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Visual perception involves continuously choosing the most prominent inputs while

suppressing others. Neuroscientists induce visual competitions in various ways to study

why and how the brain makes choices of what to perceive. Recently deep neural

networks (DNNs) have been used as models of the ventral stream of the visual system,

due to similarities in both accuracy and hierarchy of feature representation. In this study

we created non-dynamic visual competitions for humans by briefly presenting mixtures

of two images. We then tested feed-forward DNNs with similar mixtures and examined

their behavior. We found that both humans and DNNs tend to perceive only one image

when presented with a mixture of two. We revealed image parameters which predict this

perceptual dominance and compared their predictability for the two visual systems. Our

findings can be used to both improve DNNs asmodels, as well as potentially improve their

performance by imitating biological behaviors.
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1. INTRODUCTION

These days, the leading algorithms for many computer vision tasks, and also for modeling the visual
system specifically, are Deep Neural Networks (DNNs). DNNs are a class of computer learning
algorithms that have become widely used in recent years (Lecun et al., 2015). Interestingly, some
current DNNs demonstrate a surprising degree of generalization to a variety of other visual tasks
(Hue et al., 2016). DNNs that are trained for image recognition (Russakovsky et al., 2015) are found
to be useful also in solving totally different visual tasks (Yosinski et al., 2014). These general-purpose
algorithms are suggested to be computationally similar to biological visual systems, even more so
than less biologically plausible simulations (Kriegeskorte, 2015; Yamins and Dicarlo, 2016).

Moreover, image representation may be similar in trained DNNs and in biological visual
systems. A recent study found that humans and DNNs largely agree on the relative difficulties
of variations of images (Kheradpisheh et al., 2016). Researchers also found that when the same
image is processed by DNNs and by humans or monkeys, the DNN computation stages are strong
predictors of human fMRI, MEG, and monkey electrophysiology data collected from visual areas
(Cadieu et al., 2014; Khaligh et al., 2014; Yamins et al., 2014; Güçlü and van Gerven, 2015; Cichy
et al., 2017; Seeliger et al., 2017). A different study showed that the final DNN computation stage
is even a strong predictor of human-perceived shape discrimination (Kubilius et al., 2016). These

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2018.00057
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2018.00057&domain=pdf&date_stamp=2018-07-24
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:liron.gruber@weizmann.ac.il
https://doi.org/10.3389/fncom.2018.00057
https://www.frontiersin.org/articles/10.3389/fncom.2018.00057/full
http://loop.frontiersin.org/people/543661/overview
http://loop.frontiersin.org/people/567212/overview
http://loop.frontiersin.org/people/583815/overview


Gruber et al. Perceptual Dominance in Mixed Images

studies also showed that the more accurate a DNN model is, the
stronger its predictive power, challenging vision researchers to
create more accurate models based on biological studies of vision.

Alongside with these similarities, the gap between DNNs
visual processing and the biological one is still significant.
Marking differences like robustness to manipulations (Geirhos
et al., 2017), causes of errors (Nguyen et al., 2015), etc. is
of great importance to this field (Moosavi-Dezfooli et al.,
2017). Exploring these differences by studying known visual
phenomena in DNNs, enables both improving current models
as well as studying the possible computational nature of
the visual system (Rajalingham et al., 2018). Informative
phenomena usually involve some kind of challenge to the visual
system—multi-stability, illusions, partial informative images, etc.
An example of a human visual phenomenon that was studied
using computer vision algorithms, is the existence of Minimal
Recognizable Configurations (MIRCS) for the human visual
system (Ullman et al., 2016). The differences in recognition rates
and behavior between humans and the DNNs tested, shed light
on the possible nature of this phenomenon. DNNs were also used
to explain the emergence of lightness illusions (Corney and Lotto,
2007), which suggest general conclusions about perception’s
computational nature. Another illusion that emerged from DNN
training is the Muller-Lyer geometrical illusion of size (Zeman
et al., 2013).

Other perceptual phenomena that can be studied using DNNs
are “visual competition” phenomena, where a few competing
percepts are potentially perceived. Most visual competition
phenomena are dynamic and involve fluctuation in perception
throughout time. They are usually referred to as “multi-
stable perception.” They are different from our task (detailed
below) and more complex to model, as the main challenge
is describing the fluctuations causes and dynamics. When
perceptual grouping, for example, is not unique (as in the
interpretation of Necker cube), a specifically designed DNN
model can be used to describe the computation behind the
changes in perception throughout time (Kudo et al., 1999).
A well-studied dynamic visual competition phenomenon is
binocular rivalry. It occurs when dissimilar monocular stimuli
are presented to the two eyes. Rather than perceiving a stable,
single mixture of the two stimuli, one experiences alternations
in perceptual awareness over time (Blake and Tong, 2008).
The neuronal source for these visual competition dynamics is
still debatable, researches have revealed evidence in both early
visual processing and in higher stages along the ventral stream
(Logothetis et al., 1996; Logothetis, 1998; Polonskyet al., 2000;
Blake and Logothetis, 2002; Tong et al., 2006; Wilson, 2003)

A biological plausible model for the duration of perceptual
alterations was offered in (Laing and Chow, 2002), and studies
have shown that the cause for the dynamic switching could be
both adaptation and noise-driven (Shpiro et al., 2009). Noise-
driven time alterations were further modeled using attractor
models (Moreno-Bote et al., 2007). Another dynamic multi-
stable phenomenon is monocular rivalry, which differ from the
binocular one in that the same image is now presented to both
eyes. This time it is a superimposed image, and the clarity of
the images it is made from fluctuates alternately in time (O’Shea

et al., 2017). Another study showed that bi-stable perception is a
form of Bayesian sampling, it further demonstrated that using a
neural network, one can capture several aspects of experimental
data (Moreno-Bote et al., 2011). Whether the processes or
computational basis under binocular and monocular rivalry are
similar and how they differ is still studied to these days (O’Shea
et al., 2009). In this study, as our task did not involve time, we
are merely interested in studying the causes of the perceptual
dominance occurring already in brief exposures to superimposed
images.

Following this, different image parameters had been shown
to affect these competing percepts of multi-stable phenomenon.
Motion of objects, contrast, luminance, etc. influence these
perceptual alternations (Logothetis et al., 1996). Low-level effects
were also shown in masking, where a target image is followed
by or mixed with a mask (Alam et al., 2014). Practical models
predicting detectability were suggested based on the biological
visual system (Bradley et al., 2014) and even further tuned to
natural image constrains (Schütt and Wichmann, 2017).

In this study, we propose a different visual competition task
by briefly presenting mixed images to both humans and pre-
trained object recognition DNNs. Similar mixed images were
used to study the effects of attention manipulations in a pre-
trained DNN (Lindsay, 2015; Lindsay and Miller, 2017). The
model was re-trained as a binary classifier and manipulated
at different layers to test performance changes. We created
a non-dynamic visual competition that enables a comparison
with common recognition DNNs, without manipulating their
architecture or their training. By mixing two target images
we introduced a similar challenge for both the DNN (trained
on regular images) and humans (briefly presented with the
mixtures). Brief presentations are ideal for investigating early
stages of perceptual competition (Carter and Cavanagh, 2007),
and eliminates effects of time that are generally not comparable
with most DNNs. Inspired by visual competitions researches,
we generated a static biological competition and compared
biological and artificial visual sensitivities (Alam et al., 2014). Our
work does not model the dynamics of bi-stable perception, it is
only a window into the perceptual preferences and the image
parameters predicting visual sensitivities, as well as the evolution
of the inner preferences throughout the DNNs layers.

2. METHODS

2.1. Data Formation
To induce perceptual competition between two different visual
stimuli that will enable us to test both human participants and
DNNs algorithms we used ImageNet dataset (Russakovsky et al.,
2015). We chose 180 images from different categories from
ImageNet validation set and created mixtures of images in two
morphing methods (Figure 1). For the DNN we generated all
pairwise mixtures, and humans were tested on one set of unique
mixtures. In the first method, named “50/50,” we averaged the
RGB values of all pixels in the two images (Figure 1, top row). In
the second method, named “phs/mag,” we Fourier-Transformed
each image to get its magnitude and phase values in the frequency
domain, then used the magnitude of one image with the phase
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FIGURE 1 | Two data sets of mixed images were created using images from the validation set of ImageNet. (Top) Example of the 50/50 morphing method (see text).

(Bottom) Example of the phs/mag morphing method (see text). (Middle) Example of images from the original set.

from the other image, and transformed back using the inverse
Fourier-Transform to get the final mix (Figure 1, bottom row).
The second morphing method was inspired by a known visual
phenomenon, according to which humans are sensitive to the
phase rather than the magnitude of frequencies in natural images
(Thomson et al., 2000).

2.2. DNN Output Classification
To decide which original image “wins” the visual competition,
or which image is “chosen” by the network to be “perceived,”
we used the two sets of mixed images as inputs to pre-trained
feed forward convolutional neural networks (Figures 2A,B)—
VGG19 (Krizhevsky et al., 2012; Simonyan and Zisserman,
2014) and ResNet (He et al., 2016). We chose VGG19 as a
representative network based on its high performance in the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC).
We preferred VGG19 over other similar networks due to its
relatively high accuracy rate when tested on our dataset [Top5
accuracy: AlexNet-0.77, VGG S-0.83, VGG16-0.90, VGG19-0.92
(Krizhevsky et al., 2012; Simonyan and Zisserman, 2014)]. We
also validated our results using ResNet (which achieved even
higher accuracies than the above networks in ILSVRC, and a
Top5 accuracy 0.92 on our dataset), but here we present the
results of VGG19 as it is more similar in depth and architecture to
the networks used in previous studies presenting the similarities
to the primate ventral stream (Cadieu et al., 2014; Yamins et al.,
2014; Kubilius et al., 2016; Yamins and Dicarlo, 2016). We then
compared the output probability vectors of the SoftMax layer
when the input was each one of the original images and when
the input was their mix. We classified the output vectors of the
mixed images to four types of scenarios (Figure 2C): the network
did not choose any of the images; it chose the first image; the
second image; or both of them. We defined “choosing an image”

based on the top N categories in the output probability vectors:
if one of the top N categories of the mixed image is also one
of the top N categories of an original image—we say that the
network chose to see this original image. In other words, we
look for the top N categories of the mixed image in each of its
two original images top N categories, if found—we consider that
original image “chosen.” In this study we mainly used N = 5, as
it is leading metric when testing classification DNNs with 1,000
categories, due to the use of over-specific categories in the data
set. ImageNet is a single label dataset containing images that can
fall into several categories and the order of those categories is
ambiguous. Moreover, we show the network choices for N = 2
as well, which is the smallest relevant N for this task. We have
verified that using a different N within this range did not change
the preceding analysis, as the dominance of choosing one is
highly similar for N = 2 and N = 5, and it does not change
the winning image within each pair (red curve in Figure 2D).
We randomly sampled 90 mixed images and calculated the
probability of each scenario (none, choose one image, both). For
each N, we averaged these probabilities over 100 iterations. To
account for the stochastic nature of human choices (Moreno-
Bote et al., 2007, 2011), we further calculated the network choices
when injected with Gaussian noise in the last layer before the
SoftMax. Hence, the output layer is given by:

P(classi) =
exp(xi + noise)

∑

i exp(xi + noise)
, noise = N (0, σ 2) (1)

We again averaged over 100 iterations, with changing the
standard deviation of the noise (σ ) from 0 to 5. We present the
level of noise that best resembled human choices.We have further
verified that using the noise-injected results did not change the
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FIGURE 2 | (A) One hundred and eighty original images and all pairwise mixtures between them were used as inputs to a pre-trained convolutional neural network

(VGG19). (B) The network architecture. (C) Four possible softmax outputs when inserting a mixed image as an input (see text). (D) Detection threshold for output

classification. The network choice was defined based on the overlapping top N categories of the original images and the mixed image (see text).

preceding analysis, similar to using top2 accuracy, as explained
above.

2.3. Human Experiment
The 180 images were uniquely paired to avoid repetitions
that might cause memory biases. The 90 pairs were randomly
divided to three groups of 30 mixtures each, yielding six
conditions (three of the “50/50” and three of the “phs/mag,”
github.com/lirongruber/Visual-Competition/tree/master/human
%20experiment/img). We used Amazon Mechanical Turk to test
600 participants in an on-line experiment, 100 per condition
(participants were 36.6± 10.6 years old, 303 of themwere males).
Ethics approval was obtained by the IRB (institutional review
board) of the Weizmann institute of science. Each participant
signed an informed consent form before participation and was
paid 0.5$.

Each trial began with 1 second of fixation (+ at the screen
center) followed by the brief image presentation. We presented
the mixed images to participants for 100 ms (different browsers
cause jitters of 7.5 ± 0.7 ms), as this brief exposure allows full
recognition of regular images, while challenges the recognition
of objects in the mixed images (Sheinberg and Logothetis, 1997;
Cadieu et al., 2014). This time frame is commonly used in
similar studies as it eliminates the effect of eye movements
which enable humans to resample the image and impair the
comparison (see Fig2S in Cadieu et al., 2014; Rajalingham et al.,
2018).

Each trial ended with a free written report, usually between
one to three words. Participants were instructed to report the
object or objects they perceived, or type “none” if no object

was recognized (empty reports were not accepted). Even though
the networks rank 1,000 pre-determined categories, the open
report is a better comparison than providing humans with a
long list of options. An open report allows more authentic
recognition answers, by not providing hints, not encouraging
guessing and allowing the “none” option. Alternative solution
as proposed in Kubilius et al. (2016) shortens the list but still
has the above weaknesses of a closed report. Each written
report was manually encoded to one of the four types of
scenarios (Figure 2C). Decisions were made separately by
two independent examiners, and the few disagreements were
discarded (1.1%).

3. RESULTS

3.1. Comparing DNN and Humans Choices
We calculated the probability of both humans and the DNN to
perceive either one image, both, or none of them. Figure 3A
shows the results of the 50/50 dataset and Figure 3B shows the
results of the phs/mag dataset, for VGG-19.

For the 50/50 case, humans reported recognizing only one
image in 70.5± 1.6% of the trials. Similarly, the DNN chose only
one image and suppressed the other in 76.5 ± 0.5% (ResNet—
74.2 ± 0.4%) for N = 5 and 74.5 ± 0.4% for N = 2. For
N = 5, the DNN successfully recognized the two images in
17.4± 0.4% (ResNet—18.5± 0.4%) of the trials and missed only
6.0 ± 0.3% (ResNet—7.1 ± 0.4%). On the other hand, humans
recognized both images only in 6.0 ± 0.6% and reported not
perceiving anything in 23.2 ± 1.7% of the trials. When using
N = 2, the DNN successfully recognized the two images only
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FIGURE 3 | Histograms of choices classification. (A) DNN’s top5, noise-injected-top5, top2 and humans’ reports probability when observing the 50/50 dataset.

(B) DNN’s top5, noise-injected-top5, top2 and humans’ reports probability when observing the phs/mag dataset.

in 4.1 ± 0.2% and missed 21.4 ± 0.4%. While this seems to
better replicate the human results, one has to keep in mind the
problematic use of the top2 accuracy rate, as described in the
section 2. In an attempt to account for the stochastic nature
of human choices compared with the deterministic one of the
network, we injected Gaussian noise before the SoftMax layer
of the network (see section 2).We present the DNN results with
noise STD = 2.25, which best resembled human results: 20.6 ±

0.5% none, 68.8 ± 0.05% choose one image, 10.0 ± 0.3% both
(Figure 3A).

On the other hand, in the phs/mag mixture, for N = 5, the
DNN did not recognize any of the images in 59.6 ± 0.4%
(ResNet -53.6 ± 0.4%) of the trials, while humans missed only
45.0 ± 1.0% of trials. In the recognized trials, humans always
perceive the phase image (54.7 ± 1.0% of all trials) while the
DNN is less sensitive to it (36.3 ± 0.4% of all trials, ResNet—
42.1 ± 0.3%). While humans could never see the magnitude
image, the DNN had a few successful trials of choosing it or both
images (4.0 ± 0.1% of all trials, chance level is 2.0%, ResNet—
3.5 ± 0.1%). Using top2 results or the noise-injected ones
only further damaged the network success rates, increasing the
number of unrecognized images(Figure 3B).

3.2. Single Parameters Predictability
Out of the mixtures that were perceived as one image (Figure 3A,
middle bars), only in 79.0% of the trials the DNN and
humans chose the same image (humans mode). To further
characterize the differences between them, we extracted image
parameters that may predict the DNN’s and humans’ tendency
to prefer specific images over others. Based on vision research
dealing with perceptual dominance (Logothetis, 1998; Blake and
Logothetis, 2002; Tong et al., 2006; Blake and Tong, 2008),
we extracted 12 initial features (average red, blue, and green
component, colorfulness, luminance, saturation, global contrast,
local contrast, horizontal and vertical gradient, 2D gradient, low
frequencies, high frequencies) and then chose the least correlated
among them (Table 1). We calculated the probability of an
image to be chosen over another image, as a function of the
ratio between their parameters. To quantify the predictability
of each parameter we fitted the probability with a logistic

TABLE 1 | Image parameters.

Parameter Description

Gradient
∑

pixels(∇ image)
2

Low frequencies
∑i=0.25·(maxfreq)

i=0 |FFT (image)|

Luminance < 0.299R+ 0.587G+ 0.114B >pixels

Global contrast std(0.299R+ 0.587G+ 0.114B)

Colorfulness
∑

pixels(I
2 + Q2) [YIQ coordinate system ]

Saturation <
255(max(R,G,B)−min(R,G,B))

max(R,G,B)
>pixels

regression model (as in Equation 2 for a single parameter
i), where the model parameter (|β|) represents the degree of
predictability. By knowing the value of a predictive parameter,
one can estimate with high probability which image will be
chosen.

As can be seen in Figure 4, the gradient and the low
frequencies were good predictors for both humans’ (β =

1.38 ± 0.06,β = 1.14 ± 0.06, respectively) and the DNN’s
choices (β = 1.72 ± 0.05,β = 1.11 ± 0.04, respectively),
and slightly better for the DNN in higher parameter ratios. The
luminance was not at all predictive, again similarly for humans
(β = 0.07 ± 0.04) and the DNN (β = 0.04 ± 0.03). Differences
were found for global contrast which was a better predictor for
humans (especially in low and high ratios, β = 0.73 ± 0.05)
compared to the DNN (β = 0.34 ± 0.03), and colorfulness and
saturation seem irrelevant for humans (β = 0.13 ± 0.04,β =

0.02 ± 0.04, respectively) while predicting to some extent the
DNN’s choices (β = 0.56 ± 0.03,β = 0.47 ± 0.03, respectively).

3.3. Multiple Parameters Predictability
We next looked for combinations of parameters that could
increase the predictability. We optimized a regularized
generalized linear model (GLM) for each subset of our six
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FIGURE 4 | Image parameters as predictors for the DNN’s and humans’ choices for the 50/50 dataset (red and blue, respectively). The probability to choose I1 vs.
f (I1 )
f (I2 )

, where f (I1) is the parameter value of I1. X axis is log scaled. Error bars are the confidence intervals (95%) of a binomial distribution calculated with

Clopper-Pearson method. Inner bar plots show β parameters of logistic regression (see text) for humans and DNN.

parameters and calculated the average prediction accuracy. The
regularization parameter was determined via cross validation.
As the two classes were balanced [P(pick I1) = P(pick I2)] we
optimized a non-biased model (intercept= 0).

P(pick I1|I1, I2) =
1

1+ exp
(

∑

i βilog
(

fi(I1)
fi(I2)

)) (2)

I1, I2 are the images,
fi(I1)
fi(I2)

is the ratio of parameter i between the

images, and βi is the coefficient of parameter i. After the model
was trained, the decision and accuracy were calculated using:

ymodel =

{

1, P > 0.5

0, P < 0.5
(3)

accuracy =
1

N

∑

|ymodel − ynet| (4)

ymodel is the model choice (1/0 for choosing the first/second
image, respectively), ynet is the DNN choice, andN is the number
of images in each test set.

Figure 5A shows the average accuracy of the best subset for
one, two and six parameters. The best single parameter for both
humans and the DNN was the gradient, which predicted the

DNN’s and humans’ choice in 77.2 and 74.0% of the cases,
respectively. The best pair of parameters was different, for
humans adding the low frequencies yielded 76.5% successes
and for the DNN adding colorfulness reached 79.4%. The best
accuracy achieved for theDNNwas 81.0% and for humans 78.6%.
In both cases, using all parameters was not significantly different
than adding any third parameter.

3.4. Activity Throughout the DNN Layers
3.4.1. 50/50 Mixed Images
As we are also interested in where this kind of competition
is resolved, we further examined the activity of the network
throughout the process of categorization, before the last softmax
layer. We compared the activity of each neuron in each layer
of the network when “observing” each of the original images
and their mix. We calculated the correlations between those
activity maps and averaged them per layer. To understand where
the network’s “decision” occurred, we calculated the average
activity map correlations when averaging the “winning” images
separately from the “losing” images (Figure 6). For both cases,
the correlations in the first layers were high (0.7/0.6), decreased as
we went deeper into the net and increased toward the end. When
looking at the difference between these correlations (Figure 6B),
although a difference already existed in the first layers, it
increased dramatically in the last three layers. Suprisingly, we did
not find any effect before/after max pooling (layers 3, 6, 11, 16,
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FIGURE 5 | Average accuracy in predicting the winning image using multi-dimensional GLM for the DNN (A) and humans (B). The figures represent the best subset of

parameters when using one or two parameters and the maximum accuracy when using all of them. Using all six parameters yielded the same result as adding any

third one in both cases. Error bars represent standard errors.

FIGURE 6 | (A) The average correlations between the activity maps of the 50/50 mixed image units and the winning/losing image (blue/red) units. (B) Differences

between correlations of the winning and losing image [i.e., difference between the blue and red curves in (A), respectively].

21). On the other hand, the dramatic increase occurs in the fully
connected layers (layers 22, 23, 24).

3.4.2. phs/mag Mixed Images
Though most of the times the network did not recognize
both images, we aim to understand whether there was a
different response throughout the layers when it did recognize
one of them. Therefore, we averaged separately the mixtures
where the net chose the phase image, the magnitude image
or neither. Figure 7 shows the average correlations throughout
the layers with the phase image (Figure 7A), the magnitude
image (Figure 7B), and the difference between them (Figure 7C).
According to Figure 7C, there is a big difference in favor of the
phase image already in the first layers, but this cannot be used as

a predictor as it happened also for images where the magnitude
image “won” (red) or neither (yellow). In the cases where the
“phase” image “won,” the decision occurred only toward the end,
where we observed a higher difference between the correlation
with the phase image and the correlation with the magnitude
image.

4. DISCUSSION

To these days, a key challenge for neuroscientists is describing
and understanding the nature of computation in the brain (Marr
and Poggio, 1976). The rising success of artificial DNNs in object
recognition tasks raises new questions about their resemblance
to computations in the human visual system. Does the similarity
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FIGURE 7 | The average correlations between the activity maps of the phs/mag mixtures and the original phase image (A) or the magnitude image (B). The difference

between them is presented in (C). The blue curves represent images where the network chose the phase image as the “winner,” the red is when the magnitude image

“won” and the yellow is for the cases where neither “won.” Error bars represent standard errors.

between the biological and artificial systems goes beyond high
accuracy? This study asserts a connection between deep networks
and the human visual processing mechanism, adding to a
growing body of studies showing that DNNs can be used for
modeling different phenomena of the visual system (Cadieu
et al., 2014; Khaligh et al., 2014; Yamins et al., 2014; Güçlü
and van Gerven, 2015; Kubilius et al., 2016; Cichy et al., 2017;
Seeliger et al., 2017). It further reveals still existing divergence
for future model improving. In this study, we have created a
non-dynamic human visual competition. When briefly presented
with a mixture of two images humans tended to perceive only
one image (70.7%). Remarkably, when testing DNNs on the
same mixes, only one of the images appeared in the top5
categories of the DNN (VGG19—76.3%, ResNet—74.2%). Using
the top5 categories is the leading evaluation metric for networks
with 1,000 categories, and specifically when working with the
ImageNet dataset. The categories of this dataset are over-specific
as they contain types of animals and parts of objects (e.g.,
green mamba, Passerina cyanea, modem, nail, etc.). Some of
the images may also fall into more than one category (e.g., the
man on the boat from Figure 1). As our goal was to determine
which of the images was better perceived, or better popped-up
in the brief exposure, we accepted any human answer referring
to any part of an image, as well as used the top5 categories
of the network. Moreover, we have verified that evaluating
the network perception by choosing top2 categories would not
change the main tendency to perceive only one image. This result
implicates that the “suppression” of the unperceived stimulus can
be explained without any top-down processes, using only a feed-
forward architecture. While referring to the network’s output
as perception is still controversial, we refer here to a narrower
definition which is the task related categorization. Our visual
task involves two stimuli competing for the system’s perception—
whether biological or artificial. This comparison is powerful, as
the exact same stimulus was presented to both humans and a
DNN.

While using only the top2 categories seemed to cover-up the
discrepancies in perceiving both images or none of them, we
believe, for the reasons listed above, it is a worse candidate for

comparison to humans. Although, when using top5 accuracy, one
has to account for a discrepancy in performance. In the current
dataset and using the top5 categories, the net recognized both
images at almost three times the rate of humans (Figure 3A). One
plausible source for this difference is the deterministic nature
of the DNN, compared with the stochastic one of humans.
Inspired by studies using noise to model human stochasticity
(Daw et al., 2006; Moreno-Bote et al., 2007, 2011), we examined
the effect of injecting noise to the decision-making process of
the network. We showed that adding noise before the last layer
enabled reaching similar to human results. In other words, the
disparities we have mentioned so far might result from the lack
of stochasticity in the DNN. Important to mention, though, is
that neither using top2 accuracy nor noise-injection changed
the winning image within each pair. Hence, it strengthens the
robustness of the tendency to perceive only one image, and
cannot account for all following similarities and differences
found in the preceding analysis.

Finally, we note that humans were better than the DNN
at recognizing images in the phase/magnitude mixtures
(Figure 3B), and that this advantage was mainly due to increased
sensitivity to the image phase. This sensitivity was previously
shown to reflect natural images variability (Thomson et al.,
2000), and our finding implies that the DNN model we used is
lacking in this regard.

We further attempted to regress performance of both systems
to image attributes. Our analysis revealed that frequencies,
both high (as captured by the gradient) and low, are common
predictors of humans’ and the DNN’s choices. The influence of
image gradient on human perception had been previously shown
in different paradigms (Hollins, 1980; Mueller and Blake, 1989),
here, we show that this sensitivity exists also for the DNNmodel.
On the other hand, although commonly used in psychophysical
studies, the luminance was not a good predictor for either the
DNN or for humans. Global contrast was a good predictor only
for human performance, which might be explained by the low
resolution enforced by the short exposure, while colorfulness
and saturation were predictive only for the DNN’s choices. The
DNN’s sensitivity to colorfulness was also observed using a
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generalized linear model, which further emphasizes the gradient’s
role as the common and most predictive parameter.

The parameters which predicted performance similarly
for both systems may now offer a platform on which
computational explanations to human sensitivities may be
tested. These visual sensitivities spontaneously emerge from
training an artificial system for classification, suggesting a
similar mechanism in biological systems. Parameters which
predicted performance differently point to a possible disparity
between the two perceptual implementations—the biological and
the artificial. These differences may aid vision researchers in
developing more human-like artificial networks, e.g., reducing
network’s sensitivity to color by augmenting the training
dataset with color manipulations. Alternatively, one can re-train
the networks using the mixed images labeled with human’s
choices.

Finally, we attempted to resolve where in the computational
process perceptual competition was resolved. The activity
throughout the layers of the DNN indicates that a preference
for the perceived image existed already in early processing levels,
though the difference in the last layers increased dramatically.
This late preference in the fully-connected layers was also
observed in the phase/magnitude competition. This result is
consistent with a previous study, showing that in neural networks
trained for binary choices, information regarding both choices
can be tracked throughout the layers (Balasubramani et al., 2018).
It is further consistent with the primary functions of the different
layers, convolutional layers serve as feature extractors, while
fully-connected layers are in charge for the classification (Hertel
et al., 2015).

Our results offer a two-fold benefit for future work. First, they
can be used to improve the validity of DNNs as models, as well
as boost their performance (by imitating biological behaviors).
Second, testing DNNs outputs using manipulated inputs provide
a new approach for vision researchers to study how the brain
makes choices of what to perceive. In conclusion, this work is yet
another step toward a valid computational model of the ventral
stream of the visual system. The differences we found can be
used for bridging the gaps between biological and artificial visual
perception.

DATA AVAILABILITY STATEMENT

The dataset generated for the human experiment and the
results can be found in https://github.com/lirongruber/Visual-
Competition.

AUTHOR CONTRIBUTIONS

LG and AH designed the research, conducted the human
experiment, analyzed the data and wrote the paper. RB and MI
supervised the analysis and contributed by reviewing and editing
the manuscript.

ACKNOWLEDGMENTS

We thank Ehud Ahissar for helpful comments and review, Ron
Dekel for technical advices and support, and Guy Nelinger for
insightful comments and editing. This work was supported by the
Weizmann Institute of Science.

REFERENCES

Alam, M. M., Vilankar, K. P., Field, D. J., and Chandler, D. M. (2014). Local

masking in natural images: a database and analysis. J. Vis. 14, 22–22.

doi: 10.1167/14.8.22

Balasubramani, P. P., Moreno-Bote, R., and Hayden, B. Y. (2018). Using

a simple neural network to delineate some principles of distributed

economic choice. Front. Comput. Neurosci. 12:22. doi: 10.3389/fncom.2018.

00022

Blake, R., and Logothetis, N. K. (2002). Visual competition. Nat. Rev. Neurosci. 3,

13–21. doi: 10.1038/nrn701

Blake, R., and Tong, F. (2008). Binocular rivalry. Scholarpedia 3:1578.

doi: 10.4249/scholarpedia.1578

Bradley, C., Abrams, J., and Geisler, W. S. (2014). Retina-V1 model of detectability

across the visual field. J. Vis. 14, 22-22. doi: 10.1167/14.12.22

Cadieu, C. F., Hong, H., Yamins, D. L., Pinto, N., Ardila, D., Solomon, E. A.,

et al.(2014). Deep neural networks rival the representation of primate IT

cortex for core visual object recognition. PLoS Comput. Biol. 10:e1003963.

doi: 10.1371/journal.pcbi.1003963

Carter, O., and Cavanagh, P. (2007). Onset rivalry: brief presentation isolates

an early independent phase of perceptual competition. PLoS ONE 2:e343.

doi: 10.1371/journal.pone.0000343

Martin Cichy, R., Khosla, A., Pantazis, D., and Oliva, A. (2017).

Dynamics of scene representations in the human brain revealed by

magnetoencephalography and deep neural networks. Neuroimage 153,

346–358. doi: 10.1016/j.neuroimage.2016.03.063

Corney, D., and Lotto, R. B. (2007). What are lightness illusions and why

do we see them?. PLoS Comput. Biol. 3:e180. doi: 10.1371/journal.pcbi.

0030180

Daw, N. D., O’doherty, J. P., Dayan, P., Seymour, B., and Dolan, R. J. (2006).

Cortical substrates for exploratory decisions in humans. Nature 441, 876–879.

doi: 10.1038/nature04766

Geirhos, R., Janssen, D. H., Schütt, H. H., Rauber, J., Bethge, M., andWichmann, F.

A. (2017). Comparing deep neural networks against humans: object recognition

when the signal gets weaker. arXiv preprint arXiv:1706.06969.

Güçlü, U., and van Gerven,M. A. (2015). Deep neural networks reveal a gradient in

the complexity of neural representations across the ventral stream. J. Neurosci.

35, 10005–10014. doi: 10.1523/JNEUROSCI.5023-14.2015

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image

recognition,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (Las Vegas, NV), 770–778. doi: 10.1109/CVPR.2016.90

Hertel, L., Barth, E., Käster, T., and Martinetz, T. (2015). “Deep convolutional

neural networks as generic feature extractors,” in 2015 International Joint

Conference on Neural Networks (IJCNN) (Killarney), 1–4.

Hollins, M. (1980). The effect of contrast on the completeness of binocular rivalry

suppression. Percept. Psychophys. 27, 550–556. doi: 10.3758/BF03198684

Huh, M., Agrawal, P., and Efros, A. A. (2016). What makes ImageNet good for

transfer learning?. arXiv preprint arXiv:1608.08614.

Khaligh-Razavi, S. M., and Kriegeskorte, N. (2014). Deep supervised, but not

unsupervised, models may explain IT cortical representation. PLoS Comput.

Biol. 10:e1003915. doi: 10.1371/journal.pcbi.1003915

Kheradpisheh, S. R., Ghodrati, M., Ganjtabesh, M., and Masquelier, T.

(2016). Humans and deep networks largely agree on which kinds of

variation make object recognition harder. Front. Comput. Neurosci. 10:92.

doi: 10.3389/fncom.2016.00092

Kriegeskorte, N. (2015). Deep neural networks: a new framework for modeling

biological vision and brain information processing. Annu. Rev. Vis. Sci. 1,

417–446. doi: 10.1146/annurev-vision-082114-035447

Frontiers in Computational Neuroscience | www.frontiersin.org 9 July 2018 | Volume 12 | Article 57

https://github.com/lirongruber/Visual-Competition
https://github.com/lirongruber/Visual-Competition
https://doi.org/10.1167/14.8.22
https://doi.org/10.3389/fncom.2018.00022
https://doi.org/10.1038/nrn701
https://doi.org/10.4249/scholarpedia.1578
https://doi.org/10.1167/14.12.22
https://doi.org/10.1371/journal.pcbi.1003963
https://doi.org/10.1371/journal.pone.0000343
https://doi.org/10.1016/j.neuroimage.2016.03.063
https://doi.org/10.1371/journal.pcbi.0030180
https://doi.org/10.1038/nature04766
https://doi.org/10.1523/JNEUROSCI.5023-14.2015
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.3758/BF03198684
https://doi.org/10.1371/journal.pcbi.1003915
https://doi.org/10.3389/fncom.2016.00092
https://doi.org/10.1146/annurev-vision-082114-035447
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Gruber et al. Perceptual Dominance in Mixed Images

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet classification

with deep convolutional neural networks,” in Advances in Neural Information

Processing Systems (Lake Tahoe, NV), 1097–1105.

Kubilius, J., Bracci, S., and de Beeck, H. P. O. (2016). Deep neural networks

as a computational model for human shape sensitivity. PLoS Comput. Biol.

12:e1004896. doi: 10.1371/journal.pcbi.1004896

Kudo, H., Yamamura, T., Ohnishi, N., Kobayashi, S., and Sugie, N. (1999). “A

neural network model of dynamically fluctuating perception of necker cube as

well as dot patterns,” in AAAI/IAAI (Orlando, FL), 194–199.

Laing, C. R., and Chow, C. C. (2002). A spiking neuronmodel for binocular rivalry.

J. Comput. Neurosci. 12, 39–53. doi: 10.1023/A:1014942129705

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning.Nature 521, 436–444.

doi: 10.1038/nature14539

Lindsay, G. W. (2015). Feature-based attention in convolutional neural networks.

arXiv preprint arXiv:1511.06408.

Lindsay, G. W., and Miller, K. D. (2017). Understanding biological visual

attention using convolutional neural networks. bioRxiv 233338. doi: 10.1101/

233338

Logothetis, N. K. (1998). Single units and conscious vision. Philos. Trans. R. Soc. B

Biol. Sci. 353, 1801–1818. doi: 10.1098/rstb.1998.0333

Logothetis, N. K., Leopold, D. A., and Sheinberg, D. L. (1996). What is rivalling

during binocular rivalry? Nature 380, 621–624. doi: 10.1038/380621a0

Marr, D., and Poggio, T. (1976). From Understanding Computation to

Understanding Neural Circuitry.M.I.T A.I.

Moosavi-Dezfooli, S. M., Fawzi, A., Fawzi, O., and Frossard, P. (2017). Universal

adversarial perturbations. arXiv preprint. doi: 10.1109/CVPR.2017.17

Moreno-Bote, R., Rinzel, J., and Rubin, N. (2007). Noise-induced alternations

in an attractor network model of perceptual bistability. J. Neurophysiol. 98,

1125–1139. doi: 10.1152/jn.00116.2007

Moreno-Bote, R., Knill, D. C., and Pouget, A. (2011). Bayesian sampling

in visual perception. Proc. Natl. Acad. Sci. U.S.A. 108, 12491–12496.

doi: 10.1073/pnas.1101430108

Mueller, T. J., and Blake, R. (1989). A fresh look at the temporal dynamics of

binocular rivalry. Biol. Cybern. 61, 223–232. doi: 10.1007/BF00198769

Nguyen, A., Yosinski, J., and Clune, J. (2015). “Deep neural networks are easily

fooled: high confidence predictions for unrecognizable images,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (Boston,

MA), 427–436.

O’Shea, R. P., Parker, A., La Rooy, D., and Alais, D. (2009). Monocular rivalry

exhibits three hallmarks of binocular rivalry: evidence for common processes.

Vis. Res. 49, 671–681. doi: 10.1016/j.visres.2009.01.020

O’Shea, R. P., Roeber, U., and Wade, N. J. (2017). On the discovery of

monocular rivalry by Tscherning in 1898: translation and review. i-Perception

8:2041669517743523. doi: 10.1177/2041669517743523

Polonsky, A., Blake, R., Braun, J., and Heeger, D. J. (2000). Neuronal activity

in human primary visual cortex correlates with perception during binocular

rivalry. Nat. Neurosci. 3, 1153–159. doi: 10.1038/80676

Rajalingham, R., Issa, E. B., Bashivan, P., Kar, K., Schmidt, K., and DiCarlo, J.

J. (2018). Large-scale, high-resolution comparison of the core visual object

recognition behavior of humans, monkeys, and state-of-the-art deep artificial

neural networks. bioRxiv, 240614. doi: 10.1101/240614

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al.(2015).

Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115,

211–252. doi: 10.1007/s11263-015-0816-y

Schütt, H. H., and Wichmann, F. A. (2017). An image-computable psychophysical

spatial vision model. J. Vis. 17:12. doi: 10.1167/17.12.12

Seeliger, K., Fritsche, M., Güçlü, U., Schoenmakers, S., Schoffelen, J. M., Bosch, S.

E., et al.(2017). Convolutional neural network-based encoding and decoding

of visual object recognition in space and time. Neuroimage 17, 30586–30584.

doi: 10.1016/j.neuroimage.2017.07.018

Sheinberg, D. L., and Logothetis, N. K. (1997). The role of temporal cortical

areas in perceptual organization. Proc. Natl. Acad. Sci. U.S.A. 94, 3408–3413.

doi: 10.1073/pnas.94.7.3408

Shpiro, A., Moreno-Bote, R., Rubin, N., and Rinzel, J. (2009). Balance between

noise and adaptation in competitionmodels of perceptual bistability. J. Comput.

Neurosci. 27, 37–54. doi: 10.1007/s10827-008-0125-3

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556.

Thomson, M. G., Foster, D. H., and Summers, R. J. (2000). Human sensitivity to

phase perturbations in natural images: a statistical framework. Perception 29,

1057–1069. doi: 10.1068/p2867

Tong, F., Meng, M., and Blake, R. (2006). Neural bases of binocular rivalry. Trends

Cogn. Sci. 10, 502–511. doi: 10.1016/j.tics.2006.09.003

Ullman, S., Assif, L., Fetaya, E., and Harari, D. (2016). Atoms of recognition in

human and computer vision. Proc. Natl. Acad. Sci. U.S.A. 113, 2744–2749.

doi: 10.1073/pnas.1513198113

Wilson, H. R. (2003). Computational evidence for a rivalry hierarchy in vision.

Proc. Natl. Acad. Sci. U.S.A. 100, 14499–14503. doi: 10.1073/pnas.2333622100

Yamins, D. L., and DiCarlo, J. J. (2016). Using goal-driven deep learning models to

understand sensory cortex. Nat. Neurosci. 19, 356–365. doi: 10.1038/nn.4244

Yamins, D. L., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D., and

DiCarlo, J. J. (2014). Performance-optimized hierarchical models predict neural

responses in higher visual cortex. Proc. Natl. Acad. Sci. U.S.A. 111, 8619–8624.

doi: 10.1073/pnas.1403112111

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). “How transferable

are features in deep neural networks?,” in Advances in Neural Information

Processing Systems (Montreal, QC), 3320–3328.

Zeman, A., Obst, O., Brooks, K. R., and Rich, A. N. (2013). TheMüller-Lyer illusion

in a computational model of biological object recognition. PLoS ONE 8:e56126.

doi: 10.1371/journal.pone.0056126

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Gruber, Haruvi, Basri and Irani. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 10 July 2018 | Volume 12 | Article 57

https://doi.org/10.1371/journal.pcbi.1004896
https://doi.org/10.1023/A:1014942129705
https://doi.org/10.1038/nature14539
https://doi.org/10.1101/233338
https://doi.org/10.1098/rstb.1998.0333
https://doi.org/10.1038/380621a0
https://doi.org/10.1109/CVPR.2017.17
https://doi.org/10.1152/jn.00116.2007
https://doi.org/10.1073/pnas.1101430108
https://doi.org/10.1007/BF00198769
https://doi.org/10.1016/j.visres.2009.01.020
https://doi.org/10.1177/2041669517743523
https://doi.org/10.1038/80676
https://doi.org/10.1101/240614
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1167/17.12.12
https://doi.org/10.1016/j.neuroimage.2017.07.018
https://doi.org/10.1073/pnas.94.7.3408
https://doi.org/10.1007/s10827-008-0125-3
https://doi.org/10.1068/p2867
https://doi.org/10.1016/j.tics.2006.09.003
https://doi.org/10.1073/pnas.1513198113
https://doi.org/10.1073/pnas.2333622100
https://doi.org/10.1038/nn.4244
https://doi.org/10.1073/pnas.1403112111
https://doi.org/10.1371/journal.pone.0056126
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

	Perceptual Dominance in Brief Presentations of Mixed Images: Human Perception vs. Deep Neural Networks
	1. Introduction
	2. Methods
	2.1. Data Formation
	2.2. DNN Output Classification
	2.3. Human Experiment

	3. Results
	3.1. Comparing DNN and Humans Choices
	3.2. Single Parameters Predictability
	3.3. Multiple Parameters Predictability
	3.4. Activity Throughout the DNN Layers
	3.4.1. 50/50 Mixed Images
	3.4.2. phs/mag Mixed Images


	4. Discussion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References


