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INTRODUCTION 
 

DNA methylation is part of the epigenetic regulation that 

determines which genes that should be expressed, and 

where, and this complex regulation is involved in 

embryogenesis, development and aging [1–3]. 

Aberrations in this system have been linked to multiple 

diseases, including cancer [4]. DNA methylation at 

certain loci changes with age [2, 5–8], and this was 

utilized a few years ago to create mathematical models to 

calculate the methylation age of a tissue of interest  

[9–11]. These so called methylation clocks are highly 

accurate in predicting the chronological age of humans 

[9–12], with a potential application in forensic analyses 

[13, 14]. Furthermore, it has been suggested that 

methylation age also captures the aspect of biological 

aging [15–17], i.e. why individuals of the same 

chronological age can appear older or younger, and differ 

in timing of functional decline, age-related diseases and 

death. Accelerated aging, higher methylation age 

(biological age) than chronological age, has for instance 

been demonstrated in patients suffering from the 

premature aging disorder Werner syndrome [18], 

Hutchinson Gilford progeria [19], in blood and brain 

tissue of individuals with Down syndrome [20], in cancer 

tissue [10, 11] and also to be predictive of cancer risk and 

all-cause mortality in healthy individuals [15, 21, 22]. 

 

The methylation pattern undergoes changes over the span 

of a life-time mainly by losing methylation with 

increasing age [23]. Changes in DNA methylation occur 

more rapidly in children than adults [24], with the 

majority of changes in childhood taking place during the 

first five years of life [25]. However, among the seven 

currently published and publicly available (as source 

code or R package) methylation clocks; Hannum [9], 
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ABSTRACT 
 

Several DNA methylation clocks have been developed to reflect chronological age of human tissues, but most 
clocks have been trained on adult samples. The rapid methylome changes in children and the role of 
epigenetics in pediatric tumors calls for tools accurately estimating methylation age in children. We aimed to 
evaluate seven methylation clocks in multiple tissues from healthy children to inform future studies on the 
optimal clock for pediatric cohorts, and analyzed the methylation age in brain tumors. We found that clocks 
trained on pediatric samples were the best in all tested tissues, highlighting the need for dedicated clocks. For 
blood samples, the Skin and blood clock had the best correlation with chronological age, while PedBE was the 
most accurate for saliva and buccal samples, and Horvath for brain tissue. Horvath methylation age was 
accelerated in pediatric brain tumors and the acceleration was subtype-specific for atypical teratoid rhabdoid 
tumor (ATRT), ependymoma, medulloblastoma and glioma. The subtypes with the highest acceleration 
corresponded to the worst prognostic categories in ATRT, ependymoma and glioma, whereas the relationship 
was reversed in medulloblastoma. This suggests that methylation age has potential as a prognostic biomarker 
in pediatric brain tumors and should be further explored. 
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Horvath [10, 11], Epigenetic Timer of Cancer (EpiToc) 

[26], PhenoAge [27], Skin and blood clock [19], 

Pediatric-Buccal-Epigenetic (PedBE) clock [28] and Wu 

[29], only two of them (PedBE and Wu) have been 

focused exclusively on pediatric samples (buccal cells 

and blood respectively; Table 1). We therefore aimed to 

investigate and compare these seven methylation  

clocks to determine the most accurate one for pediatric 

cohorts of various tissue types, and to apply them for 

studies of brain tumors in specific. We were particularly 

interested in brain tumors since they are the leading  

cause of cancer-related deaths in children [30], and 

predictive/prognostic biomarkers are needed. One 

previous study showed age acceleration using the 

Horvath clock in the high-grade brain tumor glioblastoma 

(GBM) in a mixed cohort of pediatric and adult patients, 

and that the acceleration varied across subtypes [10, 11]. 

We hypothesized that methylation age would be 

accelerated, not just in high-grade tumors such as GBM, 

but in all pediatric brain tumors since DNA methylation 

is crucial during development and tumorigenesis, and 

significant for classification/subtyping of pediatric brain 

tumors [31–33]. Further, we theorized that acceleration 

would differ between the various diagnoses/subtypes and 

aggressiveness of the tumors and could thus be used  

as a prognostic biomarker. To evaluate this hypothesis, 

we investigated, in total, seven publicly available 

methylation clocks, 448 pediatric control samples from 

four tissue types, and brain tumors from 1434 children.  

 

RESULTS 
 

Few methylation clocks are suitable for pediatric 

samples of multi-tissue origin 
 

The majority of the methylation clocks are trained 

exclusively or predominantly on samples of adult origin 

and we therefore first evaluated how the estimated 

methylation age correlated with the chronological age in 

children in three common and easily accessible tissues; 

blood, buccal cells and saliva (see age ranges in 

Supplementary Table 1). As expected, the clocks 

trained on data containing pediatric blood samples had 

the best correlation scores (r≥0.90) and the least 

deviation from the chronological age (age acceleration: 

Horvath mean = 0.72 years, standard deviation (sd) = 

1.87; Wu mean = 0.17 years, sd = 2.1; Skin and blood 

mean = 0.011 years, sd = 1.41) using three datasets with 

blood from, in total, 188 children (Figure 1A). The 

correlation to chronological age for the Skin and blood 

clock was significantly better (adj. p<0.05) than the 

correlation for all of the other clocks. In contrast, clocks 

trained exclusively on adult blood samples had larger 

spread and deviated more from the chronological age 

(Age acceleration: PhenoAge mean = -20.6 years, sd = 

10.6; and Hannum mean = 1.34 years, sd = 5.23), 

whereas epiTOC (trained on adult blood and fetal 

tissues) correlated poorly with the chronological age 

(r=-0.19) and the other clocks (r ranging between -0.41 

and 0.04; Supplementary Figure 1A). This highlights 

the difference in aging in children versus adults, and the 

importance of using methylation clocks trained on 

pediatric samples.  

 

A factor that could affect certain clocks is the need for 

adjusting the methylation age with a tissue-specific 

constant (intercept and slope), as reported for the 

Hannum clock [9]. We did not adjust the methylation 

age estimates, but instead analyzed the residual error in 

the clocks (i.e. the deviance between the estimated 

methylation age and the regression line), which is 

unaffected by the addition of constants, but the results 

were largely unchanged (Supplementary Figure 2A) for 

most clocks. However, the performance of for example 

the PedBE clock could be improved with this 

adjustment. 

 

When analyzing methylation age, it is common to 

correct for the cell composition in blood, since different 

proportions of cell types may influence the methylation 

estimates from whole blood samples. Therefore, we 

investigated the sensitivity of the clocks to varying 

proportions of six cell types in blood; (CD8+) T cells, 

helper (CD4+) T, natural killer, B cells, monocytes and 

granulocytes, by estimating the cell type composition 

[34] in the above data. The analysis showed 

(Supplementary Figure 3) that depending on the choice 

of clock, correcting for cell type proportions could be 

needed, for example in the case of epiTOC that 

correlated significantly (adj. p <0.05) with the 

proportion of (CD8+) T cells (r = 0.71), natural killer 

cells (r=-0.26), B cells (r = 0.41) and granulocytes (r = -

0.47). On the other hand, Horvath had no significant 

correlation to the proportion of any cell type, which is 

in line with previous results [10, 11].  

 

Two of the clocks trained on buccal tissue (PedBE and 

Skin and blood) were superior to the others in terms of 

correlation to chronological age (test for difference in 

correlation p-value < 0.05 against each of the  

other clocks). There was no significant difference in 

correlation to chronological age between these two 

clocks, but the bespoke clock for buccal cells in children 

(PedBE) displayed less variation in the age estimates 

(residual se = 1.89, test for difference in standard error to 

Skin and blood p = 7.5e-08) (Figure 1B, Supplementary 

Figures 1B, 2B). Also, the Skin and blood clock 

overestimated the methylation age compared to the 

chronological age (age acceleration mean = 5.44 years). 

 

Three clocks (Horvath, PedBE and Skin and blood) 

were the best performing clocks in saliva (Figure 1C, 
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Table 1. Features of the publicly available methylation clocks. 

Methylation clock Tissue types trained on 
Age group of training 

samples 
Type of methylation clock 

Hannum [9] Blood Adults (19-101 years) Modelled to reflect chronological age 
Horvath [10, 11] Pan-tissue Children and adults Modelled to reflect chronological age 

epiTOC [26] 
Blood, 11 different fetal 

tissues (cord blood, liver, 

brain, heart etc.) 

Adult blood (19-101 years), 

fetal tissues 

Modelled to reflect mitotic-like clock 

approximating number of stem cell 

divisions 

PhenoAge [27] Blood Adults (21-100 years) 

Includes clinical biomarkers (glucose 

level, white blood cell count etc.) in 

addition to chronological age to select 

CpG sites and estimate the 

phenotypic/biological age 

Skin and blood [19] 
Blood, buccal, fibroblast, 

skin, epithelium 
Children and adults (birth-85 

years) 
Modelled to reflect chronological age 

PedBE [28] Buccal Children (birth-20 years) Modelled to reflect chronological age 
Wu [29] Blood Children (1-18 years) Modelled to reflect chronological age 

 

and Supplementary Figures 1C, 2C, test for difference 

in correlation p-value < 0.05 against each of the other 

clocks). Neither PedBE nor the Skin and blood clock 

were trained on saliva, but on buccal swabs, which have 

similarities to saliva as both are from the oral cavity and 

contains epithelial cells [35], likely explaining these 

results. There was a tendency for PedBE and Skin and 

blood to underestimate the methylation age for the older 

children (>10 years old), but larger cohorts are needed 

to verify this observation.   

 

Horvath multi-tissue clock is the most suitable clock 

for pediatric brain tissue 
 

Having evaluated the most commonly used tissue 

types from children in DNA methylation studies, we 

next investigated brain tumors, since they are the 

leading cause of cancer-related deaths in children 

[30]. As a first step, we assessed the methylation 

clocks in a set of healthy pediatric brain tissue (n=45) 

to determine the most suitable clock for brain tissue in 

children (Figure 2 and Supplementary Table 1, 

Supplementary Figure 2D). The Horvath clock 

correlated the best with chronological age (r=0.98, 

test for difference in correlation adj. p < 1e-10 against 

each of the other clocks) and also had the least 

deviation from the chronological age (age acceleration 

mean = 2.19, sd = 1.86). Horvath slightly 

overestimated the methylation age compared to the 

chronological age whereas the majority of the clocks 

underestimated it. The PedBE clock had low variance 

in the age estimates (residual se = 0.57), but had, 

similar to the blood samples, an offset in the slope of 

the methylation age estimates vs the chronological 

age. Larger datasets would be needed to accurately 

estimate this slope to be able to improve the 

performance of the PedBE clock in brain and blood 

tissue.  

 

To evaluate to what extent the methylation clock 

estimates are sensitive to different cell types in the 

brain, we used methylation data from matched tissues 

from six children and 15 adults in a previously 

published data set [36]. Apart from unsorted brain 

tissue, the data set included FACS sorted cells that were 

positive or negative for the neuronal marker NeuN 

(Neuronal Nuclei). Several of the clocks displayed a 

substantial intra-individual variation in methylation age 

between the cell types (Figure 3A). However, we could 

not detect any systematic differences, except for a 

significantly lower estimate for NeuN+ cells compared 

to NeuN- (adj. p = 0.024) and unsorted brain (adj. p = 

0.0003) using PhenoAge for pediatric samples (Figure 

3B), and for NeuN- cells compared to unsorted brain 

(adj. p = 0.038) using the Skin and blood clock on 

adults (Supplementary Figure 4). The Horvath clock 

was the most consistent in its estimation between cell 

types and since it also had the best correlation to 

chronological age and least deviation from it, as 

described above (Figure 2), we selected it for further 

studies on pediatric brain tumors.  

 

Horvath methylation age is accelerated in tumors 

and varies across diagnoses 

 

We applied Horvath’s methylation clock to a large data 

set of pediatric brain tumors (n=1112) [31] and also 

included a set of brain control tissue classified by DNA 

methylation as reactive tumor microenvironment (RTM; 

n=14), and investigated if the methylation age was 

increased compared to the chronological age 

(=accelerated aging). The results displayed that brain 
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Figure 1. Evaluation of seven methylation clocks in three tissues from healthy children. (A) Comparison of seven methylation 

clocks in blood samples (n = 188) from healthy children with estimated methylation age (y-axis) vs chronological age (x-axis). The dashed line 
represents y=x (i.e. the estimated methylation age is the same as the chronological age), and the dotted line shows the chronological age to 
methylation age regression line. Pearson correlation between the methylation age and chronological age is indicated as r above each sub 
figure together with test error, which we define as the median difference in years between the methylation age and chronological age. The 
boxplots display age acceleration = methylation age – chronological age. The epiTOC score is calculated as an average Beta value over a set of 
385 CpG sites which cannot be translated into an age estimate in years and we have therefore chosen to not include it in the boxplots or to 
display the dotted line or calculate the test error. (B) The performance of the seven clocks in buccal (n = 72) and (C) saliva (n=121) samples 
from healthy children. 
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tumors were significantly accelerated compared to the 

chronological age (mean acceleration=19 years, range -

11-85 years; adj. p-value < 2.2e-16), and also compared 

to blood (adj. p-value < 2.2e-16) and brain control 

tissue (adj. p-value < 2.2e-16) and RTM (adj. p-value = 

1.3e-7) (Figure 4A). RTM samples also displayed 

significant age acceleration compared to chronological 

age (adj. p = 5.9e-07) and healthy brain tissue (adj. p = 

6.7e-06). 

 

The pediatric brain tumors were then classified and 

subtyped by DNA methylation according to the MNP 

classifier [31]. We first looked at four main diagnoses 

based on the classification; atypical teratoid rhabdoid 

tumor (ATRT), ependymoma, glioma and 

medulloblastoma. All tumor entities were significantly 

accelerated compared to the chronological age of the 

patients (adj. p < 1e-15), and also compared to the brain 

control tissue and RTM samples (Figure 4B and 

Supplementary Table 2). The age acceleration varied 

across the diagnoses and differed significantly (adj. 

p<0.01) between the groups in all cases except ATRT 

versus glioma, and ATRT versus medulloblastoma. We 

also noted that there was a large variance within each 

group. 

Pediatric brain tumors show subtype-specific 

accelerated aging 
 

Next, we used subtyping by DNA methylation within 

each diagnosis and examined whether age acceleration 

differed between subtypes. The ATRT subtypes; 

tyrosinase (TYR), myelocytomatosis oncogene 

(MYC), and sonic hedgehog (SHH), differed 

significantly (adj. p<0.05 in all comparisons), and the 

difference between SHH and TYR was validated (adj. 

p = 0.023) in another cohort of 49 patients (Figure 5A, 

Supplementary Table 3). The ATRT methylation 

subtypes were recently identified as independent risk 

factors [37], and the lowest risk group, TYR, 

corresponds to the least age-accelerated subgroup in 

our results. For ependymoma we also observed a trend 

of increased acceleration for the two subgroups 

(RELA and PF-A) that corresponds to the worst 

prognosis [38], and a significantly lower acceleration 

for the YAP subgroup with the best prognosis 

compared to the RELA (adj. p = 1.3e-6) and PF-A 

(adj. p = 1.0e-7) subgroups (Figure 5B). This indicates 

that methylation age could be used as a prognostic 

biomarker, and warrants further investigations in 

larger cohorts of ATRT and ependymoma. 

 

 
 

Figure 2. Performance of seven methylation clocks in healthy pediatric brain tissue. (A) Estimated methylation age (y-axis) vs 

chronological age (x-axis) in healthy brain tissue from 45 children for all investigated methylation clocks. The dashed line indicates y=x (a 
perfect correlation between methylation age and chronological age), and the dotted line displays the chronological age to methylation age 
regression. Test error is defined as the median absolute difference in years between the methylation age and chronological age. (B) Boxplots 
of age acceleration = methylation age – chronological age. 
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We observed similar findings in glioma in multiple 

datasets (n=295, 153 and 86 respectively) where 

increased acceleration corresponded to increased tumor 

grade, and thus worse prognosis, starting with low-

grade gliomas (LGG) of almost exclusively grade I, 

grade II pleomorphic xanthoastrocytoma (PXA) and 

then grade IV GBM subtypes having the highest 

acceleration (Figure 5C). The trend is the same in all 

three data sets, but the differences were not significant 

in all thus warranting further studies with larger cohorts. 

Interestingly, the age acceleration relationship was 

reversed in medulloblastoma as the subtype wingless 

integrated (WNT), which has the best prognosis, 

displayed the highest age acceleration while the most 

aggressive subtype, group 3 (G3) [39], had the lowest 

acceleration in two public datasets (n=15 and 33 

respectively) and a local cohort (n=39; Figure 5D). 

 

DISCUSSION 
 

The importance of epigenetics during child 

development, both in health and disease states, has 

made methylation age an interesting tool for studies of 

an epidemiologic nature as well as research on 

developmental disorders and processes in children. 

Studies so far on methylation age in children have 

shown acceleration associated with childhood trauma 

[40], childhood abuse [41], childhood adversities [42], 

and threats and violence [43]. In addition, age 

acceleration has been associated with several childhood 

disorders such as autism [28, 29], asthma [44], and also 

faster pubertal development in girls [45], as well as 

increased body mass index [46]. However, the majority 

of the available methylation clocks today were trained 

purely or predominantly on adult samples, but Alisch et 

al. [24] have shown that methylation changes occur 

more rapidly in children than adults, suggesting that a 

methylation clock trained on adult samples might be 

inaccurate for pediatric samples. No study to date has 

performed a comprehensive comparison and evaluation 

of available clocks in the literature in pediatric cohorts. 

We therefore aimed to determine the most suitable 

methylation clock for children in various tissue types to 

inform future studies. Another objective was to evaluate 

methylation age as a prognostic biomarker in pediatric 

brain tumors. It has potential to be an additional tool for 

stratification of patients as DNA methylation has been 

used for tumor classification and subtyping (e.g. the 

brain tumor medulloblastoma) [31, 32, 39] and is now 

entering clinical diagnostic use [47, 48], and also as a

 

 
 

Figure 3. Comparison of methylation clocks for sorted brain cells. (A) The seven methylation clocks applied on matched samples 

from six children (≤18 years old) and 15 adults (separated by the vertical dotted line). Samples include unsorted brain tissue, and FACS sorted 
cells that are positive (NeuN+) and negative (NeuN-) respectively for a neuronal marker. The dashed diagonal line shows y=x, a perfect 
correlation between methylation age and chronological age, for reference, and the diagonal dotted lines display the regression lines of 
chronological age to methylation age for the three sample types. (B) Boxplot of age acceleration for the three sample types for the pediatric 
samples (boxplot for adult samples in Supplementary Figure 4). For the PhenoAge methylation clock, the NeuN+ cells have significantly lower 
age acceleration than NeuN- (adj. p = 0.024) and unsorted brain (adj. p = 0.0003). 
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biomarker for predicting treatment response (e.g. 

MGMT methylation in the high-grade tumor GBM) 

[49]. 

 

In this study, we included, to the best of our knowledge, 

all published clocks, available as R packages or as 

source code, for estimating methylation age, and 

compared them in different types of pediatric tissues 

that are easily accessible and commonly used. Their 

performance differed, presumably often as a 

consequence of what tissue type they were trained on. 

We observed that although the Horvath clock, trained 

on tissues from many sources, performed reasonably 

well in all our tested tissues, clocks trained exclusively 

on a specific tissue is slightly better in that context. For 

blood samples the Skin and blood clock slightly 

outperforms Horvath in our dataset, and the PedBE 

clock outperforms Horvath for buccal and saliva 

samples. This could be explained by the fact that PedBE 

is a clock designed solely for pediatric buccal samples, 

while Horvath was trained on samples of all ages and 

multiple tissues. Clocks that were trained, exclusively 

or partially, on pediatric samples proved the best in all 

tested tissues, and even outperformed the adult clocks in 

the cases where the clocks had been trained on the same 

tissue (i.e. blood). The results indicate that there is a 

need for methylation clocks trained solely on pediatric 

samples and preferably of a specific tissue type. Even 

though Horvath worked well for brain tissue, it 

overestimated the age of samples from healthy children, 

suggesting that a clock trained on only normal pediatric 

brain tissue could provide an improvement. The 

accuracy both in evaluation and training of clocks for 

small children could also benefit from documenting the 

chronological age in days or months instead of years.  

 

Previous publications on methylation age in brain 

tumors have shown a median age acceleration of 35 

years in a combined dataset of adult and pediatric GBM 

[10, 11], and accelerated aging was observed in 14 of  

15 adult GBM (mean 25 years acceleration) and in all 

three evaluated meningioma tumors (mean 13 years 

acceleration) [50], which is in line with our findings in 

pediatric samples (median age acceleration 29 years in 

GBM local cohort). Also, a publication on adult glioma 

[51] showed that methylation age estimated with both 

Horvath and epiTOC differs between the subtypes of 

(adult) glioma, in line with our observations in pediatric 

samples of glioma and also in ATRT, ependymoma and 

medulloblastoma. As with gliomas, sub-types with the 

worst prognosis displayed the highest age acceleration 

in ATRT and ependymoma in our study. In 

medulloblastoma, however, we observed a reverse 

relationship between age acceleration and subtype, i.e. 

the WNT subtype with the best prognosis had the 

highest age acceleration. The correspondence between 

acceleration and prognosis suggests that methylation 

age might be of prognostic significance for 

ependymoma, ATRT, medulloblastoma, and glioma. 

However, larger methylation datasets with information 

on time to relapse and survival outcomes are needed to 

validate this finding.  

 

 
 

Figure 4. Horvath methylation clock estimates of pediatric brain tumor samples in comparison to healthy blood and brain, 
and reactive tumor microenvironment. (A) Horvath methylation age vs chronological age in pediatric brain tumors (n = 1112), healthy 

blood (n= 188) and brain tissue (n = 45) from children and reactive tumor microenvironment (RTM; n = 14) displaying an accelerated 
methylation age in a majority of the brain tumor samples. (B) The methylation age is significantly increased compared to normal brain tissue, 
in both RTM (adj. p = 1.1e-05) and four types of pediatric brain tumors; ATRT (adj. p = 1.3e-13), ependymoma (EPN; adj. p = <2e-16), glioma 
(adj. p = <2e-16) and medulloblastoma (MB; adj. p = <2e-16).  
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Figure 5. Subtype specific age acceleration in pediatric brain tumors assessed by Horvath methylation clock. (A) Age 
acceleration (Horvath methylation age minus chronological age) varies significantly (adj. p < 0.05) between all three ATRT subtypes in 
GSE90496 (n = 91; left panel), and the validation cohort (n = 49; right panel) shows the same trend with a significant difference (adj. p = 
0.023) between the TYR and SHH subgroup. (B) In ependymoma (EPN), the YAP subgroup displays significantly lower age acceleration than 
the RELA (adj. p = 1.3e-6) and PF-A (adj. p = 1.0e-7) subgroups in GSE90496 (n = 157; left panel). Right panel with validation cohort (n = 65) 
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shows significant difference between the RELA and PF_A subgroup (p = 0.02). (C) Left panel, GSE90496 (n = 295), is significantly different (adj. 
p < 0.05) for all pairs of gliomas except PXA (pleomorphic xanthoastrocytoma) vs LGG (low-grade glioma, mainly grade I) and K27 (diffuse 
midline glioma H3 K27M mutant), and GBM (glioblastoma) vs G34 (glioblastoma H3.3 G34 mutant). Middle panel with validation cohort (n = 
153) varies significantly (adj. p < 0.05) between all pairs except K27 vs GBM and G34 and G34 vs GBM and DIPG, and right panel with local 
cohort (n = 86, p-value = 0.003). (D) The medulloblastoma (MB) subtypes in GSE90496 (n = 306; left panel) are significantly different for all 
pairs (adj. p < 1e-8) except SHH vs G4 (Group4). The age acceleration in the validation cohort (n = 48; middle panel) displays a similar trend in 
decreasing age acceleration, and in the local cohort (n=39; right panel) there is a significant difference between all pairs (adj. p < 0.05). Note 
that the subtypes in A-D have been ordered according to prognosis where the left-most subtype have the best prognosis and the right-most 
have the worst. Sample sizes for all included boxes is available in Supplementary Table 3.  
 

A previous study [50] showed that Horvath methylation 

age in adult GBM and meningioma differed on average 

seven and three years respectively upon sampling from 

various locations of the tumors. How much the 

methylation age differs within pediatric tumors remains 

to be studied, but this potential intratumor variability 

could explain some of the variance in methylation age 

observed within the tumor subgroups. Cell-type 

heterogeneity within the brain could also contribute to a 

variance in the methylation age estimates, but we saw 

no significant difference in Horvath methylation age 

between unsorted healthy brain tissue, neuronal and 

non-neuronal cells, which is in line with what has 

previously been shown in a cohort predominantly 

consisting of adults [10]. We therefore did not adjust for 

cell-type heterogeneity in our analysis of healthy brain 

and brain tumors. Similarly, we show that methylation 

age estimated by the Horvath clock is not affected by 

varying proportions of blood cell types, as has 

previously been shown [10].  

 

An issue with using public datasets, as we have done in 

this study, is that raw data is often lacking, and pre-

processed and normalized data is instead more commonly 

available. The methylation data used in this study has 

therefore not been processed identically. McEwen et al. 

[52], who investigated the Hannum and Horvath clocks 

with respect to normalization methods, reported that 

although the correlations with chronological age are 

unaffected, different normalization methods could lead to 

systematic offsets of the methylation age. This could be a 

factor contributing to the spread we see in our 

estimations. Additionally, McEwen et al. stated that the 

estimators are largely unaffected by the fact that not all 

CpG sites in the models are present on the newer 

Illumina EPIC arrays, suggesting that the clocks are 

robust to a small set of sites missing due to filtering. As 

for the joint analysis that we performed on samples from 

both Illumina 450K and EPIC arrays, the methylation 

values of CpG sites present on both arrays have 

previously been shown to highly correlate [53]. One 

potential source of error, however, might be due to the 

difference in quality in fresh frozen and FFPE samples. 

Although correlations between paired samples of the two 

preparation types are shown to be high [53], the risk of 

noise in FFPE samples is increased.  

CONCLUSIONS 
 

This study compared seven published methylation clocks 

with available source code/R packages for blood, buccal, 

saliva and brain samples from healthy children, as well as 

pediatric brain tumor samples. The difference in 

performance between the clocks in these tissues are large, 

and not all of them are suitable for pediatric samples. 

Clocks that were trained solely or partly on pediatric 

samples performed the best. This can be explained by the 

faster rate of methylation changes in children than adults 

[24], and highlights the importance of using clocks trained 

on pediatric samples. The best clock for pediatric blood 

samples was the Skin and blood clock, while for saliva 

and buccal samples, PedBE was the most accurate with 

respect to correlation and deviation to chronological age. 

These findings will inform future studies on child 

development in health and disease states, as well as 

epidemiologic studies, in choosing the most accurate 

clock given their tissue type. The best clock for our area 

of interest, pediatric brain tumors, was Horvath’s multi-

tissue methylation clock, even though it displayed a slight 

increase in methylation age compared to the chronological 

age also in healthy brain samples. With Horvath’s clock 

we showed that a majority of pediatric brain tumors have 

accelerated aging, and that it is subtype-specific in  

ATRT, ependymoma, medulloblastoma and glioma. 

Interestingly, we saw a relationship between the degree of 

acceleration in subgroups and prognosis, thus indicating 

that methylation age holds potential to be used for 

prognostication in pediatric brain tumors. 

 

MATERIALS AND METHODS 
 

Patients and samples 
 

Tumor tissue was collected from pediatric brain tumor 

patients after signed informed consent by the parents. The 

study was approved by the Regional Ethical Review 

Board of Gothenburg (Dnr 604-12) and carried out in 

accordance with the relevant guidelines and regulations. 

 

DNA methylation analysis 

 

DNA was extracted from fresh-frozen or FFPE tumor 

tissue and then bisulfite-modified (Zymo, Orange, 
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Table 2. Public datasets analyzed in this study. 

Sample type GEO accession no. Number of samples 

Blood_CTRL GSE36054 [24] 134 children 

 GSE111165 [36] 6 children 

GSE104812 [61] 48 children 

Brain_NeuN- GSE111165 [36] 4 children, 8 adults 

Brain_NeuN+ GSE111165 [36] 4 children, 1 adult 

Brain_unsorted/CTRL GSE111165 [36] 6 children, 15 adults 

 GSE44684 [62] 4 children 

 GSE52556 [63] 14 children 

GSE41826 [64] 21 children 

Buccal GSE111165 [36] 5 children 

GSE109042 [65] 27 children 

GSE50759 [66] 40 children 

Saliva GSE111165 [36] 6 children 

GSE72556 [67] 95 children 

GSE110128 [68] 20 children 

Reactive Tumor Microenvironment (RTM) GSE90496 [31] 14 children 

Brain tumours   

Mixed diagnoses GSE90496 [31] 1112 children 

Mixed diagnoses GSE109379 [31] 129 children 

ATRT GSE70460 [69, 70] 17 children 

ATRT GSE141039 [37] 30 children 

Ependymoma GSE114523 [71] 52 children 

Glioma GSE50022 [72] 28 children 

Glioma GSE55712 [73] 35 children 

Glioma GSE77241 [74] 16 children 

Medulloblastoma GSE54880 [75] 15 children 

 

USA), as previously described [53], and processed on 

EPIC methylation arrays (Illumina, San Diego, USA) at 

UCL Genomics (London, United Kingdom) according 

to the manufacturer’s protocols. 

 

The raw DNA methylation data was processed using  

the statistical software R (https://r-project.org). Pre-

processing and normalization (ssNoob) were done using 

R packages ChAMP [54, 55] (default filter settings, i.e. 

probes with less than 3 beads would be set to missing; 

probes with target CpG near a SNP and probes that 

align to multiple locations [56] are removed, as well as 

probes targeting the X and Y chromosomes) and minfi 

[57–59]. Only CpG sites present on both the 450K and 

EPIC array were kept for further analysis. Missing 

values were imputed using knn (K-Nearest Neighbor). 

Methylation profiles were classified by the online 

classifier MNP version 11b4 (https://www.mole 

cularneuropathology.org/mnp) [31] using IDAT files.   

 

Data from public datasets (GEO accession numbers 

according to Table 2) was downloaded as pre-processed 

and normalized Beta-values. Age at diagnosis 

(chronological age), annotated in years, was taken from 

Series Matrix files and/or Supplementary Tables of 

associated publications. Samples without annotated age 

were removed from analysis. As it is known that the 

methylation pattern differs between the different cell 

types of blood we estimated the cell type proportions of 

(CD8+) T cells, helper (CD4+) T, natural killer, B cells, 

monocytes and granulocytes in blood samples by 

Houseman’s reference-based method [34]. 

 

Methylation clocks and statistics 
 

To calculate the methylation age, R packages cgageR 

(methylation clock: epiTOC [26]) and ENmix 

(methylation clocks: Hannum [9], Horvath [10, 11] and 

PhenoAge [27]) were used. The Wu methylation clock 

(age unit: months) was implemented as stated in Wu et 

al. [29]: 

 
1

0 0 1 111 111( ),WuAge F b b CpG b CpG     

 
where 

 
1( ) ( . 1) 1, 0xF x toddler age e if x    £  

 
1( ) ( . 1) . , 0,F x toddler age x toddler age if x      

 
toddler.age = 48 months, and the regression coefficients 

b0,…, b111 are defined in Supplementary Table 2 of [29]. 

https://r-project.org/
https://www.molecularneuropathology.org/mnp
https://www.molecularneuropathology.org/mnp
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We used online R code published at https://github.com/ 

kobor-lab/Public-Scripts/ for PedBE [28], and R code 

available in the Supplementary methods of Horvath et 

al. [19] for the Skin and blood clock. Additional 

published methylation clocks, such as GrimAge [60], 

not openly available as source code or R packages were 

not evaluated here as they are not easily applied to large 

data sets. 

 

Pearson correlation was used for all correlation 

calculations between chronological age and estimated 

methylation age. To test for difference between pairs of 

correlations, we used the Hotelling-Williams's Test. We 

define ‘age acceleration’ as ‘estimated methylation age’ 

minus ‘chronological age’ of the same sample. To test 

for significant difference (p-value < 0.05) between 

groups, we performed two-sample two-sided t-tests on 

age acceleration, assuming non-equal variance. 

Benjamini-Hochberg was used for multiple testing 

correction in all statistical tests.  
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Pearson correlations between methylation clocks and with chronological age in samples from healthy pediatric 

patients: (A) blood, (B) buccal, and (C) saliva. 
 

 
 

Supplementary Figure 2. Boxplots of residuals of the regression of methylation age to chronological age for samples from healthy 

children: (A) blood, (B) buccal, (C) saliva, and (D) brain. 
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Supplementary Figure 3. (A) Scatter plots of age estimates from seven clocks (x-axis), against estimated proportions of six blood cell types, 

adjusted for chronological age: (CD8+) T cells (CD8T), helper (CD4+) T (CD4t), natural killer (NK), B cells (Bcell), monocytes (Mono) and 
granulocytes (Gran). (B) Pearson correlations of data from (A), where correlations with adjusted (Benjamini-Hochberg) p-values < 0.05 are 
displayed. 

 

 
 

Supplementary Figure 4. Boxplots of age acceleration for two sample types for the adult samples. Samples include unsorted 
brain tissue, and FACS sorted cells that are negative (NeuN-) for a neuronal marker. For the Skin and blood methylation clock, the NeuN- cells 
have significantly (adj. p = 0.038) lower age acceleration than unsorted brain cells. FACS sorted cells positive for neuronal marker (NeuN+) are 
not included here as there were only one adult patient with methylation data for NeuN+ cells. 
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Supplementary Tables 
 

 

Supplementary Table 1. Age ranges of samples from  
healthy individuals, for data plotted in Figures 1, 2.  

  Min Max Median 

Blood 1 17 4.33 

Saliva 3 17 4 

Buccal 1 18 11 

Brain 0.08 18 13 

 

Supplementary Table 2. P-values obtained from pairwise comparisons of age acceleration using t tests with non-
pooled SD. 

 
CTRL RTM ATRT EPN GLIOMA 

RTM 1.1e-05 - - - - 

ATRT 1.3e-13 1.9e-05 - - - 

EPN <2e-16 1.5e-14 0.0032 - - 

GLIOMA <2e-16 2.3e-06 0.2759 5.5e-12 - 

MB <2e-16 9.8e-10 0.5542 8.5e-05 0.0017 

P value adjustment method: BH. 
 

Supplementary Table 3. Number of paediatric brain tumour  
samples in boxplots in Figure 5.  

Dataset Sample type Number of samples 

GSE90496 ATRT TYR 30 

  ATRT MYC 22 

  ATRT SHH 39 

Validation cohort ATRT TYR 18 

  ATRT MYC 9 

  ATRT SHH 22 

GSE90496 Ependymoma YAP 10 

  Ependymoma PF B 11 

  Ependymoma RELA 52 

  Ependymoma PF A 84 

Validation cohort Ependymoma RELA 18 

  Ependymoma PF A 47 

GSE90496 LGG 211 

  PXA 13 

 

K27 40 

  G34 8 

  GBM 23 

Validation cohort LGG 55 

  PXA 9 

 

DIPG 38 

  K27 16 

  G34 9 

  GBM 26 

Local cohort LGG 73 

  GBM 13 

GSE90496 Medulloblastoma WNT 35 

  Medulloblastoma SHH 72 
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Medulloblastoma G4 122 

  Medulloblastoma G3 77 

Validation cohort Medulloblastoma WNT 6 

  Medulloblastoma SHH 12 

 

Medulloblastoma G4 20 

  Medulloblastoma G3 10 

Local cohort Medulloblastoma WNT 8 

  Medulloblastoma SHH 6 

 

Medulloblastoma G4 16 

  Medulloblastoma G3 9 

 


