatory cytokine IL-10 secretion did not

significantly increase, indicating that cooperation between ESAT-

6 and HspX results in a preferential release of immune response-

enhancing mediators. This indication is supported by the result

that upon stimulation with both these antigens and BCG, DCs

become capable to activate CD4+ lymphocytes and NK cells.

Interestingly, this treatment rendered DCs able to induce a

memory phenotype in naı̈ve T lymphocytes, further corroborating

the suggestion that HspX and ESAT-6 enhance the ability of BCG

to activate immune responses.

Our findings are very important considering that the ability to

elicit immunological memory is an essential requisite of vaccine

components. Our data are consistent with previous reports that

reintroduction of the ESAT-6 gene into BCG improves its

capacity to protect mice against Mtb challenge [25].

It has been reported that the addition of either HspX [8] or

ESAT-6 [15] alone activates IFN-c production by human PBMC.

These effects were obtained with cells from patients with

tuberculosis, whereas healthy or BCG-vaccinated subjects were

less or not responsive to HspX [8] or ESAT-6 [15]. It is

conceivable, therefore, that in the absence of Mtb infection,

stimulation with either HspX or ESAT-6 alone does not efficiently

activate immune cells and/or boost BCG-induced cell responses.

Our results suggest that a more effective stimulation might be

obtained by treating human immune cells from healthy subjects

with BCG and both the antigens.

It has been demonstrated that a recombinant DNA vaccine

encoding ESAT-6 elicits a strong Th1 response in mouse models

[17], and that HspX-based vaccines enhance the ability of BCG to

stimulate immune response [8,26–28]. In our study, however,

neither ESAT-6 nor HspX alone activated immune cells on their

own or when either was combined with BCG. This discrepancy

indicates that, differently from murine cells, stimulation with both

ESAT-6 and HspX is needed to induce human immune cell

response.

Conversely, our findings are in line with previous results

showing that vaccination with fusion protein composed of two Mtb

antigens efficiently increases DCs and T cell response [19–21].

Importantly, we observed that DCs are necessary for the activation

of T lymphocytes and NK cells by Mtb, BCG and antigens. This

finding indicates that the effect of these agonists is mediated by

DCs. A number of studies have suggested that DCs reinforce

cellular immune response against Mtb. In fact, DCs are very well

represented at the sites of Mtb infection, where they capture

antigens, mature and migrate towards lymphoid organs in which

they prime T cells through antigen presentation, cytokine

secretion, and co-stimulatory molecule expression [48]. Our

results corroborate these findings, highlighting the essential role

of DCs in the mechanisms driving protective immunity against

Mtb. We also found that conditioned media from DCs cultured

with BCG and antigens activate NK cells, suggesting that soluble

factors released by DCs are sufficient to activate NK cells. These

results are crucial, given that NK cells are involved in the control

of Mtb infection and activated by Mtb-treated DCs [46,49]. We

showed that among the many soluble factors secreted in culture

media, IL-12 produced upon stimulation of BCG-treated DCs

with HspX and ESAT-6 plays a central role in both CD4+ and

NK cell stimulation. These findings agree with previous studies

showing that IL-12 is the most important cytokine for T cell and

NK cell activation [47].
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Here we also report that inhibition of IL-12 release leads to

increased IL-17AF secretion by T cells cultured with DCs

stimulated with BCG, HspX and ESAT-6. Our results confirm

previous findings that T cells shift from Th1 to Th17 production,

depending on the type of cytokines present in the cell environment

[38,50]. In particular, IL-12 elicits IFN-c secretion [51], whereas

other cytokines, such as IL-1b, IL-23, and IL-6, promote and/or

maintain both IL-17A and IL-17F release [52–54]. Our results

show that DC treatment with BCG, HspX and ESAT-6 induces a

remarkable increase in IL-1b, IL-23 and IL-6 secretion. In spite of

this, the enhanced IL-12 release, obtained in the same exper-

imental conditions, pushes T cells toward a Th1 response,

characterized by IFN-c secretion, and, at the same time, it

inhibits Th17 response characterized by IL-17 production [55].

This finding is remarkable because Th1 cells are known to play an

important role in host defense against Mtb [56]. Although the role

of Th17 in host protection against tuberculosis has not been

completely clarified, it has been shown that the IL-23/Th17

pathway is not crucial for the control of Mtb infection [57];

therefore, the shift from Th17 toward Th1 response, induced upon

HspX and ESAT-6 treatment, might increase the effectiveness of

immune response against Mtb.

Moreover, we have identified the receptors responsible for the

effects of ESAT-6 and HspX on human DCs. Little is known

about the receptors engaged by Mtb antigens. It has been

demonstrated that ESAT-6 and some Mtb heat shock proteins

bind TLR2 [41–43], which is involved in the interaction between

DCs and mycobacteria [44]. Our study shows that TLR2 plays an

important role in the mechanisms by which Mtb, ESAT-6 and

HspX induce IL-12 release and subsequent Th1 response. The

formality of TLR2 recruitment during the coordinated action of

BCG and mycobacterial antigens remains to be characterized and

will be the subject of future investigations. However, our results

highlight that TLR2 participates in the biological events leading to

the activation of immune defense against tuberculosis.

In conclusion, our findings demonstrate that HspX and ESAT-6

cooperate to enhance the capacity of human BCG-primed DCs to

produce IL-12 which, in turn, induces an effective Th1 and NK

cell response. Moreover, the cooperation of HspX, ESAT-6 and

BCG in IL-12 production occurs through TLR2 receptor

engagement. To our knowledge, this is the first evidence that

HspX and ESAT-6 improve the ability of BCG to stimulate

human DC-dependent activation of T lymphocytes and NK cells,

suggesting that these antigens could be used to increase the

immune system’s responsiveness to vaccination with BCG.
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